首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
1. Changes of Gibbs energy, enthalpy and entropy in red cells during steady-state glycolysis were discussed. 2. The heat production of red cells at various metabolic conditions was measured on a flow microcalorimeter with simultaneous analyses of lactate and other metabolites. The results were discussed in relation to enthalpy changes of the different metabolic steps in the glycolytic pathway.  相似文献   

3.
When a buffered, aerobic suspension of ethanol-grown cells of Saccharomyces cerevisiae is treated with ethanol, a rapid flux of metabolism is observed from endogenous phosphoenolpyruvate to hexose monophosphates. Intracellular concentrations of phosphoenolpyruvate, 2-phosphoglycerate, and 3-phosphoglycerate record a monotonic drop, while those of triose phosphates and fructose 1,6-diphosphate fall after an early rise; fructose 6-phosphate, mannose 6-phosphate, and glucose 6-phosphate levels rise to a plateau. Prior growth on glucose extinguishes fructose 1,6-diphosphatase activity and completely arrests the rise of the hexose monophosphates. By using mutants blocked at a number of glycolytic steps it has been concluded that the metabolic flow takes place along the Embden-Meyerhof pathway in the reverse direction bypassing pyruvate kinase and fructose 6-phosphate kinase. Ethanol acts as a trigger by supplying NADH at the glyceraldehyde 3-phosphate dehydrogenase step. The rate of the reversal in the span phosphoenolpyruvate to fructose 1,6-diphosphate approaches 40 μ mol of 3-carbon units per minute per gram of wet cells. The in vivo activity of fructose 1,6-diphosphatase is nearly a quarter of this rate.  相似文献   

4.
5.
1. Sheep-, rabbit- and ox-muscle minces prepared soon after slaughter were diluted with 1 vol. of 0.16 m-potassium chloride in the absence (potassium chloride mince) and presence of added cofactor or glycolysable substrate, and the effects on the ultimate pH were examined. 2. Changes in the concentrations of glycogen and lactate and the concentrations of some phosphorus-containing fractions were determined in ox-muscle preparations. 3. Glycolysis ceased at appreciably higher pH in the potassium chloride mince than in undiluted mince. The inclusion of glycogen, ATP, ADP, NAD or magnesium chloride in the diluent had little effect on the ultimate pH of the diluted mince. 4. Lactic acid production continued at lower pH values in diluted mince containing added glucose 1-phosphate, fructose 1,6-diphosphate or glucose plus hexokinase than in potassium chloride mince. 5. The evidence points to failure of the phosphorylase step being responsible for the dilution effect.  相似文献   

6.
A Ramaiah 《Life sciences》1976,19(4):455-465
Four hypotheses to explain the several hundred fold activation of phosphofructokinase and thus glycolysis in muscle during muscular contraction were examined. They are (1) Adenine nucleotide control. (2) An extension of the above hypothesis with 5′ AMP amplifying the change in glycolytic flux by modifying the phosphofructokinase/fructose 1, 6 diphosphatase cycle. (3) Synergistic activation of phosphofructokinase and compartmentation of phosphofructokinase in the sarcoplasmic reticulum.It is concluded that synergism among the effectors of phosphofructokinase is perhaps the major mechanism by which its activity is increased by several hundred folf during muscular contraction, and Ca++ translocation during muscular contraction can activate 25–30% of total cellular phosphofructokinase that is located in the sacroplasmic reticulum.  相似文献   

7.
8.
Glucose disappearance and lactate production by the rat thymocytes are stimulated significantly 45 min after addition of phytohaemagglutinin or concanavalin A and the stimulated rate is sustained for at least 8 h. Changes in the steady-state concentration of glycolytic intermediates that occur at non-equilibrium steps during the increased rate of glycolytic flux indicate that the glucose carrier, hexokinase and phosphofructokinase are potentially regulatory steps that undergo nearly simultaneous or tightly sequential activation following interaction of the cells with the mitogen.  相似文献   

9.
10.
We present a powerful, general method of fitting a model of a biochemical pathway to experimental substrate concentrations and dynamical properties measured at a stationary state, when the mechanism is largely known but kinetic parameters are lacking. Rate constants and maximum velocities are calculated from the experimental data by simple algebra without integration of kinetic equations. Using this direct approach, we fit a comprehensive model of glycolysis and glycolytic oscillations in intact yeast cells to data measured on a suspension of living cells of Saccharomyces cerevisiae near a Hopf bifurcation, and to a large set of stationary concentrations and other data estimated from comparable batch experiments. The resulting model agrees with almost all experimentally known stationary concentrations and metabolic fluxes, with the frequency of oscillation and with the majority of other experimentally known kinetic and dynamical variables. The functional forms of the rate equations have not been optimized.  相似文献   

11.
When EscherichiacoliCP78(rel+) growing on glucose was starved for isoleucine by the addition of valine, the intracellular levels of fructose 6-phosphate, fructose 1,6-bisphosphate and dihydroxyacetone phosphate were abruptly decreased to one-half, but those of glucose 6-phosphate and ATP remained constant. In contrast, this was not the case with CP79(rel?). Chloramphenicol released the response observed in CP78. These results suggest that the glycolytic activity is also under the stringent control. Since only glucosephosphate isomerase[EC 5.3.1.9] was significantly inhibited by guanosine 5′-diphosphate 3′-diphosphate among several glycolytic enzymes tested, the enzyme might be responsible for the decrease observed in CP78.  相似文献   

