首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The polyamines spermidine and spermine are essential for cell proliferation and differentiation. By two independent fluorescence cytochemical methods as well as by immunocytochemistry, we have studied the distribution of these molecules in fetal rat liver. Strong reactions for polyamines were found in highly condensed chromatin, present in chromosomes in mitotic cells, and in condensed nuclei in late erythropoietic cells. Moreover, polyamines were so closely associated with DNA in condensed chromatin that DNase pretreatment was necessary for making them available for reaction with antibodies. In other cells, polyamines were mainly localized to the cytoplasm. Studies of cells at different stages in erythropoiesis revealed that polyamines become associated with DNA during its condensation and inactivation. Our data strongly indicate that polyamines participate in the condensation of DNA.  相似文献   

2.
Nucleosomes are the basic elements of chromatin structure. Polyamines, such as spermine and spermidine, are small ubiquitous molecules absolutely required for cell growth. Photoaffinity polyamines bind to specific locations in nucleosomes and can change the helical twist of DNA in nucleosomes. Acetylation of polyamines reduces their affinity for DNA and nucleosomes, thus the helical twist of DNA in nucleosomes could be regulated by cells through acetylation. I suggest that histone and polyamine acetylation act synergistically to modulate chromatin structure. On naked DNA, the photoaffinity spermine bound preferentially to a specific ‘TATA’ sequence element, suggesting that polyamines may be involved in the unusual chromatin structure in this region. Further work is needed to test whether the specificities shown by photoaffinity polyamines are also shown by cellular polyamines; such experiments are now feasible.  相似文献   

3.
Immunocytochemical localization of chick DNA polymerases alpha and beta +   总被引:4,自引:0,他引:4  
An immunofluorescent method using specific antibodies was employed to detect DNA polymerases alpha and beta in chick cells. With monoclonal antibodies produced by four independent hybridoma clones, most of the DNA polymerase alpha was shown to be present in nuclei of cultured chick embryonic cells. With a polyclonal, but highly specific, antibody against DNA polymerase beta, this enzyme was also shown to be present in nuclei. DNA polymerase alpha was detected in proliferating cells before cell contact and in lesser amount in resting cells after cell contact, indicating that its content is closely correlated with cell proliferation. On the other hand, similar amounts of DNA polymerase beta were detected in proliferating and resting cells. Furthermore, DNA polymerase beta was detected in nuclei of most cells, while DNA polymerase alpha was detected only in large round nuclei in seminiferous tubules of chick testis. DNA polymerase alpha is presumably present in cells that are capable of DNA replication, and during the cell cycle it seems to remain in the nuclei during the G1, S, and G2 phases, but to leave from condensed chromatin for the cytoplasm during the mitotic phase.  相似文献   

4.
Cations and the accessibility of chromatin to nucleases.   总被引:4,自引:2,他引:2       下载免费PDF全文
When rat liver nuclei prepared with polyamines as stabilising cations are digested with DNAase II, release of both inactive chromatin and Mg-soluble, active chromatin is greatly reduced, in comparison to digestion of liver nuclei prepared with Mg2+ as stabilising cation. Chromatin release from polyamine stabilised nuclei is also inhibited relative to Mg-stabilised nuclei following digestion with micrococcal nuclease under two very different cation conditions. Nuclei prepared with polyamines and monovalent ions as stabilising cations exhibit properties intermediate between these two extremes with both nucleases. These effects are due to residual binding of polyamines to chromatin, which is thus maintained in a condensed state, inaccessible to nucleases. Since polyamine binding is not easily reversed, concentrations of polyamines and other cations must be rigidly controlled in experiments on chromatin structure if artefacts are to be avoided. The significance of these findings to the nature and properties of active chromatin within the intact nucleus is considered.  相似文献   

