首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transport changes in synchronously growing CHO and L cells   总被引:10,自引:0,他引:10  
A reduced rate of transport of 2-amino-isobutyric acid (AIB), was found to be associated with M and early G1 periods in synchronized populations of CHO and L cells. A doubling of the transport rate occurred with progress of CHO cells further into G1, and the specific transport activity remained constant during the rest of the cycle, The rate of uridine and thymidine transport also doubled at this point in the cell cycle. There was no change in Km values. The rise in transport rate was blocked by cycloheximide, or when the cells were prevented from leaving metaphase by colcemid.  相似文献   

2.
Populations of Novikoff rat hepatoma cells (subline N1S1-67) were monitored for the rates of transport of various substrates and for their incorporation into acid-insoluble material as a function of the age of cultures of randomly growing cells in suspension as well as during traverse of the cells through the cell cycle. Populations of cells were synchronized by a double hydroxyurea block or by successive treatment with hydroxyurea and Colcemid. Kinetic analyses showed that changes in transport rates related to the age of cultures or the cell cycle stage reflecte alterations in the V max of the transport processes, whereas the Km remained constant, indicating that changes in transport rates reflect alterations in the number of functional transport sites. The transport sites for uridine and 2-deoxy-D-glucose increased continuously during traverse of the cells through the cell cycle, whereas those for choline and hypoxanthine were formed early in the cell cycle. Increases in thymidine transport sites were confined to the S phase. Synchronized cells deprived of serum failed to exhibit normal increases in transport sites, although the cells divided normally at the end of the cell cycle. Arrest of the cells in mitosis by treatment with Colcemid prevented any further increases in transport rates. The formation of functional transport sites was also dependent on de novo synthesis of RNA and protein. Inhibition of DNA synthesis in early S phase inhibited the increase in thymidine transport rates which normally occurs during the S phase, but had no effect on the formation of the other transport systems. Transport rates also fluctuated markedly with the age of the cultures of randomly growing cells, reaching maximum levels in the mid-exponential phase of growth. The transport systems for thymidine and uridine were rapidly lost upon inhibition of protein and RNA synthesis, and thus seem to be metabolically unstable, whereas the transport systems for choline and 2-deoxy-D-glucose were stable under the same conditions.  相似文献   

3.
The effects of sodium butyrate on [3H]thymidine incorporation and cell growth characteristics in randomly growing and synchronized HeLa S3 cells have been examined in an attempt to determine what effects, if any, butyrate has on S phase cells. Whereas 5 mM sodium butyrate rapidly inhibits [5H]thymidine incorporation in a randomly growing cell populations, it has no effect on incorporation during the S phase in cells synchronized by double thymidine block techniques. This lack of effect does not result from an impaired ability of the S phase cells to take up butyrate, since butyrate administration during this period leads to histone hyperacetylation that is identical with that seen with butyrate treatment of randomly growing cells. Furthermore, the ability to induce such hyperacetylation with butyrate during an apparently normal progression through S phase indicates that histone hyperacetylation probably has no effect on the overall process of DNA replication. Temporal patterns of [3H]thymidine incorporation and cell growth following release from a 24-h exposure to butyrate confirm blockage of cell growth in the G1 phase of the cell cycle. Thus, the inhibition by butyrate of [3H]thymidine incorporation in randomly growing HeLa S3 cell populations can be accounted for solely on the basis of a G1 phase block, with no inhibitory effects on cells already engaged in DNA synthesis or cells beyond the G1 phase block at the time of butyrate administration.  相似文献   

4.
Summary A cell cycle analysis of theTrichoplusia ni (TN-368) insect cell line is described. By means of autoradiography and percent labeled metaphase data, the cell cycle parameters were determined to be as follows: S, 4.5 hr; G2, 8.5 hr; M, 0.5 hr; G1, 1.0 hr; the total cell time being 14.5 hr. A synchronization procedure using 50mm thymidine in a double block procedure was used to provide a method of obtaining a large number of cells in particular cell cycle phases, especially S and G2. This work was supported in part by U.S. Environmental Protection Agency Grant R-802516.  相似文献   

