首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exercise-induced increase in muscle insulin sensitivity.   总被引:9,自引:0,他引:9  
Exercise/muscle contraction activates glucose transport. The increase in muscle glucose transport induced by exercise is independent of insulin. As the acute effect of exercise on glucose transport wears off, it is replaced by an increase in insulin sensitivity. An increase in insulin sensitivity results in a shift in the insulin dose-response curve to the left, with a decrease in the concentration of insulin needed to induce 50% of the maximal response. This phenomenon, which plays a major role in rapid muscle glycogen accumulation after exercise, is not mediated by amplification of the insulin signal. Development of the increase in insulin sensitivity after contractions does not require protein synthesis or activation of p38 MAPK. It does require the presence of a serum protein during the period of contractile activity. The effect of exercise on muscle insulin sensitivity is mimicked by hypoxia and by treatment of muscles with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside to activate AMP-activated protein kinase. The postexercise increase in sensitivity of muscle glucose transport to activation is not specific for insulin but also involves an increased susceptibility to activation by a submaximal contraction/hypoxia stimulus. The increase in insulin sensitivity is mediated by translocation of more GLUT4 glucose transporters to the cell surface in response to a submaximal insulin stimulus. Although the postexercise increase in muscle insulin sensitivity has been characterized in considerable detail, the basic mechanisms underlying this phenomenon remain a mystery.  相似文献   

2.
Exercise induces an increase in glucose transport in muscle. As the acute increase in glucose transport reverses, it is replaced by an increase in insulin sensitivity. Interleukin-6 (IL-6) increases with exercise and has been reported to activate AMP-activated protein kinase (AMPK). Based on this information, we hypothesized that IL-6 would result in an increase in muscle insulin sensitivity. Rat epitrochlearis and soleus muscles were incubated with 120 ng/ml IL-6. Exposure to IL-6 induced a modest acute increase in glucose transport and was followed 3.5 h later by an increase in insulin sensitivity in epitrochlearis but not soleus muscles. IL-6 also brought about an increase in AMPK phosphorylation in epitrochlearis muscles. We conclude that exposure of fast-twitch muscle to 120 ng/ml IL-6 increases insulin sensitivity by activating AMPK. However, exposure of epitrochlearis muscles to 10 ng/ml IL-6, a concentration >100-fold higher than that attained in plasma during exercise, had no effect on glucose transport or insulin sensitivity. These findings provide evidence that the increases in glucose transport and insulin sensitivity induced by IL-6 are pharmacological rather than physiological effects. We interpret our results as evidence that the increase in IL-6 during exercise does not play a role in the exercise-induced increases in muscle glucose uptake and insulin sensitivity.  相似文献   

3.
Muscle contractions induce an increase in glucose transport. The acute effect of muscle contractions on glucose transport is independent of insulin and reverses rapidly after cessation of exercise. As the acute increase in glucose transport reverses, a marked increase in the sensitivity of muscle to insulin occurs. The mechanism for this phenomenon is unknown. We hypothesize that an increase in insulin sensitivity is a general phenomenon that occurs during reversal of an increase in cell surface GLUT4 induced by any stimulus, not just exercise. To test this hypothesis, epitrochlearis, rat soleus, and flexor digitorum brevis muscles were incubated for 30 min with a maximally effective insulin concentration (1.0 mU/ml). Muscles were allowed to recover for 3 h in the absence of insulin. Muscles were then exposed to 60 microU/ml insulin for 30 min followed by measurement of glucose transport. Preincubation with 1.0 mU/ml insulin resulted in an approximately 2-fold greater increase in glucose transport 3.5 h later in response to 60 microU/ml insulin than that which occurred in control muscles treated with 60 microU/ml insulin. Pretreatment of muscles with combined maximal insulin and exercise stimuli greatly amplified the increase in insulin sensitivity. The increases in glucose transport were paralleled by increases in cell surface GLUT4. We conclude that stimulation of glucose transport by any agent is followed by an increase in sensitivity of glucose transport to activation that is mediated by translocation of more GLUT4 to the cell surface.  相似文献   