5.
Pancreatic DNase I was used as a probe to study DNA-protein interactions in condensed and extended chromatin fractions isolated from Chinese hamster liver, and in human lymphocyte and mouse L cell metaphase chromosomes in situ. By studying the rate of digestion of chromatin DNA by DNase, we have previously shown that DNA in extended chromatin is more sensitive to DNase digestion than that in condensed chromatin. In the current investigation, we have examined whether this differential sensitivity of the chromatin fractions to DNase is due to differences in protein binding to DNA or differences in the degree of chromatin condensation. By “decondensing” the condensed chromatin and comparing its rate of digestion to that of untreated condensed and extended chromatin, it was found that differences in the degree of binding of proteins to DNA rather than the degree of condensation of the chromatin primarily determines the sensitivity of each fraction to DNase. Extraction of the various classes of chromosomal proteins, followed by DNase digestion of the residual chromatin revealed that both the histone and non-histone proteins protect the DNA in the chromatin fractions from DNase attack; however, the more tightly associated non-histones appear to be specifically responsible for the differential sensitivity of the chromatin fractions to DNase digestion. These non-histones may be more tightly associated with the DNA in condensed than in extended chromatin, thereby protecting the DNA in condensed chromatin against DNase attack to a greater extent than that in extended chromatin. When metaphase chromosomes were briefly digested with DNase in situ and subsequently stained with Feulgen reagent, incontrovertible C-banding and some G-banding was obtained. This DNaseinduced banding demonstrates that the DNA in C-band and possibly G-band regions is less accessible to DNase than that in the interband regions, and our biochemical data suggest that this differential accessibility is caused by differential DNA-protein binding such that the non-histones are more tightly coupled to the DNA in the G- and C-band regions than they are in the interbands. Differences in the binding of non-histones to DNA in different segments of the metaphase chromosome may be involved in the mechanism of G- and C-banding.  相似文献   

6.
Increased amounts of chromatin condensation (i.e., localized areas of high DNA density, or chromatin higher order packing state) have been described in NIH 3T3 cells transformed with the Ha-ras oncogene. The structural basis for this oncogene-mediated alteration in nuclear organization is unknown. Since DNA methylation is likely to be involved in regulating the nucleosomal level of DNA packaging, we studied the role of DNA methylation in higher-order chromatin organization induced by Ha-ras. CpG-methylated DNA content was estimated in "condensed" chromatin of Ha-ras-transformed NIH 3T3 cell lines which differ in ras expression and ras-induced metastatic ability but present approximately the same values of "condensed" chromatin areas. The question posed was that if DNA methylation were involved with the chromatin higher-order organization induced by Ha-ras in these cell lines, the methylated DNA density in the "condensed" chromatin would also be the same. The DNA evaluation was performed by video image analysis in Feulgen-stained cells previously subjected to treatment with Msp I and Hpa II restriction enzymes, which distinguish between methylated and non-methylated DNA. The amount of methylated CpG sequences not digested by Hpa II in "condensed" chromatin regions was found to vary in the studied ras-transformed cell lines. DNA CpG methylation status is thus suggested not to be involved with the higher order chromatin condensation induced by ras transformation in the mentioned NIH 3T3 cell lines.  相似文献   

7.
8.
Induction of DNA synthesis in embryonic chick red cells has been examined during the first and second cell cycles after fusion with HeLa cells synchronized in different parts of G1 and S-phase. The data indicate that: (i) the younger the embryonic blood the more rapidly the red cells are induced into DNA synthesis; (ii) the greater the ratio of HeLa to chick nuclei in the heterokaryon, the more rapidly the induction occurs; (iii) DNA synthesis in the chick nucleus can continue after the HeLa nucleus has left S-phase and entered either G2 or mitosis; (iv) the induction potential of late S-phase HeLa is somewhat lower than that of early or mid S-phase cells; (v) less than 10% of the chick DNA is replicated during the first cycle after fusion and only a small proportion (15%) of the chick nuclei approach the 4C value of DNA during the second cycle after fusion; (vi) the newly synthesized DNA is associated either with the condensed regions of the nucleus or with the boundaries between condensed and non-condensed regions; (vii) the chick chromosomes at the first and second mitosis after fusion are in the form of PCC prematurely condensed chromosomes); they are never fully replicated and are often fragmentary; (viii) DNA synthesis in the chick nuclei is accompanied by an influx of protein (both G1 and S-phase protein) from the HeLa component of the heterokaryon.  相似文献   

9.
The properties of DNA in situ as reflected by its staining with acridine orange are different in quiescent nonstimulated lymphocytes as compared with interphase lymphocytes that have entered the cell cycle after stimulation by mitogens. The difference is seen after cell treatment with buffers at pH 1.5 (1.3-1.9 range) followed by staining with acridine orange at pH 2.6 (2.3-2.9). Under these conditions the red metachromatic fluorescence of the acridine orange-DNA complex is higher in quiescent cells than in the cycling lymphocytes while the orthochromatic green fluorescence is higher in the cycling, interphase cells. The results suggest that DNA in condensed chromatin of quiescent lymphocytes (as in metaphase chromosomes) is more sensitive to acid-denaturation than DNA in dispersed chromatin of the cycling interphase cells. The phenomenon is used for flow cytometric differentiation between G0 and G1 cells and between G2 and M cells. In contrast to normal lymphocytes the method applied to neoplastic cells indicates the presence of cell subpopulations with condensed chromatin but with DNA content characteristic not only of G1 but also of S and G2 cells. The possibility that these cells represent quiescent (resting) subpopulations, arrested in G1, S and/or G2, is discussed.  相似文献   

