首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of ten day long exposure to gamma-irradiation at low doses (mean dose rate of 1.5-2.0 m Gy/day, total dose of 15 m Gy) on hemopoietic (CFU-S) and stromal (CFU-F) progenitor cells from murine bone marrow were examined. The CFU-F content measured as in vitro fibroblastic colony number showed 1.5-4.5-fold increase. Additionally, the size of ectopic marrow transplants evaluated by counting myelokariocytes and CFU-S numbers also increased. No significant changes of CFU-S proliferation rate were found.  相似文献   

2.
We studied the ability of the hemopoietic organ stroma to recover from damage inflicted by 5 or 7 Gy gamma radiation administered during a period of stromal growth in 4-week-old mice. Irradiation resulted in an immediate depletion of femoral colony-forming fibroblastic progenitors (CFU-F) down to 10-20% of age-matched control values. A full recovery to normal numbers occurred between 120 and 240 days after irradiation and was followed by a secondary decrease 1 year after irradiation. This secondary decrease was accompanied by a decrease in the femoral CFU-S and CFU-C content. Femoral CFU-F attained normal numbers and it was demonstrated to occur from surviving CFU-F and could not be enhanced or prolonged following infusion of unirradiated bone marrow cells after irradiation. During the transient CFU-F recovery the hemopoietic stroma remained severely damaged as judged by the regenerative capacity of spleen and femur stroma after subcutaneous implantation, and the ability of the spleen to accumulate CFU-S in response to lipopolysaccharide injection. We have reported earlier that in similarly irradiated adult mice, no restoration of femoral CFU-F was observed. This difference between 4-week-old and adult mice could not be explained by a difference in in vitro radiosensitivity of CFU-F or in their in vivo regeneration kinetics following irradiation and subsequent lipopolysaccharide injection. We conclude from these observations that the recovery kinetics of the CFU-F population is different in young and adult irradiated mice, infused CFU-F do not contribute to CFU-F regeneration in an irradiated femur, CFU-F are not the sole determinants of stromal regeneration in femur and spleen following irradiation.  相似文献   

3.
Background aimsMesenchymal stromal cells (MSC) are the most popular cells used in regenerative medicine and biotechnology. The clonogenic potential of these cells is defined by colony-forming unit-fibroblasts (CFU-F). It is well known that there is an interaction between hematopoietic cells and stromal cells in disease formation pathogenesis. Therefore we hypothesized that there should be a quantitative and qualitative relationship between MSC colonies (CFU-F) and hematopoietic stem cell colonies (colony-forming unit-granulocyte-macrophages; CFU-GM) among patients with and without hematologic diseases.MethodsForty-two patients were included in this study. Patients were divided into three groups: group A, patients with hematologic malignancies (n = 20); group B, patients with bone marrow (BM) failure (n = 11); group C, patients without hematologic diseases (n = 11). BM aspirates were plated in different densities for CFU-F culture. The plating density was the same for CFU-GM culture.ResultsCFU-GM colonies grew in 90% of group A cells and all of group B and C cells (P = 0.0001). CFU-F colonies became visible on the ninth day of plating in group A and on the eight day in groups B and C. There was no statistically significant difference between the groups for the duration of CFU-F colony formation (P = 0.12). There were differences in the morphology of the colonies among the groups.ConclusionsThis is the first study that has compared the clonogenic potential of stromal cells and hematopoietic stem cells in the same subjects with and without hematologic diseases. No correlation was shown between the clonogenic potential of stromal cells and hematopoietic cells.  相似文献   