5.
Nitrobenzylthioinosine (NBMPR), an inhibitor of nucleoside transport by human erythrocytes, was found to be a potent inhibitor of thymidine uptake by asynchronous monolayer cultures of HeLa cells. Rates of thymidine uptake by the cultures at 20 °C were constant between 10 and 40 sec after thymidine addition and were assayed during this interval; TTP was the principal metabolite of thymidine and the thymidine phosphates accumulated at constant rates which extrapolated through time zero. The lack of an effect of NBMPR on thymidine kinase activity, or on the relative proportions of thymidine metabolites in cell extracts, indicated that NBMPR inhibited thymidine transport. When mediated entry (transport) was eliminated by 2 μM NBMPR, a significant diffusional component of thymidine entry was apparent. The mediated component of thymidine uptake exhibited Michaelis-Menten kinetics and apparent Km and Vmax values of 0.5 μM and 10–21 pmoles/min/106 cells were obtained. When NBMPR-treated cells were transferred to NBMPR-free medium, inhibition of thymidine uptake persisted, suggesting that NBMPR was firmly bound to the transport inhibitory sites.  相似文献   

6.
GH3 cells were synchronized by growing them in a low serum concentration (1%). They were thereafter put back in normal medium (17.5% serum) (time 0 of synchronization). Four parameters were then examined every two hours for up to 40 hours : rate of [3H] thymidine incorporation, cell number, binding of [3H] Thyrotropin Releasing Hormone (TRH) after a 30 min exposure, and prolactin (PRL) content of culture medium and cell extract.The rate of thymidine incorporation presented a 10–20 fold increase in S phase, beginning on 12–16 hours and lasting at 26 hours. The cell population was doubled at 28 hours. [3H] TRH binding to attached cells was observed throughout the cell cycle, but presented a significant increase (40–80%) during the S phase. In contrast, the % increase of PRL release in response to TRH was optimum (300% of control) in G1 phase. Variations of the PRL cell content as well as of the PRL spontaneous release ability of the cell do not account for the variations of TRH responsiveness. The discrepancy between the two parameters of the TRH-GH3 cells interaction strongly suggest a morphological or functional heterogeneity of the TRH-binding sites.  相似文献   

7.
Tetrahymena pyriformis GL-I were synchronized by three different techniques and nucleoside phosphotransferase activity measured through the different cell cycles obtained. In cells that were starved and then refed, activity did not increase until 75 min after refeeding. This increase in activity occurred well before nuclear DNA synthesis and was not blocked by hydroxyurea. In cells synchronized by the induction technique of one heat shock per generation and the selection technique of differential density labelling, enzyme activity increased continuously over the cell cycle but did not double. However, during early logarithmic growth nucleoside phosphotransferase activity more than doubled over one cell cycle time while late in log growth phase less than a doubling was observed. Cycloheximide and mixed extract experiments suggest that the patterns of activity observed reflect the patterns of enzyme synthesis. These results are discussed with respect to the pattern of activity observed for thymidine kinase in other organisms.  相似文献   

8.
Observation of division of individual cells in microdrops, plus autoradiographic studies using tritiated thymidine and standard cell cycle analysis techniques, reveal that hydroxyurea (10 DIM) reversibly arrests the normal progression of exponentially growing Tetrahymena pyriformis through the initial 92 % of S-phase while not affecting cells in the terminal 8 % and in G2 and division. Thus the fraction of the population of cells that is in G2 can be approximately determined by the fraction of the population able to divide in the presence of hydroxyurea. This fraction can be related to the approximate duration of G2 by calculations which compensate for the age gradient.  相似文献   

9.
Parameters are described for reproducible S phase synchrony of Chinese hamster ovary cells growing in monolayer, adapting a method described by Tobey & Crissman [1] for CHO cells growing in suspension culture. Cells are collected at the G1/S boundary in hydroxyurea after reversal of an early G1 block induced by isoleucine deprivation. The entire population enters the S period within 60 min after removal of hydroxyurea and proceeds through the S period with minimal decay of synchrony, as evidenced by autoradiographic and rate studies on [3H]TdR uptake. In addition, a method is described for obtaining cells synchronized during two successive S periods. The presence of hydroxyurea during G1 does not measurably affect the rate of uptake of [3H]uridine or [3H]leucine into TCA-insoluble material; however, cultures released from the hydroxyurea block at 10 h incorporate slightly more [3H]uridine (but not [3H]leucine) in the next 6 h than cultures maintained in hydroxyurea over this interval. Delaying entry into S with hydroxyurea for as long as 15 h does not significantly change the initial rate or duration of DNA synthesis upon removal of hydroxyurea, arguing against the build-up of substances responsible for initiation of replicons. Furthermore, if DNA synthesis is delayed with hydroxyurea in one cell cycle, a constant minimal interval of 15 h elapses before the population enters into the next S phase, suggesting that the timing of the S period is coupled to the timing of the previous S.  相似文献   