10.
Polyamines affect nucleosome oligomerization and DNA conformation in vitro, yet little information exists regarding the influence of naturally synthesized polyamines on mammalian chromatin. Capitalizing on the relative inefficiency of a moderate ionic strength extraction buffer to dissociate histones, we obtained evidence of altered chromatin in transgenic mice that overexpress ornithine decarboxylase (ODC), which catalyzes polyamine synthesis. Dissociation of histones from chromatin in ODC transgenic mouse skin, as well as in tumors that develop spontaneously in ODC/Ras bigenic mice, is dramatically reduced relative to normal littermate skin. This could reflect tighter tethering of nucleosomes to DNA or a more compacted chromatin structure due to elevated intracellular concentrations of polyamines since this effect is reversible upon treatment with alpha-difluoromethylornithine (DFMO), a specific inhibitor of ODC enzymatic activity. Impeded release of nonhistone chromatin proteins HP-1beta and nucleophosmin, but not Lamin B, HDAC-1, HMGB, HMGN2, or HMGA1, suggests that polyamines exert selective effects on specific chromatin protein complexes. Moreover, overall acetylation, as well as specific methylation, of nucleosomes in ODC mice is unaffected, implying that access by histone modifying enzymes is not generally restricted. The abnormal chromatin environment fostered by elevated levels of polyamines may be a necessary prerequisite for epithelial tumor growth and maintenance.  相似文献   

11.
Nascent DNA (newly replicated DNA) was visualized in situ with regard to the position of the previously replicated DNA and to chromatin structure. Localization of nascent DNA at the replication sites can be achieved through pulse labeling of cells with labeled DNA precursors during very short periods of time. We were able to label V79 Chinese Hamster cells for as shortly as 2 min with BrdU; Br-DNA, detected by immunoelectron microscopy, occurs at the periphery of dense chromatin, at individual dispersed chromatin fibers, and within dispersed chromatin areas. In these regions DNA polymerase alpha was also visualized. After a 5-min BrdU pulse, condensed chromatin also became labeled. When the pulse was followed by a chase, a larger number of gold particles occurred on condensed chromatin. Double-labeling experiments, consisting in first incubating cells with IdU for 20 min, chased for 10 min and then labeled for 5 min with CldU, reveal CldU-labeled nascent DNA on the periphery of condensed chromatin, while previously replicated IdU-labeled DNA has been internalized into condensed chromatin. Altogether, these results show that the sites of DNA replication correspond essentially to perichromatin regions and that the newly replicated DNA moves rapidly from replication sites toward the interior of condensed chromatin areas.  相似文献   

12.
Mutant lines of mouse L cells, TS A1S9, and TS C1, show temperature- sensitive (TS) DNA synthesis and cell division when shifted from 34 degrees to 38.5 degrees C. With TS A1S9 the decline in DNA synthesis begins after 6-8 h at 38.5 degrees C and is most marked at about 24 h. Most cells in S, G2, or M at temperature upshift complete one mitosis and accumulate in the subsequent interphase at G1 or early S as a result of expression of a primary defect, failure of elongation of newly made small DNA fragments. Heat inactivation of TS C1 cells is more rapid; they fail to complete the interphase in progress at temperature upshift and accumulate at late S or G2. Inhibition of both cell types is reversible on return to 34 degrees C. Cell and nuclear growth continues during inhibition of replication. Expression of both TS mutations leads to a marked change in gross organization of chromatin as revealed by electron microscopy. Nuclei of wild-type cells at 34 degrees and 38.5 degrees C and mutant cells at 34 degrees C show a range of aggregation of condensed chromatin from small dispersed bodies to large discrete clumps, with the majority in an intermediate state. In TS cells at 38.5 degrees C, condensed chromatin bodies in the central nuclear region become disaggregated into small clumps dispersed through the nucleus. Morphometric estimation of volume of condensed chromatin indicates that this process is not due to complete decondensation of chromatin fibrils, but rather involves dispersal of large condensed chromatin bodies into finer aggregates and loosening of fibrils within the aggregates. The dispersed condition is reversed in nuclei which resume DNA synthesis when TS cells are downshifted from 38.5 degrees to 34 degrees C. The morphological observations are consistent with the hypothesis that condensed chromatin normally undergoes an ordered cycle of transient, localized disaggregation and reaggregation associated with replication. In temperature-inactivated mutants, normal progressive disaggregation presumably occurs, but subsequent lack of chromatin replication prevents reaggregation.  相似文献   