4.
This study was done to evaluate the effect of insulin on sugar transport into skeletal muscle after exercise. The permeability of rat epitrochlearis muscle to 3-O-methylglucose (3-MG) was measured after exposure to a range of insulin concentrations 30, 60, and 180 min after a bout of exercise. Thirty and 60 min after exercise, the effects of exercise and insulin on 3-MG transport were additive over a wide range of insulin concentrations, with no increase in sensitivity or responsiveness to insulin. After 180 min, when approximately 66% of the exercise-induced increase in sugar transport had worn off, both the responsiveness and sensitivity of the glucose transport process to insulin were increased. These findings appear compatible with the hypothesis that the actions of exercise and insulin result in activation and/or translocation into the plasma membrane of two separate pools of glucose transporters in mammalian skeletal muscle.  相似文献   

5.
Regulation of glucose transport in skeletal muscle.   总被引:3,自引:0,他引:3  
The entry of glucose into muscle cells is achieved primarily via a carrier-mediated system consisting of protein transport molecules. GLUT-1 transporter isoform is normally found in the sarcolemmal (SL) membrane and is thought to be involved in glucose transport under basal conditions. With insulin stimulation, glucose transport is accelerated by translocating GLUT-4 transporters from an intracellular pool out to the T-tubule and SL membranes. Activation of transporters to increase the turnover number may also be involved, but the evidence is far from conclusive. When insulin binds to its receptor, it autophosphorylates tyrosine and serine residues on the beta-subunit of the receptor. The tyrosine residues are thought to activate tyrosine kinases, which in turn phosphorylate/activate as yet unknown second messengers. Insulin receptor antibodies, however, have been reported to increase glucose transport without increasing kinase activity. Insulin resistance in skeletal muscle is a major characteristic of obesity and diabetes mellitus, especially NIDDM. A decrease in the number of insulin receptors and the ability of insulin to activate receptor tyrosine kinase has been documented in muscle from NIDDM patients. Most studies report no change in the intracellular pool of GLUT-4 transporters available for translocation to the SL. Both the quality and quantity of food consumed can regulate insulin sensitivity. A high-fat, refined sugar diet, similar to the typical U.S. diet, causes insulin resistance when compared with a low-fat, complex-carbohydrate diet. On the other hand, exercise increases insulin sensitivity. After an acute bout of exercise, glucose transport in muscle increases to the same level as with maximum insulin stimulation. Although the number of GLUT-4 transporters in the sarcolemma increases with exercise, neither insulin or its receptor is involved. After an initial acute phase, which may involve calcium as the activator, a secondary phase of increased insulin sensitivity can last for up to a day after exercise. The mechanism responsible for the increased insulin sensitivity with exercise is unknown. Regular exercise training also increases insulin sensitivity, which can be documented several days after the final bout of exercise, and again the mechanism is unknown. An increase in the muscle content of GLUT-4 transporters with training has recently been reported. Even though significant progress has been made in the past few years in understanding glucose transport in skeletal muscle, the mechanisms involved in regulating transport are far from being understood.  相似文献   

6.
The effects of two types of acute exercise (1 h treadmill running at 20 m.min-1, or 6 x 10-s periods at 43 m.min-1, 0 degree inclination), as well as two training regimes (endurance and sprint) on the sensitivity of epitrochlearis muscle [fast twitch (FT) fibres] to insulin were measured in vitro in rats. The hormone concentration in the incubation medium producing the half maximal stimulation of lactate (la) production and glycogen synthesis was determined and used as an index of the muscle insulin sensitivity. A single period of moderate endurance as well as the sprint-type exercise increased the sensitivity of la production to insulin although the rate of la production enhanced markedly only after sprint exercise at 10 and 100 microU.ml-1 of insulin. These effects persisted for up to 2 h after the termination of exercise. Both types of exercise significantly decreased the muscle glycogen content, causing a moderate enhancement in the insulin-stimulated rates of glycogen synthesis in vitro for up to 2 h after exercise. However, a significant increase in the sensitivity of this process to insulin was found only in the muscle removed 0.25 h after the sprint effort. Training of the sprint and endurance types increased insulin-stimulated rates of glycolysis 24 h after the last period of exercise. The sensitivity of this process to insulin was also increased at this instant. Both types of training increased the basal and maximal rates of glycogen synthesis, as well as the sensitivity of this process to insulin at the 24th h following the last training session.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
It has long been known that acute exercise can dramatically improve insulin sensitivity in previously insulin-resistant muscle; however, the precise mechanisms underlying this clinically significant interaction remain unknown. Using hindlimb perfusions in obese Zucker rats, our group found that acute muscle contraction synergistically improved insulin-stimulated glucose transport in skeletal muscle, but contrary to our hypothesis, these findings were not associated with either improved insulin signaling or decreased intramuscular lipid metabolites. A further analysis revealed that the improved insulin sensitivity was associated with a robust increase in mitochondrial energy flux. These findings and reports from other labs suggest that mitochondrial energy flux and mitochondrial oxidative capacity may govern insulin sensitivity and override insulin signaling defects associated with obesity. This review will discuss the effects of acute exercise to enhance insulin sensitivity in previously insulin-resistant muscle and present possible novel mechanisms by which alterations in mitochondrial energy metabolism may play a regulatory role.  相似文献   