4.
The acute radiosensitivity in vivo of the murine hematopoietic stroma for 1 MeV fission neutrons or 300 kVp X rays was determined. Two different assays were used: (1) an in vitro clonogenic assay for fibroblast precursor cells (CFU-F) and (2) subcutaneous grafting of femora or spleens. The number of stem cells (CFU-S) or precursor cells (CFU-C), which repopulated the subcutaneous implants, was used to measure the ability of the stroma to support hemopoiesis. The CFU-F were the most radiosensitive, and the survival curves after neutron and X irradiation were characterized by D0 values of 0.75 and 2.45 Gy, respectively. For regeneration of CFU-S and CFU-C in subcutaneously implanted femora, D0 values of 0.92 and 0.84 Gy after neutron irradiation and 2.78 and 2.61 Gy after X irradiation were found. The regeneration of CFU-S and CFU-C in subcutaneously implanted spleens was highly radioresistant as evidenced by D0 values of 2.29 and 1.49 Gy for survival curves obtained after neutron irradiation, and D0 values of 6.34 and 4.85 Gy after X irradiation. The fission-neutron RBE for all the cell populations was close to 3 and varied from 2.77 to 3.28. The higher RBE values observed for stromal cells, compared to the RBE of 2.1 reported previously for hemopoietic stem cells, indicate that stromal cells are relatively more sensitive than hemopoietic cells to neutron irradiation.  相似文献   

5.
Background aimsMobilization of stem cells and progenitor cells from the bone marrow (BM) into the peripheral blood (PB) by granulocyte–colony-stimulating factor (G-CSF) is being investigated for cardiac regeneration in ischemic heart disease. However, hematopoietic (HPC), mesenchymal (MPC) and endothelial (EPC) progenitor mobilization have not been optimized and the effect of G-CSF on myocardial perfusion and cardiac function in a normal heart has never been studied.MethodsNormal mice were injected daily for 1–10 days with subcutaneous recombinant human G-CSF. PB and BM were evaluated for HPC and EPC by flow cytometry and HPC and MPC by hematopoietic (CFU-GM) and mesenchymal (CFU-F) colony assays. Echocardiography, microSPECT imaging, cardiac catheterization and immunohistochemistry were performed in mice treated for 10 days.ResultsHPC and CFU-GM in PB peaked after 2 days, CFU-F after 4 days and EPC after 3 days. Thereafter, while HPC temporally decreased before showing a second peak, EPC remained detectable only at low levels. In BM, hematopoietic stem cells (HSC) and CFU-GM did not increase much overall but peaked twice on days 2 and 7. EPC (peak on day 7) production increased in the BM, but CFU-F formation declined considerably after day 2. G-CSF enhanced myocardial perfusion and vascularization but impaired hemodynamic performance of the heart through apparently increased ventricular wall rigidity.ConclusionsG-CSF induces the mobilization of HPC, EPC and CFU-F progenitors in PB according to very different patterns, and has a significant impact on perfusion and function of the normal heart.  相似文献   

6.
Hematopoietic stem cells interact with a complex microenvironment both in vivo and in vitro. In association with this microenvironment, murine stem cells are maintained in vitro for several months. Fibroblast-like stromal cells appear to be important components of the microenvironment, since several laboratories have demonstrated that cloned stromal cell lines support hematopoiesis in vitro. The importance of the tissue of origin of such cell lines remains unknown, since systematic generation of stromal cell lines from adult tissues has never been accomplished. In addition, the capacity of stromal cell lines to support reconstituting stem cell has not been examined. We have previously described an efficient and rapid method for the immortalization of primary bone marrow stromal cell lines (Williams et al., Mol. Cell. Biol. 8:3864-3871, 1988) which can be used to systematically derive cell lines from multiple tissues of the adult mouse. Here we report the immortalization of primary murine lung, kidney, skin, and bone marrow stromal cells using a recombinant retrovirus vector (U19-5) containing the simian virus large T antigen (SV40 LT) and the neophosphotransferase gene. The interaction of these stromal cells with factor-dependent cells Patterson-Mix (FDCP-Mix), colony forming units-spleen (CFU-S), and reconstituting hematopoietic stem cells was studied in order to analyze the ability of such lines to support multipotent stem cells in vitro. These studies revealed that stromal cell lines from these diverse tissues were morphologically and phenotypically similar and that they quantitatively bound CFU-S and FDCP-Mix cells equally well. However, only those cell lines derived from bone marrow-supported maintenance of day 12 CFU-S in vitro. One lung-derived stromal cell line, ULU-3, supported the survival of day 8 CFU-S, but not the more primitive CFU-S12. A bone marrow-derived stromal cell line, U2, supported the survival of long-term reconstituting stem cells for up to 3 weeks in vitro as assayed by reconstitution 1 year post-transplant. These studies suggest that adherence of HSC to stromal cells is necessary but not sufficient for maintenance of these stem cell populations and that bone marrow provides specific signals relating to hematopoietic stem cell survival and proliferation.  相似文献   