10.
HeLa cells were synchronized by a double thymidine block and pulse labeled at different stages of the cell cycle with 3H-choline. The specific activity of phospholipids extracted from the cell, the nucleus and the nuclear membrane showed a progressive increase from S to G1; the incorporation of choline into phospholipids of asynchronous cells showed a specific activity intermediate between the values of S and G1 cells. Similar results were obtained when 32phosphorus was used as a precursor instead of choline. Thin layer chromatographic analysis of phospholipids extracted from cells in S and from cells in G1 failed to show any difference in the distribution of radioactivity among the various phospholipid classes. Choline uptake by HeLa cells in different phases of the cell cycle did not show significant variations. However, during the synchronization process, shortly after the addition of excess thymidine, an increased uptake of choline by cells and an increased incorporation of choline into phospholipids were found. The results indicate that some of the changes occurring in phospholipids synthesis may not be cell cycle dependent, but may be the effect of the synchronizing process.  相似文献   

11.
Using a 14C/3H double-labelling technique, the influence of kinetic on the length of the cell cycle of meristematic cells in haploid and diploid callus cultures of Datura innoxia was determined. The total length of the cell cycle of haploid cells as compared to that of diploid cells was reduced by 2.3 h (-kinetin) or 1.4 h (+kinetin). Furthermore, the addition of kinetin to the nutrient solution also reduces cell cycle duration at both ploidy levels. For synchronization of the cell cycle, a fluorodesoxyuridine/thymidine system was successfully employed. Apparently, the reduction of total cell cycle duration of cycling cells due to treatment with kinetin occurred at the expense of the G1phase. Nevertheless, kinetin seems to exert an influence on the transition of cells from the G2 into the M phase as well.Abbreviations FUdR fluorodeoxyuridine - HU hydroxyurea - IAA nidole acetic acid  相似文献   

12.
Flow cytometry indicated that significant amounts of dsRNA were accumulated in HeLa S3 cells blocked at or near G1/S boundary by hydroxyurea (HU) or excess thymidine (TdR). The dsRNA/DNA ratio increased in these cells in a manner characteristic of unbalanced cell growth. In HU-treated cells, dsRNA content was maximal 16 hours after addition of the drug and did not change significantly during the next 24 hours. The DNA content in blocked cells increased by 10%. Cell viability assessed by colony formation in soft agar decreased exponentially in HU-treated cultures after 16 hours of incubation. Correlation between loss of cell viability and rate of cell proliferation after removal of HU was observed, as determined by cell count and analysis of cell cycle progression. In TdR-treated cultures cells slowly progressed into mid S-phase during 40 hours and dsRNA accumulation continued during this period. Cell viability was not significantly affected by treatment with excess TdR, indicating that unbalanced growth per se, as measured by dsRNA accumulation, is not lethal for the cells. After reversal of DNA synthesis inhibition by removal of the drug, cells treated with HU for 16 hours or TdR for 16–24 hours promptly progressed through the cell cycle. This progression was accompanied by accumulation of significant amounts of dsRNA. As a result, cells in G2 phase had a very high dsRNA content leading to retention of the unbalanced condition (increased dsRNA/DNA ratio) in the daughter cells. It is suggested that dsRNA accumulation in the cell is controlled to a certain degree by cell progression through the S phase. This type of control, evidently, was reflected in limited dsRNA accumulation in the cells blocked at or near G1/S border, in continuous dsRNA accumulation in the cells slowly progressing through S phase, and in accumulation of large amounts of dsRNA after renewal of progression through the S phase.  相似文献   

13.
The kinetics of total uptake of thymidine into the cell were determined for cells which had been mitotically synchronized, plated into scintillation vials and pulsed with five concentrations of [3H]-thymidine at various times during the cell cycle. From Lineweaver-Burk plots of these rates, Vmax and Km values were determined for the transport of thymidine. The Vmax values ranged from a low of 2.0 pmoles/ min/106 cells in mid-G1 to a high of 99.7 in mid-S before a decline in late S and G2. Km values displayed only a 5-fold range in values.  相似文献   

