首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Homo- and heterodimerization of synapsins.   总被引:2,自引:0,他引:2  
In vertebrates, synapsins constitute a family of synaptic vesicle proteins encoded by three genes. Synapsins contain a central ATP-binding domain, the C-domain, that is highly homologous between synapsins and evolutionarily conserved in invertebrates. The crystal structure of the C-domain from synapsin I revealed that it constitutes a large (>300 amino acids), independently folded domain that forms a tight dimer with or without bound ATP. We now show that the C-domains of all synapsins form homodimers, and that in addition, C-domains from different synapsins associate into heterodimers. This conclusion is based on four findings: 1) in yeast two-hybrid screens with full-length synapsin IIa as a bait, the most frequently isolated prey cDNAs encoded the C-domain of synapsins; 2) quantitative yeast two-hybrid protein-protein binding assays demonstrated pairwise strong interactions between all synapsins; 3) immunoprecipitations from transfected COS cells confirmed that synapsin II heteromultimerizes with synapsins I and III in intact cells, and similar results were obtained with bacterial expression systems; and 4) quantification of the synapsin III level in synapsin I/II double knockout mice showed that the level of synapsin III is decreased by 50%, indicating that heteromultimerization of synapsin III with synapsins I or II occurs in vivo and is required for protein stabilization. These data suggest that synapsins coat the surface of synaptic vesicles as homo- and heterodimers in which the C-domains of the various subunits have distinct regulatory properties and are flanked by variable C-terminal sequences. The data also imply that synapsin III does not compensate for the loss of synapsins I and II in the double knockout mice.  相似文献   

2.
The initial contractile event in muscle is the binding of Ca2+ ions to troponin C of the troponin complex, leading to a series of conformational changes in the members of the thin and thick filaments. Knowledge of the crystal structure of turkey skeletal muscle troponin C has provided a structural basis for the modeling of the first stage of this process in atomic detail. This crystal structure probably represents the molecule in the relaxed state of muscle, with two of the maximum of 4 Ca2+ ions bound. The basis for the model presented here is that upon binding of the additional two Ca2+ ions, the regulatory domain of the molecule undergoes a conformational transition to become closely similar in structure to the domain which always binds Ca2+ or Mg2+ under physiological conditions. The root mean square discrepancy in atomic coordinates between the apo and the modeled Ca2+-bound states of the regulatory domain is 4.8 A, with some shifts as large as 10-15 A in the region near the linker between the two Ca2+ binding sites. It is demonstrated that this Ca2+-bound conformation of the regulatory domain conforms to accepted protein structure rules and that the change in conformation can be accomplished without encountering any barriers too high to be surmounted on the physiological time scale.  相似文献   

3.
Rabphilin-3A is a neuronal C2 domain tandem containing protein involved in vesicle trafficking. Both its C2 domains (C2A and C2B) are able to bind phosphatidylinositol 4,5-bisphosphate, a key player in the neurotransmitter release process. The rabphilin-3A C2A domain has previously been shown to bind inositol-1,4,5-trisphosphate (IP3; phosphatidylinositol 4,5-bisphosphate headgroup) in a Ca2+-dependent manner with a relatively high affinity (50 microm) in the presence of saturating concentrations of Ca2+. Moreover, IP3 and Ca2+ binding to the C2A domain mutually enhance each other. Here we present the Ca2+-bound solution structure of the C2A domain. Structural comparison with the previously published Ca2+-free crystal structure revealed that Ca2+ binding induces a conformational change of Ca2+ binding loop 3 (CBL3). Our IP3 binding studies as well as our IP3-C2A docking model show the active involvement of CBL3 in IP3 binding, suggesting that the conformational change on CBL3 upon Ca2+ binding enables the interaction with IP3 and vice versa, in line with a target-activated messenger affinity mechanism. Our data provide detailed structural insight into the functional properties of the rabphilin-3A C2A domain and reveal for the first time the structural determinants of a target-activated messenger affinity mechanism.  相似文献   