8.
Skeletal muscle insulin resistance (IR) is closely linked to hyperglycemia and metabolic disorders. Regular exercise enhances insulin sensitivity in skeletal muscle, but its underlying mechanisms remain unknown. Sestrin3 (SESN3) is a stress-inducible protein that protects against obesity-induced hepatic steatosis and insulin resistance. Regular exercise training is known to increase SESN3 expression in skeletal muscle. The purpose of this study was to explore whether SESN3 mediates the metabolic effects of exercise in the mouse model of high-fat diet (HFD)-induced IR. SESN3?/? mice exhibited severer body weight gain, ectopic lipid accumulation, and dysregulation of glucose metabolism after long-term HFD feeding compared with the wild-type (WT) mice. Moreover, we found that SESN3 deficiency weakened the effects of exercise on reducing serum insulin levels and improving glucose tolerance in mice. Exercise training increased pAKT-S473 and GLUT4 expression, accompanied by enhanced pmTOR-S2481 (an indicator of mTORC2 activity) in WT quadriceps that were less pronounced in SESN3?/? mice. SESN3 overexpression in C2C12 myotubes further confirmed that SESN3 played an important role in skeletal muscle glucose metabolism. SESN3 overexpression increased the binding of Rictor to mTOR and pmTOR-S2481 in C2C12 myotubes. Moreover, SESN3 overexpression resulted in an elevation of glucose uptake and a concomitant increase of pAKT-S473 in C2C12 myotubes, whereas these effects were diminished by downregulation of mTORC2 activity. Taken together, SESN3 is a crucial protein in amplifying the beneficial effects of exercise on insulin sensitivity in skeletal muscle and systemic glucose levels. SESN3/mTORC2/AKT pathway mediated the effects of exercise on skeletal muscle insulin sensitivity.  相似文献   

9.
Metformin and exercise independently improve insulin sensitivity and decrease the risk of diabetes. Metformin was also recently proposed as a potential therapy to slow aging. However, recent evidence indicates that adding metformin to exercise antagonizes the exercise‐induced improvement in insulin sensitivity and cardiorespiratory fitness. The purpose of this study was to test the hypothesis that metformin diminishes the improvement in insulin sensitivity and cardiorespiratory fitness after aerobic exercise training (AET) by inhibiting skeletal muscle mitochondrial respiration and protein synthesis in older adults (62 ± 1 years). In a double‐blinded fashion, participants were randomized to placebo (n = 26) or metformin (n = 27) treatment during 12 weeks of AET. Independent of treatment, AET decreased fat mass, HbA1c, fasting plasma insulin, 24‐hr ambulant mean glucose, and glycemic variability. However, metformin attenuated the increase in whole‐body insulin sensitivity and VO2max after AET. In the metformin group, there was no overall change in whole‐body insulin sensitivity after AET due to positive and negative responders. Metformin also abrogated the exercise‐mediated increase in skeletal muscle mitochondrial respiration. The change in whole‐body insulin sensitivity was correlated to the change in mitochondrial respiration. Mitochondrial protein synthesis rates assessed during AET were not different between treatments. The influence of metformin on AET‐induced improvements in physiological function was highly variable and associated with the effect of metformin on the mitochondria. These data suggest that prior to prescribing metformin to slow aging, additional studies are needed to understand the mechanisms that elicit positive and negative responses to metformin with and without exercise.  相似文献   

