首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
We have constructed a series of cysteine-substitution mutants in order to identify residues in the mouse muscle nicotinic acetylcholine receptor (AChR) that are involved in alpha-bungarotoxin (alpha-Bgtx) binding. Following transient expression in HEK 293-derived TSA-201 cells, covalent modification of the introduced cysteines with thiol-specific reagents reveals that alpha subunit residues W187, V188, F189, Y190, and P194 are solvent accessible and are in a position to contribute to the alpha-Bgtx binding site in native receptors. These results with the intact receptor are consistent with NMR studies of an alpha-Bgtx/receptor-dodecapeptide complex [Basus, V., Song., G., and Hawrot, E. (1993) Biochemistry 32, 12290-12298]. We pursued a more detailed analysis of the F189C mutant as this site varies substantially between AChRs that bind Bgtx and certain neuronal AChRs that do not. Treatment of intact cells expressing F189C with either bromoacetylcholine (BrACh) or [2-(trimethylammonium)ethyl] methane-thiosulfonate (MTSET), both methylammonium-containing thiol-modifying reagents with agonist properties, results in a marked decrease ( approximately 55-70%) in the number of alpha-Bgtx binding sites, as measured under saturating conditions. The decrease in sites appears to affect both alpha/gamma and alpha/delta sites to the same extent, as shown for alphaW187C and alphaF189C which were the two mutants examined on this issue. In contrast to the results obtained with MTSET and BrACh, modification with reagents that lack the alkylammonium entity, such as methylmethanethiosulfonate (MMTS), the negatively charged 2-sulfonatoethyl methane-thiosulfonate (MTSES), or the positively charged aminoethyl methylthiosulfonate (MTSEA), has little or no effect on the maximal binding of alpha-Bgtx to the alphaW187C, alphaV188C, or alphaF189C mutant receptors. The striking alkylammonium dependency suggests that an interaction of the tethered modifying group with the negative subsite within the agonist binding domain is primarily responsible for the observed blockade of toxin binding.  相似文献   

2.
We determined the distances separating five functionally important residues (Gln(10), Lys(27), Trp(29), Arg(33), and Lys(47)) of a three-fingered snake neurotoxin from the reduced disulfide bond alpha(Cys(192)-Cys(193)) located at the alphagamma interface of the Torpedo nicotinic acetylcholine receptor. Each toxin position was substituted individually for a cysteine, which was then linked to a maleimido moiety through three different spacers, varying in length from 10 to 22 A. We estimated the coupling efficiency between the 15 toxin derivatives and the reduced cystine alpha(192-193) by gel densitometry of Coomassie Blue-stained gels. A nearly quantitative coupling was observed between alphaCys(192) and/or alphaCys(193) and all probes introduced at the tip of the first (position 10) and second (position 33) loops of Naja nigricollis alpha-neurotoxin. These data sufficed to locate the reactive thiolate in a "croissant-shaped" volume comprised between the first two loops of the toxin. The volume was further restrained by taking into account the absence or partial coupling of the other derivatives. Altogether, the data suggest that alphaCys(192) and/or alphaCys(193), at the alphagamma interface of a muscular-type acetylcholine receptor, is (are) located in a volume located between 11.5 and 15.5 A from the alpha-carbons at positions 10 and 33 of the toxin, under the tip of the toxin first loop and close to the second one.  相似文献   

3.
A peptide corresponding to amino acid sequence 188-201 of the alpha-subunit of Torpedo AChR binds alpha-Bgtx. The S-S bridge between Cys 192 and 193 is essential for the binding as Tyr in position 189. The same sequence 188-201 corresponding to human AChR, which instead of Tyr has a Thr in position 189, binds alpha-Bgtx with a much lower efficiency. Monoclonal antibodies raised against Torpedo peptide 188-201 recognize Torpedo AChR and antibodies against Torpedo AChR recognize peptide 188-201 indicating that the synthetic peptide and the corresponding sequence in the native molecule share some immunological epitopes. With computer graphics and energy refinement a molecular model of this peptide has been elaborated.  相似文献   