7.
We studied the effects of low doses of continuous -irradiation (Co60, 10 days, mean daily dose power 1.5-2.0 mGy, total dose 15 mGy) on hemopoietic and stromal progenitor cells of murine bone marrow. The content of hemopoietic clonogenic cells representing a younger (CFU-S-11) and more mature (CFU-S-7) categories in the compartment of stem cells was determined in the bone marrow. The state of bone marrow stroma was estimated by the method of in vitro cloning according to the number of progenitor cells that form colonies of fibroblasts (CFU-F) and by the method of ectopic transplantation according to the capacity of stroma of organizing and building new hemopoietic territories. Continuous -irradiation at low doses, that were by one order of magnitude lower than those inducing hermesis, exerted a stimulating effect on both hemopoietic (CFU-S) and stromal (CFU-F) progenitor cells. The number of CFU-S in the compartment of stem cells of the bone marrow markedly increased and they formed larger hemopoietic territories but these cells appeared to create a qualitatively different microenvironment, which stimulated the proliferation of CFU-S.  相似文献   

8.
Long-term recovery of mouse hemopoietic stem cells (CFU-S and CFU-S per colony), granulocyte-macrophage precursor cells (GM-CFC), and stromal colony-forming units (CFU-F) after doses up to 12.5 Gy was almost complete by 1 year when the dose rate was reduced to 0.0005 Gy/min compared to incomplete recovery after doses up to only 6.5 Gy given at greater than 0.7 Gy/min. This sparing effect of dose rate on long-term hemopoietic recovery is in contrast to the generally reported lack of dependence on dose rate for acute survival of hemopoietic progenitors after doses up to 5 Gy. The present results are compatible with the hypothesis that good recovery of the stroma should be reflected in the long-term recovery of hemopoiesis.  相似文献   

9.
G Prindull  Z Ben-Ishay  B Prindull 《Blut》1987,55(6):489-497
Stromal precursor cells from bone marrow aspirates of children have been studied in culture. In 7 day liquid cultures normal individuals and patients with acute leukemia in remission grew 110 +/- 50 CFU-F and 100 +/- 40 CFU-F (colony forming unit--fibroblasts) respectively, per 6 X 10(5) buffy coat mononuclear cells. Staining with monoclonal antibodies suggests that stromal cells from CFU-F colonies are fibroblasts. CFU-F colony growth from the bone marrow of patients with active leukemia was low. After cultivation periods of more than 21 days, we observed, in addition, still more immature, clonogenic fibroblast precursor cells, "pre CFU-F", and round cells attached to stromal cells from pre CFU-F colonies. From the round cells, we have passaged pre CFU-F and CFU-GM (colony forming unit--granulocytic, monocytic) in secondary cultures. Our observations are in agreement with the concept that the bone marrow stromal cell matrix serves as a sanctuary for reversibly attached clonogenic cells of both the hematopoietic and fibroblast lineages.  相似文献   

10.
In this work we studied the expression of adhesion molecules on primate human and non-human marrow stromal cells (primary cultures and lines) and on human CD34(+) hematopoietic normal and leukemic precursors. Differential expression of alpha1 integrin subunit was observed, since this molecule was intensely expressed by marrow stroma but not detected on CD34(+) cells. We used this difference to select, in fresh bone marrow samples, alpha 1-positive cells. We found that all stromal precursors giving rise to colony-forming units-fibroblasts (CFU-F) were present in the alpha 1-positive fraction. No colonies were detected in the alpha 1-negative fraction even after 2 weeks of culture. Phenotypic studies of stromal cells derived from alpha1-positive cells and grown in long-term marrow culture indicated that these cells were similar to stromal cells from primary cultures. We also observed early upregulation of alpha 4 and alpha 2 integrin subunits in cultures derived from alpha1-positive cells with maximal expression by day 10 (26 and 51%, respectively) preceding a gradual decline to low to nil values at day 30 (4.5 and 12%). These data indicate that alpha 1 integrin subunit is a marker for both mature stromal cells and stromal precursors, while alpha 2 and alpha 4 integrin subunits are expressed primarily by immature cells.  相似文献   