12.
13.
Design of glycolysis   总被引:2,自引:0,他引:2  
The design of the glycolytic pathway resulting from the continuous refinement of evolution is discussed with regard to three aspects. 1. Functional and structural properties of individual enzymes. The catalytic constants of the glycolytic enzymes are remarkably optimized; the turnover numbers are within one order of magnitude. The same is true for the molarities of catalytic centres in the cytosol, as is noted for yeast. Functional properties of the enzymes are reflected in their tertiary and quaternary structures. 2. Regulatory mechanisms of single enzymes. A classification of the various types of enzymic control mechanisms operating in the glycolytic pathway is given. In addition to the usual Michaelis-Menten saturation kinetics and the various types of inhibition there is control by positive and negative effectors based on oligomeric structures (fast acting, fine control) as well as regulation by chemical interconversion structures (fast acting, fine control) as well as regulation by chemical based on enzymes cascades (slow acting, very effective). 3. Functional and regulatory mechanisms of the whole glycolytic reaction pathway. A prominent feature is the high enzyme:substrate ratio, which guarantees fast response times. However, a quantitative treatment of the overall kinetics is limited by an incomplete knowledge of the enzymes' dynamic and chemical compartmentation as well as some of their control properties. From an analysis of the oscillatory state, certain control points in the glycolytic chain can be located that coincide with major branching points to other metabolic pathways. These points are controlled by fast-acting cooperative enzymes that operate in a flip-flop mechanism together with the respective antagonistic enzymes, preventing futile cycles. The gating enzymes leading to the glycogen store and the citric acid cycle are of the slow-acting but very effective interconvertible type. The combination of all the complex and intricate features of design yields a glycolytic network that enables the cell to respond to its various metabolic needs quickly, effectively and economically.  相似文献   

14.
Most cancer cells exhibit an accelerated glycolysis rate compared to normal cells. This metabolic change is associated with the over-expression of all the pathway enzymes and transporters (as induced by HIF-1α and other oncogenes), and with the expression of hexokinase (HK) and phosphofructokinase type 1 (PFK-1) isoenzymes with different regulatory properties. Hence, a control distribution of tumor glycolysis, modified from that observed in normal cells, can be expected. To define the control distribution and to understand the underlying control mechanisms, kinetic models of glycolysis of rodent AS-30D hepatoma and human cervix HeLa cells were constructed with experimental data obtained here for each pathway step (enzyme kinetics; steady-state pathway metabolite concentrations and fluxes). The models predicted with high accuracy the fluxes and metabolite concentrations found in living cancer cells under physiological O(2) and glucose concentrations as well as under hypoxic and hypoglycemic conditions prevailing during tumor progression. The results indicated that HK≥HPI>GLUT in AS-30D whereas glycogen degradation≥GLUT>HK in HeLa were the main flux- and ATP concentration-control steps. Modeling also revealed that, in order to diminish the glycolytic flux or the ATP concentration by 50%, it was required to decrease GLUT or HK or HPI by 76% (AS-30D), and GLUT or glycogen degradation by 87-99% (HeLa), or decreasing simultaneously the mentioned steps by 47%. Thus, these proteins are proposed to be the foremost therapeutic targets because their simultaneous inhibition will have greater antagonistic effects on tumor energy metabolism than inhibition of all other glycolytic, non-controlling, enzymes.  相似文献   

15.
16.
17.
18.
The effect of estradiol-17 beta on the activities of glycolytic enzymes from female rat brain was studied. The following enzymes were examined: hexokinase (HK, EC 2.7.1.1), phosphofructokinase (PFK, EC 2.7.1.11), aldolase (EC 4.1.2.13), glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12), phosphoglycerate kinase (EC 2.7.2.3), phosphoglycerate mutase (EC 2.7.5.3), enolase (EC 4.2.1.11) and pyruvate kinase (PK, EC 2.7.1.40). The activities of HK (soluble and membrane-bound), PFK and PK were increased after 4 h of hormone treatment, while the others remained constant. The changes in activity were not seen in the presence of actinomycin D. The significant rise of the activities of the key glycolytic enzymes was also observed in the cell culture of mouse neuroblastoma C1300 treated with hormone. Only three of the studied isozymes, namely, HKII, B4 and K4 were found to be estradiol-sensitive for HK, PFK and PK, respectively. The results obtained suggest that rat brain glycolysis regulation by estradiol is carried out in neurons due to definite isozymes induction.  相似文献   

19.
An extension of a previous model [2] is proposed of the glycolysis of erythrocytes which includes realistic rat laws for the hexokinase-phosphofructokinase system and for the 2,3-P2G phosphatase. Whereas most conclusions previously drawn are reinforced, the mechanism of ATP regulation is different in the present model. The ATP concentration is mainly regulated by the inhibitory action of ATP and the activating effect of AMP on the phosphofructokinase. The role of the 2,3-P2G bypass as a buffer of changes in the ATP demand is of lesser significance than previously thought. Besides the feedback action of the adenine nucleotides on the hexokinase-phosphofructokinase system in the quasisteady state the role of 2,3-P2G as an energy source is important since it can yield ATP for a certain period of time. The present version of the model describes qualitatively the experimental data on the modulation of Na+-K+-ATPase.  相似文献   

20.
1. Adenosine increases the adenine nucleotide pool in rat erythrocytes. Hence, we tested the effect of the nucleoside on the glycolytic pathway in red blood cells. 2. A 2.5-fold increase in the level of fructose-1,6-bisphosphate and a 34% augmentation in lactate pool were observed in rat erythrocytes, 30 min after adenosine treatment. 3. Under conditions preventing adenosine metabolism, 1 microM nucleoside addition to isolated erythrocytes induced an 89% increase in lactate production and an increase in glucose consumption. 4. Activation of red cell phosphofructokinase (PFK) is produced by addition of microM concentrations of adenosine. Our data suggest a role for adenosine in the glycolysis flux regulation through PFK activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号