4.
A fusion protein consisting of the TrpE protein and residues 166-211 of the Torpedo acetylcholine receptor alpha 1 subunit was produced in Escherichia coli using a pATH10 expression vector. Residues in the Torpedo sequence were changed by means of oligonucleotide-directed mutagenesis to residues present in snake alpha 1 subunit and rat nerve alpha 3 subunit which do not bind alpha-bungarotoxin. The fusion protein of the Torpedo sequence bound 125I-alpha-bungarotoxin with high affinity (IC50 = 2.5 x 10(-8) M from competition with unlabeled toxin, KD = 2.3 x 10(-8) M from equilibrium saturation binding data). Mutation of three Torpedo residues to snake residues, W184F, K185W, and W187S, had no effect on binding. Conversion of two additional Torpedo residues to snake, T191S and P194L, reduced alpha-bungarotoxin binding to undetectable levels. The P194L mutation alone abolished toxin binding. Mutation of three Torpedo alpha 1 residues to neuronal alpha 3-subunit residues, W187E, Y189K, and T191N, also abolished detectable alpha-bungarotoxin binding. Conversion of Try-189 to Asn which is present in the snake sequence (Y189N) abolished toxin binding. It is concluded that in the sequence of the alpha subunit of Torpedo encompassing Cys-192 and Cys-193, Try-189 and Pro-194 are important determinants of alpha-bungarotoxin binding. Tyr-189 may interact directly with cationic groups or participate in aromatic-aromatic interactions while Pro-194 may be necessary to maintain a conformation conductive to neurotoxin binding.  相似文献   

5.
Kallistatin is a heparin-binding serine proteinase inhibitor (serpin), which specifically inhibits human tissue kallikrein by forming a covalent complex. The inhibitory activity of kallistatin is blocked upon its binding to heparin. In this study we attempted to locate the heparin-binding site of kallistatin using synthetic peptides derived from its surface regions and by site-directed mutagenesis of basic residues in these surface regions. Two synthetic peptides, containing clusters of positive-charged residues, one derived from the F helix and the other from the region encompassing the H helix and C2 sheet of kallistatin, were used to assess their heparin binding activity. Competition assay analysis showed that the peptide derived from the H helix and C2 sheet displayed higher and specific heparin binding activity. The basic residues in both regions were substituted to generate three kallistatin double mutants K187A/K188A (mutations in the F helix) and K307A/R308A and K312A/K313A (mutations in the region between the H helix and C2 sheet), using a kallistatin P1Arg variant as a scaffold. Analysis of these mutants by heparin-affinity chromatography showed that the heparin binding capacity of the variant K187A/K188A was not altered, whereas the binding capacity of K307A/R308A and K312A/K313A mutants was markedly reduced. Titration analysis with heparin showed that the K312A/K313A mutant has the highest dissociation constant. Like kallistatin, the binding activity of K187A/K188A to tissue kallikrein was blocked by heparin, whereas K307A/R308A and K312A/K313A retained significant binding and inhibitory activities in the presence of heparin. These results indicate that the basic residues, particularly Lys(312)-Lys(313), in the region between the H helix and C2 sheet of kallistatin, comprise a major heparin-binding site responsible for its heparin-suppressed tissue kallikrein binding.  相似文献   