4.
The release of neurotransmitter glutamate from isolated nerve terminals (synaptosomes) was found to be tightly coupled to the entry of Ca2+ through voltage-dependent Ca2+ channels, but is relatively unresponsive to "bulk" increases in cytosolic Ca2+ concentrations ([Ca2+]c) effected by Ca2+ ionophore. Under the same conditions, this dependence on Ca2+ influx, specifically through Ca2+ channels, was also seen for the dephosphorylation of a 96-kDa protein, (P96), present in the nerve terminals, as well as the phosphorylation of proteins migrating at 75 kDa (P75), corresponding to the synapsins, a group of well characterized synaptic vesicle-associated proteins. P96 dephosphorylation, following Ca2+ influx, was persistent and insensitive to the phosphatase inhibitor okadaic acid, suggesting a phosphatase other than protein phosphatase 1 and 2A as being responsible. Perhaps through the same phosphatase activity the increase in P75 phosphorylation was rapidly reversed with a time course similar to P96 dephosphorylation. When release, P96 dephosphorylation, and P75 phosphorylation were considered as functions of the [Ca2+]c increases achieved by depolarization and Ca2+ ionophore, there was no correlation of any of these with the overall concentration of Ca2+ in the cytosol. Since the fura-2 method used to measure [Ca2+] gives an averaged [Ca2+]c, these results imply that the release and protein dephosphorylation events are functionally coupled to local [Ca2+]c, in the immediate vicinity of Ca2+ channels. The reported clustering of the latter at the active zone area of the synapse and the parallelism between synaptic vesicle exocytosis and the phosphorylation of synaptic vesicle-associated proteins (p75:synapsins Ia/Ib), suggests that P96 may be similarly localized at the active zone area and, therefore, may be of significance in a modulatory role in glutamate release.  相似文献   

5.
The X-ray structure of m-calpain shows that domain III of the large subunit is structurally related to C2 domains, Ca2+-regulated lipid binding modules in many enzymes. To address whether this structural similarity entails functional analogy, we have characterized recombinant domain III from rat micro- and m-calpain and Drosophila CALPB. In a Ca2+ overlay assay domain III displays a large capacity for Ca2+ binding, commensurable with that of domain IV, the principal Ca2+-binding domain of calpains. The amount of Ca2+ bound to domain III increases 2- to 10-fold upon the addition of liposomes containing 20-40% di- and triphosphoinositides. Conversely, phospholipid-binding in spin-column size-exclusion chromatography is significantly promoted by Ca2+, in a manner similar to known C2 domains. These results suggest that domain III might be the primary lipid binding site of calpain and may play a decisive role in orchestrating Ca2+- and lipid activation of the enzyme.  相似文献   

6.
Ca2+-dependent inactivation (CDI) and facilitation (CDF) of the Ca(v)1.2 Ca2+ channel require calmodulin binding to a putative IQ motif in the carboxy-terminal tail of the pore-forming subunit. We present the 1.45 A crystal structure of Ca2+-calmodulin bound to a 21 residue peptide corresponding to the IQ domain of Ca(v)1.2. This structure shows that parallel binding of calmodulin to the IQ domain is governed by hydrophobic interactions. Mutations of residues I1672 and Q1673 in the peptide to alanines, which abolish CDI but not CDF in the channel, do not greatly alter the structure. Both lobes of Ca2+-saturated CaM bind to the IQ peptide but isoleucine 1672, thought to form an intramolecular interaction that drives CDI, is buried. These findings suggest that this structure could represent the conformation that calmodulin assumes in CDF.  相似文献   

7.
Calmodulin (CaM) is a multifunctional Ca2+-binding protein that regulates the activity of many enzymes in response to changes in the intracellular Ca2+ concentration. There are two globular domains in CaM, each containing a pair of helix-loop-helix Ca2+-binding motifs called EF-hands. Ca2+-binding induces the opening of both domains thereby exposing hydrophobic pockets that provide binding sites for the target enzymes. Here, I present a 2.4 A resolution structure of a calmodulin mutant (CaM41/75) in which the N-terminal domain is locked in the closed conformation by a disulfide bond. CaM41/75 crystallized in a tetragonal lattice with the Ca2+ bound in all four EF-hands. In the closed N-terminal domain Ca ions are coordinated by the four protein ligands in positions 1, 3, 5 and 7 of the loop, and by two solvent ligands. The glutamate side-chain in the 12th position of the loop (Glu31 in site I and Glu67 in site II), which in the wild-type protein provides a bidentate Ca2+ ligand, remains in a distal position. Based on a comparison of CaM41/75 with other CaM and troponin C structures a detailed two-step mechanism of the Ca2+-binding process is proposed. Initially, the Ca2+ binds to the N-terminal part of the loop, thus generating a rigid link between the incoming helix (helix A, or helix C) and the central beta structure involving the residues in the sixth, seventh and eighth position of the loop. Then, the exiting helix (helix B or helix D) rotates causing the glutamate ligand in the 12th position to move into the vicinity of the immobilized Ca2+. An adjustment of the phi, psi backbone dihedral angles of the Ile residue in the eighth position is necessary and sufficient for the helix rotation and functions as a hinge. The model allows for a significant independence of the Ca2+-binding sites in a two-EF-hand domain.  相似文献   