13.
Mouse L-cells treated with cytosine arabinoside, hydroxyurea, fluorodeoxyuridine, methotrexate, or mitomycin C rapidly cease DNA synthesis and stop dividing. Such inhibition of DNA replication is followed by interruption of formation of lysine- and arginine-containing proteins, including chromatin-bound histones, and by a major reorganization of the heterochromatin of the central nucleoplasm, manifest as disaggregation of large clumps of this condensed chromatin. Morphometric analysis revealed both cell and nuclear enlargement in cells treated with such antimetabolites of DNA replication. These observations are in contrast to those made with WT-4 cells starved of isoleucine or treated with cycloheximide. Isoleucine depletion was associated with inhibition of DNA synthesis and continued increase of cell and nuclear volume, but not with massive disaggregation of heterochromatin. Cycloheximide produced inhibition of DNA synthesis and protoplasmic growth, and also prevented structural reorganization of chromatin. A model is presented which suggests that initiation of chromatin replication is associated with a process, dependent upon de novo protein synthesis, which results in chromatin disaggregation. This can be revealed by inhibition of the correct replication of chromatin DNA and chromatin protein.  相似文献   

14.
15.
The influence of chromatin structure on induction of DNA double-strand breaks (DSBs) by X radiation was studied in DNA from CHO cells. Whole cells, nuclei with condensed or relaxed chromatin, and deproteinized DNA in agarose plugs were irradiated and DSB formation was measured as a decrease in the length of DNA by nondenaturing, pulsed-field, agarose gel electrophoresis. The yield of DSBs in deproteinized DNA (2.3 x 10(-10) DSBs Da-1 Gy-1) was observed to be 70 times greater than the yield of DSBs (3.1 x 10(-12) DSBs Da-1 Gy-1) observed in DNA in the intact cell nucleus. Organization of DNA into the basic nucleosome repeat structure and condensation of the chromatin fiber into higher-order structure protected DNA from DSB induction by factors of 8.3 and 4.5, respectively. An additional twofold protection of DNA in fully condensed chromatin occurred in the intact cell nucleus. Since this protection did not appear to involve chromatin structure, we speculate that this additional protection may result from the association of soluble protein and nonprotein sulfhydryls with DNA in the intact cell nucleus. The results are consistent with the organization of nuclear DNA into both basic nucleosome repeat structure and higher-order chromatin structure providing significant protection against DSB induction.  相似文献   

16.
Chinese hamster fibroblasts were investigated for the existence of correlations between proliferative activity and nuclear morphology. As a proliferative parameter, the rate of DNA synthesis of individual cells was determined by quantitative 14C-autoradiography. In a second step the images of the Feulgen-stained nuclei were digitized for extraction of features of morphology and texture. These features were correlated with the corresponding DNA synthesis rate values. The following relationships were found: Round nuclei have higher rates of DNA synthesis than flat ones. The more chromatin is packed at the nuclear rim, possibly representing heterochromatin, the lower the rate of DNA synthesis. The DNA synthesis rate also correlates with the graininess of chromatin. Larger areas of condensed chromatin are associated with lower rate values. A fine and irregular network of chromatin, as is typical of immature cell types, is associated with a high rate of DNA synthesis. Although these results are presently confined to the cell line investigated, parallels seem to exist to other cell types, such as erythropoietic cells, which await further investigation.  相似文献   

17.
Advances in genomic technologies, such as next generation sequencing and disease specific gene targeting through anti-sense, anti-gene, siRNA and microRNA approaches require the transport of nucleic acid drugs through the cell membrane. Membrane transport of DNA/RNA drugs is an inefficient process, and the mechanism(s) by which this process occurs is not clear. A pre-requisite for effective transport of DNA and RNA in cells is their condensation to nanoparticles of ~100 nm size. Although viral vectors are effective in gene therapy, the immune response elicited by viral proteins poses a major challenge. Multivalent cations, such as natural polyamines are excellent promoters of DNA/RNA condensation to nanoparticles. During the past 20 years, our laboratory has synthesized and tested several analogs of the natural polyamine, spermine, for their efficacy to provoke DNA condensation to nanoparticles. We determined the thermodynamics of polyamine-mediated DNA condensation, measured the structural specificity effects of polyamine analogs in facilitating the cellular uptake of oligonucleotides, and evaluated the gene silencing activity of DNA nanoparticles in breast cancer cells. Polyamine-complexed oligonucleotides showed a synergistic effect on target gene inhibition at the mRNA level compared to the use of polyamines and oligonucleotides as single agents. Ionic and structural specificity effects were evident in DNA condensation and cellular transportation effects of polyamines. In condensed DNA structures, correlation exists between the attractive and repulsive forces with structurally different polyamines and cobalt hexamine, indicating the existence of a common force in stabilizing the condensed structures. Future studies aimed at defining the mechanism(s) of DNA compaction and structural features of DNA nanoparticles might aid in the development of novel gene delivery vehicles.  相似文献   