11.
In marrow from Sl/Sld mice (but not +/+ mice) day 7 and day 8 CFU-S proliferate whilst day 10 and day 12 CFU-S exhibit negligible proliferation. Media conditioned by both +/+ and Sl/Sld marrow contains an inhibitor of CFU-S proliferation but day 8 CFU-S in +/+ and Sl/Sld marrow show marked dose-response differences to this factor. To inhibit the proliferation of Sl/Sld CFU-S required approximately ten times the concentration of inhibitor that inhibited the proliferation of +/+ CFU-S. Thus abnormally responsive day 8-CFU-S were shown to proliferate in an inhibitory environment. Abnormalities in Sl/Sld CFU-S function were also demonstrated in heterotopic transplantation experiments using +/+ and Sl/Sld donors and hosts to obtain ectopic bone marrow with various stromal (donor) and haemopoietic (host) combinations. Day 8 Sl/Sld CFU-S were seen to proliferate, irrespective of whether the stromal environment was derived from Sl/Sld or +/+ marrow. Sl/Sld mice are generally regarded as animals in which there is a genetically determined defect in haemopoiesis due to an abnormality in the haemopoietic environment. It is difficult, however, to attribute the abnormal CFU-S behaviour in these experiments to environmental factors and the results are consistent with mutation at the Sl locus affecting the responses of CFU-S to regulatory signals, i.e. the genetic defect is not confined to the stromal environment.  相似文献   

12.
CFU-F circulating in cord blood   总被引:3,自引:0,他引:3  
CFU-F (colony forming units-fibroblast) were studied from cord blood and, as controls, from normal bone marrow of older children and adults. Numbers of CFU-F in cord blood buffy coat cells are lower by a factor of 10 in comparison to bone marrow CFU-F. Cytomorphology and staining with monoclonal antibody identify the progeny cells of CFU-F as fibroblasts. Cord blood CFU-F derived fibroblasts have properties supporting hematopoiesis: They produce CSF (colony stimulating factor) to which fresh cord blood CFU-GM (colony forming units-granulocytic, monocytic) react by colony formation in a dose-response manner. In addition, fibroblast colonies discharge clonogenic round cells into the medium forming CFU-GM and CFU-F colonies in secondary methyl cellulose cultures. We conclude that fetal blood contains clonogenic stromal cells (CFU-F) that give rise to fibroblasts with properties of hematopoietic support.  相似文献   

13.
Abstract. In marrow from Sl/Sld mice (but not +/+ mice) day 7 and day 8 CFU-S proliferate whilst day 10 and day 12 CFU-S exhibit negligible proliferation. Media conditioned by both +/+ and Sl/Sld marrow contains an inhibitor of CFU-S proliferation but day 8 CFU-S in +/+ and Sl/Sld marrow show marked dose-response differences to this factor. To inhibit the proliferation of Sl/Sld CFU-S required approximately ten times the concentration of inhibitor that inhibited the proliferation of +/+ CFU-S. Thus abnormally responsive day 8-CFU-S were shown to proliferate in an inhibitory environment.
Abnormalities in Sl/Sld CFU-S function were also demonstrated in heterotopic transplantation experiments using +/+ and Sl/Sld donors and hosts to obtain ectopic bone marrow with various stromal (donor) and haemopoietic (host) combinations. Day 8 Sl/Sld CFU-S were seen to proliferate, irrespective of whether the stromal environment was derived from Sl/Sld or +/+ marrow.
Sl/Sld mice are generally regarded as animals in which there is a genetically determined defect in haemopoiesis due to an abnormality in the haemopoietic environment. It is difficult, however, to attribute the abnormal CFU-S behaviour in these experiments to environmental factors and the results are consistent with mutation at the Sl locus affecting the responses of CFU-S to regulatory signals, i.e. the genetic defect is not confined to the stromal environment.  相似文献   