6.
Factor B is a serine protease, which despite its trypsin-like specificity has Asn instead of the typical Asp at the bottom of the S(1) pocket (position 189, chymotrypsinogen numbering). Asp residues are present at positions 187 and 226 and either one could conceivably provide the negative charge for binding the P(1)-Arg of the substrate. Determination of the crystal structure of the factor B serine protease domain has revealed that the side chain of Asp(226) is within the S(1) pocket, whereas Asp(187) is located outside the pocket. To investigate the possible role of these atypical structural features in substrate binding and catalysis, we constructed a panel of mutants of these residues. Replacement of Asp(187) caused moderate (50-60%) decrease in hemolytic activity, compared with wild type factor B, whereas replacement of Asn(189) resulted in more profound reductions (71-95%). Substitutions at these two positions did not significantly affect assembly of the alternative pathway C3 convertase. In contrast, elimination of the negative charge from Asp(226) completely abrogated hemolytic activity and also affected formation of the C3 convertase. Kinetic analyses of the hydrolysis of a P(1)-Arg containing thioester by selected mutants confirmed that residue Asp(226) is a primary structural determinant for P(1)-Arg binding and catalysis.  相似文献   

7.
Li CH  Tu SC 《Biochemistry》2005,44(39):12970-12977
Vibrio harveyi luciferase is an alphabeta heterodimer containing a single active site, proposed earlier to be at a cleft in the alpha subunit. In this work, six conserved phenylalanine residues at this proposed active site were subjected to site-directed mutations to investigate their possible functional roles and to delineate the makeup of luciferase active site. After initial screening of Phe --> Ala mutants, alphaF46, alphaF49, alphaF114, and alphaF117 were chosen for additional mutations to Asp, Ser, and Tyr. Comparisons of the general kinetic properties of wild-type and mutated luciferases indicated that the hydrophobic nature of alphaF46, alphaF49, alphaF114, and alphaF117 was important to luciferase V(max) and V(max)/K(m), which were reduced by 3-5 orders of magnitude for the Phe --> Asp mutants. Both alphaF46 and alphaF117 also appeared to be involved in the binding of reduced flavin substrate. Additional studies on the stability and yield of the 4a-hydroperoxyflavin intermediate II and measurements of decanal substrate oxidation by alphaF46D, alphaF49D, alphaF114D, and alphaF117D revealed that their marked reductions in the overall quantum yield (phi( degrees )) were a consequence of diminished yields of luciferase intermediates and, with the exception of alphaF114D, emission quantum yield of the excited emitter due to the replacement of the hydrophobic Phe by the anionic Asp. The locations of these four critical Phe residues in relation to other essential and/or hydrophobic residues are depicted in a refined map of the active site. Functional implications of these residues are discussed.  相似文献   

8.
9.
A recent tryptophan scanning of the alpha-TM3 domain of the Torpedo californica AChR demonstrated that this domain can modulate ion-channel gating [Guzman, G., Santiago, J., Ricardo, A., Martí-Arbona, R., Rojas, L., Lasalde-Dominicci, J. (2003) Biochemistry 42, 12243-12250]. Here we extend the study of the alpha-TM3 domain to the muscle-type AChR by examining functional consequences of single tryptophan substitutions at five conserved positions (alphaM282, alphaF284, alphaV285, alphaA287, and alphaI290) homologous to the alpha-TM3 positions that were recently characterized in the Torpedo AChR. Similarly to the Torpedo AChR, mutations alphaM282W and alphaV285W, which are presumed to face the interior of the protein, did not exhibit functional channel activity. Nevertheless, significant expression levels of these mutants were observed at the oocyte surface. In contrast to the Torpedo AChR, in the muscle-type AChR, tryptophan substitution at positions F284, A287, and I290 produces a significant increase in normalized macroscopic response. Single-channel recordings at low ACh concentration revealed that the increase in AChR sensitivity for the F284W, A287W, and I290W is due to an increase in the mean open duration. These results suggest that tryptophan substitution directly affects channel gating, primarily the channel closing rate. Our results suggest that residues facing the interior of the protein (i.e., alphaM282 and alphaV285) may similarly affect channel gating in Torpedo and muscle-type AChR. However, equivalent mutations (i.e., F284W and I290W) presumably facing the lipid environment display a very different functional response between these two AChR species.  相似文献   