14.
The objective of this study was to test the concept that the G1 period lacks any specific function in the life cycle of mammalian cells and hence could be drastically reduced without any effect on the generation time. HeLa cells were grown in medium containing an optimum dose (60 μM) of hydroxyurea at which the duration of S period was prolonged with little or no increase in generation time. At this concentration of hydroxyurea, we observed a maximum of 3 h (or 28.5%) reduction in the G1 period. We also studied the effects of synchronization in S phase by single and double thymidine blocks on cell size and its relationship to the duration of G1 in the subsequent cycle. By these treatments, we could reduce the G1 period by not more than 2 to 3 h. The reduction in G1 period was not directly proportional to the size (volume) of the G1 cells. These results suggest that G1 period has certain specific functions and cannot be eliminated by alterations in culture conditions.  相似文献   

15.
Immunochemical analysis was employed to investigate the cell cycle-dependent protein-DNA crosslinking by cis-diamminedichloroplatinum II (cis-DDP), in HeLa-S3 cells. Cells synchronized by double thymidine block or hydroxyurea were released into S phase and incubated at 2-h intervals with cis-DDP as they progressed through S1, G2, M, and then into G1 and S phases of the subsequent cycle. Immunoblots of the DNA-crosslinked antigens reacted with antisera to 0.35 M NaCl extract or residue of HeLa S-phase nuclei revealed that several antigens changed their DNA-crosslinking pattern during the progression of HeLa cells through their reproductive cycle.  相似文献   

16.
Pluripotent haemopoietic stem cells (CFUs) move synchronously through the cell cycle in hydroxyurea-treated mice in a cohort 1–2 hr broad. Ten to fifteen hours after hydroxyurea they pass through S phase. DNA synthesis appears to be depressed 5–10 times when the cells are in the middle part of the S phase but does not seem to be completely interrupted. High concentrations of [3H]thymidine must be used for ‘suicide’ in order to achieve lethality for the cells with depressed DNA synthesis. At the time when DNA synthesis is depressed, the sensitivity of the cells to hydroxyurea also decreases. This may lead to a significant underestimation of the S phase fraction by the hydroxyurea method, because CFUs with low DNA synthesis rate are resistant to hydroxyurea although being in S phase.  相似文献   

17.
Smooth muscle cell (SMC) proliferation plays an important role in the pathogenesis of vascular diseases such as atherosclerosis and postangioplasty restenosis. Recently we demonstrated the thiol antioxidantN-acetylcysteine (NAC) inhibits constitutive NF-κB/Rel activity and growth of vascular SMCs. Here we show that treatment of human and bovine aortic SMC with the thiol antioxidant NAC causes cells to exit the cell cycle and remain quiescent as determined by a greatly reduced incorporation of [3H]thymidine and G0/G1DNA content. Removal of NAC from the culture medium stimulates SMCs to synchronously reenter the cell cycle as judged by induction of cyclin D1 and B-mybgene expression during mid and late G1phase, respectively, and induction of histone gene expression and [3H]thymidine incorporation during S phase. The time course of cyclin D1, B-myb,and histone gene expression after NAC removal was similar to that of serum-deprived cells induced to resume cell cycle progression by the addition of fetal bovine serum to the culture medium. Taken together, these results indicate that NAC treatment causes SMCs to enter a reversible G0quiescent, growth-arrested state. Thus, NAC provides an important new method for synchronizing SMCs in culture.  相似文献   