18.
We have developed an in vitro system in which higher-order chromatin structures are assembled around naked DNAs in a cell cycle-dependent manner. Membrane-free soluble extracts specific to interphase and mitotic states were prepared from Xenopus eggs. When high molecular weight DNA is incubated with interphase extracts, fluffy chromatin-like structures are assembled. In contrast, mitotic extracts produce highly condensed chromosome-like structures. Immunofluorescence studies show that a monoclonal antibody MPM-2, which recognizes a class of mitosis-specific phosphoproteins, stains the "core" or "axis" of condensed mitotic chromatin but not interphase chromatin. By adding mitotic extracts, interphase chromatin structures are synchronously converted into the condensed state. The increasingly condensed state of chromatin correlates with the appearance and structural rearrangements of the MPM-2-stained structures. These results suggest that mitosis-specific phosphoproteins recognized by MPM-2 may be directly involved in the assembly of the chromosome scaffold-like structures and chromatin condensation. Although both extracts promote nucleosome assembly at the same rate, topoisomerase II (topo II) activity is four to five times higher in mitotic extracts compared with interphase extracts. The addition of a topo II inhibitor VM-26 into mitotic assembly mixtures disturbs the organization of the MPM-2-stained structures and affects the final stage of chromatin condensation. This in vitro system should be useful for identifying cis- and trans-acting elements responsible for higher-order chromatin assembly and its structural changes in the cell cycle.  相似文献   

19.
Nascent DNA (newly replicated DNA) was visualized in situ with regard to the position of the previously replicated DNA and to chromatin structure. Localization of nascent DNA at the replication sites can be achieved through pulse labeling of cells with labeled DNA precursors during very short periods of time. We were able to label V79 Chinese Hamster cells for as shortly as 2 min with BrdU; Br-DNA, detected by immunoelectron microscopy, occurs at the periphery of dense chromatin, at individual dispersed chromatin fibers, and within dispersed chromatin areas. In these regions DNA polymerase α was also visualized. After a 5-min BrdU pulse, condensed chromatin also became labeled. When the pulse was followed by a chase, a larger number of gold particles occurred on condensed chromatin. Double-labeling experiments, consisting in first incubating cells with IdU for 20 min, chased for 10 min and then labeled for 5 min with CldU, reveal CldU-labeled nascent DNA on the periphery of condensed chromatin, while previously replicated IdU-labeled DNA has been internalized into condensed chromatin. Altogether, these results show that the sites of DNA replication correspond essentially to perichromatin regions and that the newly replicated DNA moves rapidly from replication sites toward the interior of condensed chromatin areas.  相似文献   

20.
The lateral bud meristems of Tradescantia paludosa show a characteristic cytohistological zonation during dormancy. The cells comprising this so called ‘zone of inhibition’, which is located at the extreme tip of the bud apex, rarely synthesize nuclear DNA or undergo mitotic division. These nuclei are as large as prophase nuclei, yet contain only telophase (2C) amounts of DNA and significantly lower amounts of histone as compared to the 2C nuclei of the actively dividing cells.Ultrastructural observations of the nuclei in the ‘zone of inhibition’ show that a large proportion of the chromatin is organized as less condensed, diffuse, euchromatin fibrils; however, the chromatin of the actively dividing nuclei of the cells outside the ‘zone of inhibition’ or in the released bud meristems is organized to a greater extent as condensed clumps of heterochromatin. When the dormancy is released, the nuclei in the ‘zone of inhibition’ synthesize DNA and histone and undergo cell division in approx. 4 days. Striking changes in the organization of chromatin fibrils take place during this transition period. The diffuse chromatin fibrils of the nuclei in the ‘zone of inhibition’ progressively become more and more condensed as the cell prepares to undergo the first mitotic division after the release of dormancy. This change which is coupled with the synthesis of histones in the nuclei of the ‘zone of inhibition’ suggests a prominent structural role of these basic proteins in the organization of the chromatin. The large volume of 2C nuclei of the ‘zone of inhibition’ seems, therefore, to result not from a great nuclear mass, but probably from a relatively small degree of condensation of chromatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号