10.
Lin LY  Szittner R  Friedman R  Meighen EA 《Biochemistry》2004,43(11):3183-3194
The recently proposed model for the bacteria luciferase-flavin mononucleotide complex identifies a number of critical intermolecular interactions that define a binding platform for the isoalloxazine ring of flavin [Lin, L. Y., Sulea, T., Szittner, R., Vassilyev, V., Purisima, E. O., and Meighen, E. A. (2001) Protein Sci. 10, 1563-1571]. A key interaction involving van der Waals contact between the isopropyl side chain of alphaVal173 and the 7,8-dimethyl benzene plane of the isoalloxazine chromophore represents an important target to test the validity of the proposed model. Here, structure-function analysis of luciferase variants carrying single point mutations at position alpha173 have verified the functional layout of the active site architecture and implicated this site directly in flavin binding. Moreover, a decrease in the stability of the enzyme-bound C4a-hydroperoxyflavin intermediate in the mutants could account for changes in saturation with the fatty aldehyde substrate. A predicted red-shift on mutation of position alpha173 to increase its polarity confirmed that alphaVal173 was an integral component of the chromophore-binding microenvironment. Introduction of mutations in residues that contact the pyrimidine plane of the isoalloxazine chromophore (alphaA75G/C106V) into the alphaV173A, alphaV173C, alphaV173T, and alphaV173S mutants led to the retention of high levels of enzyme activity (10-40% of wild type) and further red-shifted the emission spectra in the triple mutants. The additivity of the mutation-induced red-shifts in the emission wavelength spectrum provides the basis toward engineering luciferase variants that emit different light colors with the proposed flavin-luciferase model complex as a design reference.  相似文献   

11.
Waglerin-1 (Wtx-1) is a 22-amino acid peptide that is a competitive antagonist of the muscle nicotinic receptor (nAChR). We find that Wtx-1 binds 2100-fold more tightly to the alpha-epsilon than to the alpha-delta binding site interface of the mouse nAChR. Moreover, Wtx-1 binds 100-fold more tightly to the alpha-epsilon interface from mouse nAChR than that from rat or human sources. Site-directed mutagenesis of residues differing in the extracellular domains of rat and mouse epsilon subunits indicates that residues 59 and 115 mediate the species difference in Wtx-1 affinity. Mutation of residues 59 (Asp in mouse, Glu in rat epsilon) and 115 (Tyr in mouse, Ser in rat epsilon) converts Wtx-1 affinity for the alpha-epsilon interface of one species to that of the other species. Studies of different mutations at position 59 indicate both steric and electrostatic contributions to Wtx-1 affinity, whereas at position 115, both aromatic and polar groups contribute to affinity. The human nAChR also has lower affinity for Wtx-1 than mouse nAChR, but unlike rat nAChR, residues in both alpha and epsilon subunits mediate the affinity difference. In human nAChR, polar residues (Ser-187 and Thr-189) confer low affinity, whereas in mouse nAChR aromatic residues (Trp-187 and Phe-189) confer high affinity. The overall results show that non-conserved residues at the nAChR binding site, although not crucial for activation by ACh, govern the potency of neuromuscular toxins.  相似文献   