10.
Exercise training causes a decline in basal and glucose-stimulated plasma insulin levels and improves glucose tolerance. Furthermore evidence has been presented for effects on both insulin receptors and postreceptor events. However, it is unclear how these changes affect the in vivo dose-response relationship between insulin levels and whole-body glucose utilization. The aim was to examine the effect of exercise training on this relationship and distinguish between changes in insulin sensitivity and responsiveness. Euglycemic clamps were performed in trained (ET, running 1 h/day for 7 wk), sedentary (CON), and sedentary food-restricted ( SFR ) rats. ET rats showed no increase in maximal net glucose utilization in response to insulin (ET 29.5 +/- 0.6 vs. CON 28.2 +/- 1.5 mg X kg-1 X min-1, NS), whereas insulin sensitivity was increased as indicated by the insulin concentration causing half-maximal stimulation (ED50) (49 +/- 20 for ET and 133 +/- 30 mU/l for CON). Thus 7 wk of moderate exercise training resulted in a significant shift of whole-body insulin sensitivity to place ED50 well within the physiological range of insulin concentrations. This would undoubtedly result in improved glucose disposal in the postprandial state and emphasizes the potential benefit of exercise in obesity and type II diabetes.  相似文献   

11.
Although insulin and exercise cause dramatic changes in physiological parameters, the impact of exercise on neural and hemodynamic responses to insulin administration has not been described. In a study of the effects of a single bout of exercise on blood pressure (BP), muscle sympathetic nerve activity (MSNA), and forearm blood flow (FBF) responses to insulin infusion during the postexercise period, 11 healthy men underwent, in a random order, two hyperinsulinemic euglycemic clamps performed after 45 min of 1) bicycle exercise (50% peak O(2) uptake, Exercise session) and 2) seated rest (Control session). Data were analyzed during baseline and steady-state periods. Although insulin levels and insulin sensitivity were similar, baseline plasma glucose levels were significantly lower in the Exercise than in the Control session. Mean BP was significantly lower (3%) and FBF was higher (27%) in the Exercise session. Exercise increased insulin-induced MSNA enhancement (84%) without changing FBF and BP responses to hyperinsulinemia. In conclusion, a single bout of exercise that does not alter insulin sensitivity exacerbates insulin-induced increase in MSNA without changing FBF and BP responses to hyperinsulinemia.  相似文献   

12.
The present study was designed to evaluate the contribution of the exercise-induced increment in glucose storage to the increased insulin sensitivity characterizing endurance athletes. Plasma glucose and insulin were measured during an oral glucose tolerance test (OGTT) in six endurance athletes. Glucose storage and lipid oxidation during this test were also determined using indirect calorimetry. These measurements were compared to those obtained in five non-trained subjects who were tested before and during the three days following a 90-min cycle ergometer exercise performed at 69% of their VO2max. As expected, preexercise values of non-trained subjects revealed a much higher insulin response to glucose, and a lower glucose storage and lipid oxidation compared to results obtained in endurance trained individuals. Glucose tolerance was comparable in both groups. The morning following the exercise test, i.e. about 16 h after exercise, glucose storage was significantly increased in non-trained subjects to a level similar to that found in trained subjects. Surprisingly, this was accompanied by higher values of glucose during the OGTT without significant changes in insulinaemia. This impairment in glucose homeostasis was transitory since glucose tolerance had returned to control level on day 2 after exercise. At that time, the increase in glucose storage was less pronounced than in day 1. On day 3 after exercise, glucose and insulin responses to glucose were similar to preexercise values. These results indicate that the increase in glucose storage by acute exercise is not systematically associated with an improved glucose homeostasis, suggesting that other adaptive mechanisms also contribute to the improvement of insulin sensitivity in endurance athletes.  相似文献   

13.
The prevalence and incidence of insulin resistance and type 2 diabetes mellitus (DM) are higher in people treated for human immunodeficiency virus-1 (HIV) infection than in the general population. Identifying safe and effective interventions is a high priority. We evaluated whether the peroxisome proliferator-activated receptor-γ agonist pioglitazone with exercise training improves central and peripheral insulin sensitivity more than pioglitazone alone in HIV-infected adults with insulin resistance and central adiposity. Forty-four HIV-infected adults with baseline insulin resistance and central adiposity were randomly assigned to 4 mo of pioglitazone (30 mg/day) with or without supervised, progressive aerobic, and resistance exercise training (1.5-2 h/day, 3 days/wk). The hyperinsulinemic euglycemic clamp was used to evaluate alterations in central and peripheral insulin sensitivity. Thirty-nine participants completed the study. Hepatic insulin sensitivity improved similarly in both groups. Exercise training augmented the beneficial effects of pioglitazone on peripheral insulin sensitivity. Greater improvements in peripheral insulin sensitivity were associated with reductions in total body and limb adipose content rather than increases in limb adiposity or pioglitazone-induced increases in adiponectin concentration. We conclude that supplementing pioglitazone with increased physical activity improved insulin sensitivity more effectively than pioglitazone alone in HIV-infected adults with insulin resistance and central adiposity. Pioglitazone alone did not significantly increase limb adipose content. Potential cardiovascular benefits of these interventions in HIV need investigation.  相似文献   