14.
骨髓基质细胞的辐射效应及其临床意义   总被引:7,自引:0,他引:7  
小鼠骨髓基质细胞团在γ线照射后的Do值为2.40Gy,但其成灶能力损伤后持续时间较久。正常骨髓基质细胞能促进骨髓GM-CFU-C的生长;照射10-80Gy后的骨髓基质细胞失去这种促进作用。文中讨论了骨髓基质细胞的辐射效应及其临床意义,提出了谨慎选择放射治疗剂量的必要性。  相似文献   

15.
AIM: To establish an easily-handled method to isolate mesenchymal stem cells (MSCs) from coagulated human bone marrow samples.METHODS: Thrombin was added to aliquots of seven heparinized human bone marrow samples to mimic marrow coagulation. The clots were untreated, treated with urokinase or mechanically cut into pieces before culture for MSCs. The un-coagulated samples and the clots were also stored at 4 °C for 8 or 16 h before the treatment. The numbers of colony-forming unit-fibroblast (CFU-F) in the different samples were determined. The adherent cells from different groups were passaged and their surface profile was analyzed with flow cytometry. Their capacities of in vitro osteogenesis and adipogenesis were observed after the cells were exposed to specific inductive agents.RESULTS: The average CFU-F number of urokinase-treated samples (16.85 ± 11.77/106) was comparable to that of un-coagulated control samples (20.22 ± 10.65/106, P = 0.293), which was significantly higher than those of mechanically-cut clots (6.5 ± 5.32/106, P < 0.01) and untreated clots (1.95 ± 1.86/106, P < 0.01). The CFU-F numbers decreased after samples were stored, but those of control and urokinase-treated clots remained higher than the other two groups. Consistently, the numbers of the attached cells at passage 0 were higher in control and urokinase-treated clots than those of mechanically-cut clots and untreated clots. The attached cells were fibroblast-like in morphology and homogenously positive for CD44, CD73 and CD90, and negative for CD31 and CD45. Also, they could be induced to differentiate into osteoblasts and adipocytes in vitro.CONCLUSION: Urokinase pretreatment is an optimal strategy to isolate MSCs from human bone marrow samples that are poorly aspirated and clotted.  相似文献   

16.
Summary In mice, persisting radiation-induced growth retardation of hematopoietic tissue suggested that at least part of the surviving stem cells are genetically injured. Additional mitotic stress some time after the radiation insult might remove injured stem cells, thus improving the overall recovery of the irradiated bone marrow.Mice were treated with 5 Gy whole-body gamma irradiation. Two weeks later half of the animals were injected i.v. with 150 mg/kg 5-fluorouracil (5-FU), the other half remained untreated (5 Gy-controls). 2 or 10 weeks later, femoral cellularity and CFU-S content, proliferation ability of transplanted bone marrow and the compartment ratio (CR; ratio of splenic IUdR incorporation at day 3 and number of CFU-S transfused) were determined.Four weeks after 5 Gy and 2 weeks after 5-FU treatment all parameters showed significant impairment of recovery. 12 weeks after 5 Gy and 10 weeks after 5-FU CFU-S and CR were still reduced compared to the 5 Gy-controls. 5-FU treatment of unirradiated mice did not produce permanent effects on the quality of stem cells or the hematopoietic microenvironment. It is concluded, therefore, that an increased proliferation stimulus does not aid in the removal of injured CFU-S and may even impair recovery of bone marrow functions by increasing the proportion of genetically injured stem cells which continue proliferation.Dedicated to Prof. L.E. Feinendegen on the occasion of his 60th birthday  相似文献   

17.
本实验对基质细胞造血刺激因子-1(SHF-1)的体外生物活性进行了研究。结果表明,SHF-1可刺激小鼠骨髓CFU-E、BFU-E、CFU-GM、CFU-Mix集落的形成,它产生的这些广泛造血刺激作用是其自身所具活性的直接影响。正常小鼠骨髓细胞与SHF-1在体外孵育4h,其中CFU-S的自杀率可提高约10%,显示它对造血干细胞也有诱导增殖作用。  相似文献   