12.
Using a multiple alignment of 175 cytochrome P450 (CYP) family 2 sequences, 20 conserved sequence motifs (CSMs) were identified with the program PCPMer. Functional importance of the CSM in CYP2B enzymes was assessed from available data on site-directed mutants and genetic variants. These analyses suggested an important role of the CSM 8, which corresponds to(187)RFDYKD(192) in CYP2B4. Further analysis showed that residues 187, 188, 190, and 192 have a very high rank order of conservation compared with 189 and 191. Therefore, eight mutants (R187A, R187K, F188A, D189A, Y190A, K191A, D192A, and a negative control K186A) were made in an N-terminal truncated and modified form of CYP2B4 with an internal mutation, which is termed 2B4dH/H226Y. Function was examined with the substrates 7-methoxy-4-(trifluoromethyl)coumarin (7-MFC), 7-ethoxy-4-(trifluoromethyl)coumarin (7-EFC), 7-benzyloxy-4-(trifluoromethyl)coumarin (7-BFC), and testosterone and with the inhibitors 4-(4-chlorophenyl)imidazole (4-CPI) and bifonazole (BIF). Compared with the template and K186A, the mutants R187A, R187K, F188A, Y190A, and D192A showed > or =2-fold altered substrate specificity, k(cat), K(m), and/or k(cat)/K(m) for 7-MFC and 7-EFC and 3- to 6-fold decreases in differential inhibition (IC(50,BIF)/IC(50,4-CPI)). Subsequently, these mutants displayed 5-12 degrees C decreases in thermal stability (T(m)) and 2-8 degrees C decreases in catalytic tolerance to temperature (T(50)) compared with the template and K186A. Furthermore, when R187A and D192A were introduced in CYP2B1dH, the P450 expression and thermal stability were decreased. In addition, R187A showed increased activity with 7-EFC and decreased IC(50,BIF)/IC(50,4-CPI) compared with 2B1dH. Analysis of long range residue-residue interactions in the CYP2B4 crystal structures indicated strong hydrogen bonds involving Glu(149)-Asn(177)-Arg(187)-Tyr(190) and Asp(192)-Val(194), which were significantly-reduced/abolished by the Arg(187)-->Ala and Asp(192)-->Alasubstitutions, respectively.  相似文献   

13.
The photoactivatable sterol probe [3alpha-(3)H]6-Azi-5alpha-cholestan-3beta-ol ([3H]Azicholesterol) was used to identify domains in the Torpedo californica nicotinic acetylcholine receptor (nAChR) that interact with cholesterol. [3H]Azicholesterol partitioned into nAChR-enriched membranes very efficiently (>98%), photoincorporated into nAChR subunits on an equal molar basis, and neither the pattern nor the extent of labeling was affected by the presence of the agonist carbamylcholine, consistent with photoincorporation at the nAChR lipid-protein interface. Sites of [3H]Azicholesterol incorporation in each nAChR subunit were initially mapped by Staphylococcus aureus V8 protease digestion to two relatively large homologous fragments that contain either the transmembrane segments M1-M2-M3 (e.g., alphaV8-20) or M4 (e.g., alphaV8-10). The distribution of [3H]Azicholesterol labeling between these two fragments (e.g., alphaV8-20, 29%; alphaV8-10, 71%), suggests that the M4 segment has the greatest interaction with membrane cholesterol. Photolabeled amino acid residues in each M4 segment were identified by Edman degradation of isolated tryptic fragments and generally correspond to acidic residues located at either end of each transmembrane helix (e.g., alphaAsp-407). [3H]Azicholesterol labeling was also mapped to peptides that contain either the M3 or M1 segment of each nAChR subunit. These results establish that cholesterol likely interacts with the M4, M3, and M1 segments of each subunit, and therefore, the cholesterol binding domain fully overlaps the lipid-protein interface of the nAChR.  相似文献   

14.
A major component (S2C4) was purified from Jameson's mamba by gel filtration on Sephadex G-50 and ion-exchange chromatography on CM-cellulose. Protein S2C4 comprises 62 amino acid residues including 8 half-cystine residues. The complete amino acid sequence of the protein has been established. The sequence and the invariant amino acid residues of protein S2C4 resemble a short neurotoxin, a long neurotoxin, a cytotoxin and an angusticeps type protein. However, the position of its four disulphide bridges differs from those encountered in a short neurotoxin or a cytotoxin. Mixtures of protein S2C4 and angusticeps type proteins revealed a marked synergistic effect, in that their toxicity in combination was greater than the sum of their individual toxicities.  相似文献   