14.
Insulin resistance is a key feature of Type 2 diabetes and an important therapeutic target to address glycemic control to prevent diabetic complications. Lifestyle advice is the first step in the ADA/EASD consensus guidelines followed by metformin therapy. Aerobic exercise (AE) can increase insulin sensitivity by several molecular pathways including upregulation of insulin transporters in the cellular membrane of insulin-dependent cells. In addition, AE improves insulin sensitivity by amelioration of the pathophysiologic pathways involved in insulin resistance such as the reduction of adipokines, inflammatory and oxidative stress responses, and improvement of insulin signal transduction via different molecular pathways. This review details the molecular pathways by which AE induces beneficial effects on insulin resistance  相似文献   

15.
16.
The beneficial effects of physical exercise on the decreased insulin sensitivity caused by detrimental lifestyle were reviewed based on experimental evidences. In epidemiological studies, disease prevention has been considered at three levels: primary (avoiding the occurrence of disease), secondary (early detection and reversal), and tertiary (prevention or delay of complications). The major purpose of physical exercise for primary prevention and treatment of lifestyle-related diseases is to improve insulin sensitivity. It is known that, during physical exercise, glucose uptake by the working muscles rises 7 to 20 times over the basal level, depending on the intensity of the work performed. However, intense exercise provokes the release of insulin-counter regulatory hormones such as glucagons and catecholamines, which ultimately cause a reduction in the insulin action. Continued physical training improves the reduced peripheral tissue sensitivity to insulin in impaired glucose tolerance and Type II diabetes, along with regularization of abnormal lipid metabolism. Furthermore, combination of salt intake restriction and physical training ameliorates hypertension. In practical terms, before diabetic patients undertake any program of physical exercise, various medical examinations are needed to determine whether they have good glycemic control and are without progressive complications. Because the effect of exercise that is manifested in improved insulin sensitivity decreases within 3 days after exercise and is no longer apparent after 1 week, a continued program is needed. For a safety practice, moderate- or low-intensity exercise is preferable. In conclusion, we have found sufficient evidences that support the theory that, combined with other forms of therapy, mild exercise training increases insulin action despite no influence on body mass index or maximal oxygen uptake. Along with evident benefits in health promotion, moderate-intensity exercise might play an important role in facilitating treatment of various diseases.  相似文献   

17.
Ghrelin and adiponectin are recently discovered peptides that are both associated with energy homeostasis and insulin action. In addition, circulating levels of both peptides are altered in obese populations and are associated with poor health. Moreover, expression of ghrelin and adiponectin returns to normal levels following weight loss in obese patients. Because exercise training improves the health status of obese individuals and is associated with reduction of body weight, there is interest in the effects of exercise on adiponectin and ghrelin and whether these peptides may provide better understanding of how exercise improves health. Ghrelin levels do not increase in response to acute running and cycling in humans, and therefore ghrelin does not appear to regulate growth hormone (GH) release during exercise. There is some evidence that ghrelin levels are suppressed following resistance exercise of moderate intensity and are lower with higher GH concentrations during aerobic exercise. It has been suggested that negative feedback from elevated GH produces the reductions, but why these responses have not been consistently found in other studies and whether postexercise reduction in ghrelin affects appetite warrants further investigation. There are a few studies (but not all) that suggest long-term chronic exercise produces increases in ghrelin levels when weight loss is produced. Ghrelin levels are much higher in amenorrheic athletes than in ovulating exercisers or in female exercisers with a luteal phase defect, suggesting an association with reproductive function. Adiponectin concentrations do not change in response to moderate and strenuous running or low- and moderate- intensity cycling. Most studies have revealed that chronic exercise that improves fitness levels, increases insulin sensitivity, and reduces body weight, will increase resting adiponectin levels. However, it does not appear that changes in insulin sensitivity brought about by moderate exercise training are attributable to adiponectin.  相似文献   