18.
The radioadaptive survival response induced by a conditioning exposure to 0.45 Gy and measured as an increase in 30-day survival after mid-lethal X irradiation was studied in C57BL/6N mice. The acquired radioresistance appeared on day 9 after the conditioning exposure, reached a maximum on days 12-14, and disappeared on day 21. The conditioning exposure 14 days prior to the challenge exposure increased the number of endogenous spleen colonies (CFU-S) on days 12-13 after the exposure to 5 Gy. On day 12 after irradiation, the conditioning exposure also increased the number of endogenous CFU-S to about five times that seen in animals exposed to 4.25-6.75 Gy without preirradiation. The effect of the interval between the preirradiation and the challenge irradiation on the increase in endogenous CFU-S was also examined. A significant increase in endogenous CFU-S was observed when the interval was 14 days, but not 9 days. This result corresponded to the increase in survival observed on day 14 after the challenge irradiation. Radiation-inducted resistance to radiation-induced lethality in mice appears to be closely related to the marked recovery of endogenous CFU-S in the surviving hematopoietic stem cells that acquired radioresistance by preirradiation. Preirradiation enhanced the recovery of the numbers of erythrocytes, leukocytes and thrombocytes very slightly in mice exposed to a sublethal dose of 5 Gy, a dose that does not cause bone marrow death. There appears to be no correlation between the marked increase in endogenous CFU-S and the slight increase or no increase in peripheral blood cells induced by the radioadaptive response. The possible contribution by some factor, such as Il4 or Il11, that has been reported to protect irradiated animals without stimulating hematopoiesis is discussed.  相似文献   

19.
Mice were injected with plutonium-239 (960 Bq/mouse) and, over a period of four months, the response of haemopoietic tissue and the self-renewal capacity of its stem cells was monitored. Cellularity, CFU-S concentration and self-renewal capacity were measured in five different regions of bone and marrow--axial and marginal marrow of the femoral shaft, femur shaft, proximal and distal ends of the femur shaft and vertebrae. Cellularities were little affected by plutonium but CFU-S were reduced in all regions, most severely in the bone shaft and marginal marrow due to the initial deposition of plutonium on the bone surface, by four days. The reduction in axial CFU-S, however, was due probably to a relatively long plasma half-life resulting from the tendency of plutonium to combine with plasma proteins. The capacity of CFU-S for self-renewal was reduced and remained low in all zones. Thus, although the highly self-renewing axial CFU-S were depleted, and remained so, due probably to a longer term redistribution of plutonium throughout the marrow, additional proliferation of the more mature CFU-S in the other zones kept their self-renewal low while replenishing their numbers and maintaining a normal cell output.  相似文献   

20.
Mesenchymal stem cells (MSCs) are heterogeneous population of cells with great potential for regenerative medicine. MSCs are relatively easy to expand in a cell culture, however determination of their concentration in harvested tissue is more complex and is not implemented as routine procedure. To identify MSCs collected from bone marrow we have used two combinations of cell markers (CD45?/CD73+/CD90+/CD105+ and CD45?/CD271+) and fibroblast colony-forming unit (CFU-F) assay. Further, in donors of various ages, mesenchymal stem cell concentration was compared with the result of CFU-F assay and with hematopoietic stem cell concentration, determined by a standardized flow cytometric assay. A positive correlation of MSC populations to the CFU-F numbers is observed, the population of the CD45?/CD271+ cells correlates better with CFU-F numbers than the population of the CD45?/CD73+/CD90+/CD105+ cells. The relationship between the hematopoietic CD45dim/CD34+ cell concentration and mesenchymal CFU-Fs or CD45?/CD271+ cells shows a positive linear regression. An age-related quantitative reduction of hematopoietic CD45dim/CD34+, mesenchymal CD45?/CD73+/CD90+/CD105+ and CD45?/CD271+ stem cells, and CFU-F numbers were noted. Additionally, statistically significant higher CFU-F numbers were observed when bone marrow samples were harvested from three different sites from the anterior iliac crest instead of harvesting the same sample amount only from one site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号