15.
Mouse monoclonal antibodies were prepared using His-tagged Tn10-encoded metal-tetracycline/H+ antiporter [TetA(B)His] as an antigen. From them, those reacting equally with His-tagged and wild-type TetA(B) were selected and named TCL-1. Cysteine-scanning mutants were used to determine the TCL-1 binding site on the TetA(B) protein. First, 12 Cys mutants of TetA(B) in which one residue in a protruding loop region was replaced by cysteine were constructed. Western blot analysis revealed the binding of TCL-1 to all of these Cys-mutants except for R186C. Then, we constructed 13 cysteine-scanning mutants, F179C to T191C. Among them, eight mutants, F179C to T182C, N184C, and T189C to T191C, exhibited TCL-1 binding, whereas the other five, K183C, T185C, R186C, D187C, and N188C, exhibited no or lower TCL-1 binding. These results clearly indicate that the sequence recognized by TCL-1 is 183Lys-X-Thr-Arg-Asp-Asn188 in the central loop region of TetA(B). TCL-1 is the first reported antibody that binds to a region other than the C-terminus of TetA(B), and the recognized amino acid sequence was identified.  相似文献   

16.
Stewart DS  Chiara DC  Cohen JB 《Biochemistry》2006,45(35):10641-10653
A molecule as simple in structure as tetramethylammonium gates the nicotinic acetylcholine receptor (nAChR) with high efficacy. To compare the structure of the nAChR transmitter binding site in the open channel state with that of the ACh binding protein, we determined the efficacy of nAChR gating by -S(CH(2))(n)N(CH(3))(3)(+) (n = 1-4) tethered to substituted cysteines at positions in the alpha subunits or gamma and delta subunits predicted to contribute to the ACh binding sites in mutant Torpedo nAChRs expressed in Xenopus oocytes. For tethered thiocholine [-S(CH(2))(2)N(CH(3))(3)(+)], we previously reported that within alpha195-201 gating was observed only at alphaY198C while at alphaY93C it acted as an antagonist. We now show that within alpha191-194, thiocholine activates when tethered at alphaCys192 or alphaCys193. Thiocholine also activates when tethered at alphaY190C or alphaW149C in nAChRs containing a beta subunit mutation (betaL257S) that destabilizes the closed channel, but not from gammaW55C/deltaW57C, where longer adducts can activate. When tethered at positions in binding site segment E, thiocholine activates only from gammaL119C/deltaL121C, where the shorter -S(CH(2))(1)N(CH3)(3)(+) acts as an antagonist. Longer adducts tethered at gammaL109C/deltaL111C or gammaL119C/deltaL121C also activate, but less efficiently. The length requirements for efficient gating by tethered agonists agree closely with predictions based upon the structure of the agonist site in a nAChR homology model derived from the ACh binding protein structure, which suggests that this structure is an excellent model of the nAChR agonist binding site in the open channel conformation. The inability of thiocholine to activate from alphaY93C, which is not predicted by the model, is discussed in terms of the structure of the nAChR in the closed state.  相似文献   

17.
Previous studies have suggested that thrombin interacts with integrins in endothelial cells through its RGD (Arg-187, Gly-188, Asp-189) sequence. All existing crystal structures of thrombin show that most of this sequence is buried under the 220-loop and therefore interaction via RGD implies either partial unfolding of the enzyme or its proteolytic digestion. Here, we demonstrate that surface-absorbed thrombin promotes attachment and migration of endothelial cells through interaction with alpha(v)beta(3) and alpha(5)beta(1) integrins. Using site-directed mutants of thrombin we prove that this effect is mediated by the RGD sequence and does not require catalytic activity. The effect is abrogated when residues of the RGD sequence are mutated to Ala and is not observed with proteases like trypsin and tissue-type plasminogen activator, unless the RGD sequence is introduced at position 187-189. The potent inhibitor hirudin does not abrogate the effect, suggesting that thrombin functions through its RGD sequence in a non-canonical conformation. A 1.9-Angstroms resolution crystal structure of free thrombin grown in the presence of high salt (400 mm KCl) shows two molecules in the asymmetric unit, one of which assumes an unprecedented conformation with the autolysis loop shifted 20 Angstroms away from its canonical position, the 220-loop entirely disordered, and the RGD sequence exposed to the solvent.  相似文献   