18.
The extent of bone marrow damage caused by the administration of single or repeated doses of either hydroxyurea (1000 mg/kg b.w.) or colchicine (1 mg/kg b.w.) are comparable. This conclusion is based on serial studies of bone marrow cellularity and of the CFUc numbers in the bone marrow. the proliferation response of the pluripotential haemopoietic stem cells, determined by the cells forming colonies in the spleen of lethally irradiated mice (CFUs) markedly differs if the bone marrow damage is caused by hydroxyurea or colchicine. While hydroxyurea administration stimulates a large proportion of the resting G0 cells into the cell cycle, the damage induced by colchicine is followed by only a mild increase in the CFUs proliferation rate. The seeding efficiency of the spleen colony technique has been determined after both hydroxyurea and colchicine administration. This parameter, important for the estimation of the number of the pluripotential haemopoietic stem cells in blood forming organs, is significantly affected by hydroxyurea administration, but also by repeated injections of colchicine. Following a single dose of hydroxyurea, the time-course of the CFUs numbers, which were corrected for the change in the seeding efficiency, shows an overshoot occurring after 18–20 hr. At the other time periods, the number of pluripotential haemopoietic stem cells is little affected by a single hydroxyurea injection. This poses a question about the nature of the stimulus, which after hydroxyurea administration triggers the CFUs from the resting G0 state into the cell cycle. There is evidence that this stimulus is probably not represented by the damage caused to the various intensively proliferating cell populations of the bone marrow. This evidence is based on experiments which show that colchicine induced damage, of a degree similar to that after hydroxyurea, does not stimulate the CFUs proliferation rate to an extent comparable to hydroxyurea. The possibility that colchicine could block CFUs in the G0 state or that it could interfere with the progress of CFUs through the G1 and S phases of the cell cycle have been ruled out by experiments which demonstrated that colchicine (1 mg/kg b.w.), administered 10 min before hydroxyurea, does not reduce the number of CFUs triggered into the cell cycle as the consequence of hydroxyurea administration.  相似文献   

19.
Synchronized populations of Navicula pelliculosa (Bréb.) Hilse show a 10-fold increase in Si(OH)4 transport rate during traverse through the cell division cycle. The transport activity pattern is similar to a “peak enzyme.” Kinetic analysis showed there was a significant change in Ks values, indicating increased “affinity” for Si(OH)4 as cells neared maximal uptake rates. However, the dramatic changes in transport rate at various cell cycle stages were also reflected by alterations in the Vmax, values of the transport process, suggesting a change in the number of functional transport “sites” in the plasma membrane. Cells in the wall forming stage, arrested from further development by Si(OH)4 deprivation, maintained high transport rates for as long as 7 h. The rates decreased rapidly if protein synthesis were blocked or if Si(OH)4 was added, the latter allowing the cells to traverse the rest of the cycle. The half-life of the transport activity ranged from 1.0 to 2.2 h when protein synthesis was inhibited at various cell cycle stages and during the natural decline of activity late in the cycle. The transport system appears to be metabolically unstable as is typical for a “peak protein.” The rise in transport rate through the cell cycle did not depend on the presence of Si(OH)4 in the medium; therefore, the transport system does not appear to be induced by its substrate. The rise in transport is also observed in L:D synchronized cells developing in the presence of Si(OH)4; neither does the transport system appear to be derepressed. The transport rate was strongly cell cycle-stage dependent; the data appeared to fit the “dependent pathway” model proposed by Hart-well to explain oscillations in enzyme synthesis during the cell cycle.  相似文献   

20.
The cell cycle has been shown to regulate the biological effects of human tumor necrosis factor (TNF), but to what extent that regulation is due to the modulation of TNF receptors is not clear. In the present report we investigated the effect of the cell cycle on the expression of surface and soluble TNF receptors in human histiocytic lymphoma U-937. Exposure to hydroxyurea, thymidine, etoposide, bisbensimide, and democolcine lead to accumulation of cells primarily in G1/S, S, S/G2/M, G2/M, and M stages of the cell cycle, respectively. Whilie no significant change in TNF receptors occurred in cells arrested in G1/S or S/G2 stages, about a 50% decrease was observed in cells at M phase of the cycle. Scatchard analysis showed a reduction in receptor number rather than affinity. In contrast, cells arrested at S phase (thymidine) showed an 80% increase in receptor number. The decrease in the TNF receptors was not due to changes in cell size or protein synthesis. The increase in receptors, however, correlated with an increase in total protein synthesis (to 3.8-fold of the control levels). A proportional change was observed in the p60 and p80 forms of the TNF receptors. A decrease in the surface receptors in cells arrested in M phase correlated with an increase in the amount of soluble receptors. The cellular response to TNF increased to 8- and 2-fold in cells arrested in G1 and S phase, respectively; but cells at G2/M phase showed about 6-fold decrease in response. In conclusion, our results demonstrate that the cell cycle plays an important role in regulation of cell-surface and soluble TNF receptors and also in the modulation of cellular response. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号