18.
Park S  Hong SM  Lee JE  Sung SR 《Life sciences》2007,80(26):2428-2435
Investigated in this study are the effects and mechanisms of exercise and chlorpromazine (CPZ), a widely used conventional antipsychotic drug, on the hepatic insulin sensitivity of 90% pancreatectomized (Px) male Sprague–Dawley rats. The Px diabetic rats were provided with 0, 5, or 50 mg CPZ per kg of body weight (No-CPZ, LCPZ, or HCPZ) for 8 weeks, and half of each group had regular exercise. LCPZ did not exacerbate hepatic insulin sensitivity through insulin and leptin signaling in diabetic rats. However, HCPZ decreased whole-body glucose infusion rates in hyperinsulinemic clamped states, but not whole-body glucose uptake. This was due to the elevated hepatic glucose output in hyperinsulinemic states. The decreased hepatic insulin sensitivity was associated with insulin receptor substrate-2 (IRS2) protein levels in the liver. Decreased IRS2 levels attenuated hepatic insulin and leptin signaling pathways in hyperinsulinemic states, which elevated glucose production by inducing phosphoenolpyruvate carboxykinase expression. Long-term exercise recovered hepatic insulin sensitivity attenuated by HCPZ to reduce the hepatic glucose output in hyperinsulinemic clamped states. This recovery was related to enhanced insulin and leptin signaling via increased IRS2 gene and protein levels by activating the cAMP responding element-binding protein, but exercise improved only insulin signaling. In conclusion, HCPZ exacerbates hepatic insulin action by attenuating insulin and leptin signaling in type 2 diabetic rats, while regular exercise partially reverses the attenuation of hepatic insulin sensitivity by improving insulin signaling. Enhancement of insulin and leptin signaling through an induction of IRS2 may play an important role in improving hepatic glucose homeostasis.  相似文献   

19.
Effects of exercise on insulin binding and glucose metabolism in muscle   总被引:1,自引:0,他引:1  
To elucidate the mechanism of enhanced insulin sensitivity by muscle after exercise, we studied insulin binding, 2-deoxy-D-[1-14C]glucose (2-DOG) uptake and [5-3H]glucose utilization in glycolysis and glycogenesis in soleus and extensor digitorum longus (EDL) muscles of mice after 60 min of treadmill exercise. In the soleus, glycogenesis was increased after exercise (P less than 0.05) and remained sensitive to the action of insulin. Postexercise insulin-stimulated glycolysis was also increased in the soleus (P less than 0.05). In the EDL, glycogenesis was increased after exercise (P less than 0.05). However, this was already maximal in the absence of insulin and was not further stimulated by insulin (0.1-4 nM). The disposal of glucose occurred primarily via the glycolytic pathway (greater than 60%) in the soleus and EDL at rest and after exercise. The uptake of 2-DOG uptake was not altered in the soleus after exercise (4 h incubation at 18 degrees C). However, with 1-h incubations at 37 degrees C, a marked increase in 2-DOG uptake after exercise was observed in the soleus (P less than 0.05) in the absence (0 nM) and presence of insulin (0.2-4 nM) (P less than 0.05). A similar postexercise increase in 2-DOG uptake occurred in EDL. Despite the marked increase in glucose uptake and metabolism, no changes in insulin binding were apparent in either EDL or soleus at 37 degrees C or 18 degrees C. This study shows that the postexercise increase of glucose disposal does not appear to be directly attributable to increments in insulin binding to slow-twitch and fast-twitch muscles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Adiponectin is an adipocytokine that is hypothesized to be involved in the regulation of insulin action. The purpose of the present investigation was to determine whether plasma adiponectin is altered in conjunction with enhanced insulin action with exercise training. An insulin sensitivity index (S(I)) and fasting levels of glucose, insulin, and adiponectin were assessed before and after 6 mo of exercise training (4 days/wk for approximately 45 min at 65-80% peak O(2) consumption) with no loss of body mass (PRE, 91.9 +/- 3.8 kg vs. POST, 91.6 +/- 3.9 kg) or fat mass (PRE, 26.5 +/- 1.8 kg vs. POST, 26.7 +/- 2.2 kg). Insulin action significantly (P < 0.05) improved with exercise training (S(I) +98%); however, plasma adiponectin concentration did not change (PRE, 6.3 +/- 1.5 microg/ml vs. POST, 6.6 +/- 1.8 microg/ml). In contrast, in a separate group of subjects examined before and after weight loss, there was a substantial increase in adiponectin (+281%), which was accompanied by enhanced insulin action (S(I), +432%). These data suggest that adiponectin is not a contributory factor to the exercise-related improvements in insulin sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号