18.
The proton-coupled folate transporter (PCFT) mediates intestinal folate absorption, and loss-of-function mutations in this gene result in the autosomal recessive disorder hereditary folate malabsorption. The current study, focused on a structure-functional analysis of this transporter, identified Gly-189 and Gly-192 (a GxxG motif) located in the fifth transmembrane domain as residues that could not be replaced with alanine without a loss of function. In contrast, function was preserved when Gly-56 and Gly-59 (the other conservative GXXG motif in human PCFT) were replaced with alanine. Similarly, Gly-93 and Gly-97, which constitute the only conserved GXXXG dimerization motif in human PCFT, tolerated alanine substitution. To explore the role of this region in folate binding, the residues around Gly-189 and Gly-192 were analyzed by the substituted cysteine accessibility method. Both I188C and M193C mutants were functional and were inhibited by membrane-impermeable sulfhydryl-reactive reagents; this could be prevented with PCFT substrate, but the protection was sustained at 0°C only for the I188C mutant, consistent with localization of Ile-188 in the PCFT folate binding pocket. The functional role of residues around Gly-189 and Gly-192 is consistent with a molecular structural model in which these two residues along with Ieu-188 are accessible to the PCFT aqueous translocation pathway.  相似文献   

19.
T L Lentz 《Biochemistry》1991,30(45):10949-10957
Peptides corresponding to portions of curaremimetic neurotoxin loop 2 and to a structurally similar segment of rabies virus glycoprotein were synthetically modified in order to gain information on structure-function relationships of neurotoxin loop 2 interactions with the acetylcholine receptor. Binding of synthetic peptides to the acetylcholine receptor of Torpedo electric organ membranes was assessed by measuring their ability to inhibit the binding of 125I-alpha-bungarotoxin to the receptor. The peptides showing the highest affinity for the receptor were a peptide corresponding to the sequence of loop 2 (residues 25-44) of Ophiophagus hannah (king cobra) toxin b (IC50 = 5.7 x 10(-6) M) and the structurally similar segment (residues 173-203) of CVS rabies virus glycoprotein (IC50 = 2.6 x 10(-6) M). These affinities were comparable to those of d-tubocurarine (IC50 = 3.4 x 10(-6) M) and suberyldicholine (IC50 = 2.5 x 10(-6) M). These results demonstrate the importance of loop 2 in the neurotoxin interaction with the receptor. N- and C-terminal deletions of the loop 2 peptides and substitution of residues invariant or highly conserved among neurotoxins were performed in order to determine the role of individual residues in binding. Residues 25-40 are the most crucial in the interaction with the acetylcholine receptor. Modifications involving Lys-27, Trp-29, Phe-33, Arg-37, and Gly-38 reduced affinity of binding. R37D and F33T modifications reduced the affinity of alpha-bungarotoxin residues 28-40 by an order of magnitude. Arg-37 may correspond to the positively charged quaternary ammonium group and Phe-33 to the hydrophobic acetyl methyl group of acetylcholine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The structure of a peptide corresponding to residues 182-202 of the acetylcholine receptor alpha1 subunit in complex with alpha-bungarotoxin was solved using NMR spectroscopy. The peptide contains the complete sequence of the major determinant of AChR involved in alpha-bungarotoxin binding. One face of the long beta hairpin formed by the AChR peptide consists of exposed nonconserved residues, which interact extensively with the toxin. Mutations of these receptor residues confer resistance to the toxin. Conserved AChR residues form the opposite face of the beta hairpin, which creates the inner and partially hidden pocket for acetylcholine. An NMR-derived model for the receptor complex with two alpha-bungarotoxin molecules shows that this pocket is occupied by the conserved alpha-neurotoxin residue R36, which forms cation-pi interactions with both alphaW149 and gammaW55/deltaW57 of the receptor and mimics acetylcholine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号