8.
The genome of Bacillus subtilis encodes 16 penicillin-binding proteins (PBPs) involved in the synthesis and/or remodelling of the peptidoglycan during the complex life cycle of this sporulating Gram-positive rod-shaped bacterium. PBP4a (encoded by the dacC gene) is a low-molecular mass PBP clearly exhibiting in vitro DD-carboxypeptidase activity. We have solved the crystal structure of this protein alone and in complex with a peptide (D-alpha-aminopymelyl-epsilon-D-alanyl-D-alanine) that mimics the C-terminal end of the Bacillus peptidoglycan stem peptide. PBP4a is composed of three domains: the penicillin-binding domain with a fold similar to the class A beta-lactamase structure and two domains inserted between the conserved motifs 1 and 2 characteristic of the penicillin-recognizing enzymes. The soaking of PBP4a in a solution of D-alpha-aminopymelyl-epsilon-D-alanyl-D-alanine resulted in an adduct between PBP4a and a D-alpha-aminopimelyl-epsilon-D-alanine dipeptide and an unbound D-alanine, i.e. the products of acylation of PBP4a by D-alpha-aminopymelyl-epsilon-D-alanyl-D-alanine with the release of a D-alanine. The adduct also reveals a binding pocket specific to the diaminopimelic acid, the third residue of the peptidoglycan stem pentapeptide of B. subtilis. This pocket is specific for this class of PBPs.  相似文献   

9.
Small conductance Ca2+-activated K+ channels (SK channels) are composed of the pore-forming alpha subunit and calmodulin (CaM). CaM binds to a region of the alpha subunit called the CaM binding domain (CaMBD), located intracellular and immediately C-terminal to the inner helix gate, in either the presence or absence of Ca2+. SK gating occurs when Ca2+ binds the N lobe of CaM thereby transmitting the signal to the attached inner helix gate to open. Here we present crystal structures of apoCaM and apoCaM/SK2 CaMBD complex. Several apoCaM crystal forms with multiple (12) packing environments reveal the same EF hand domain-swapped dimer providing potentially new insight into CaM regulation. The apoCaM/SK2 CaMBD structure, combined with our Ca2+/CaM/CaMBD structure suggests that Ca2+ binding induces folding and dimerization of the CaMBD, which causes large CaMBD-CaM C lobe conformational changes, including a >90 degrees rotation of the region of the CaMBD directly connected to the gate.  相似文献   

10.
The crystal structure of an active site mutant of pro-Tk-subtilisin (pro-S324A) from the hyperthermophilic archaeon Thermococcus kodakaraensis was determined at 2.3 A resolution. The overall structure of this protein is similar to those of bacterial subtilisin-propeptide complexes, except that the peptide bond linking the propeptide and mature domain contacts with the active site, and the mature domain contains six Ca2+ binding sites. The Ca-1 site is conserved in bacterial subtilisins but is formed prior to autoprocessing, unlike the corresponding sites of bacterial subtilisins. All other Ca2+-binding sites are unique in the pro-S324A structure and are located at the surface loops. Four of them apparently contribute to the stability of the central alphabetaalpha substructure of the mature domain. The CD spectra, 1-anilino-8-naphthalenesulfonic acid fluorescence spectra, and sensitivities to chymotryptic digestion of this protein indicate that the conformation of pro-S324A is changed from an unstable molten globule-like structure to a stable native one upon Ca2+ binding. Another active site mutant, pro-S324C, was shown to be autoprocessed to form a propeptide-mature domain complex in the presence of Ca2+. The CD spectra of this protein indicate that the structure of pro-S324C is changed upon Ca2+ binding like pro-S324A but is not seriously changed upon subsequent autoprocessing. These results suggest that the maturation process of Tk-subtilisin is different from that of bacterial subtilisins in terms of the requirement of Ca2+ for folding of the mature domain and completion of the folding process prior to autoprocessing.  相似文献   

11.
Factor IX is an indispensable protein required in the blood coagulation cascade. It binds to the surface of phospholipid membrane by means of a gamma-carboxyglutamic acid (Gla) domain situated at the N terminus. Recently, we showed that physiological concentrations of Mg2+ ions affect the native conformation of the Gla domain and in doing so augment the biological activity of factor IXa and binding affinity with its binding protein even in the presence of Ca2+ ions. Here we report on the crystal structures of the Mg2+/Ca2+-bound and Ca2+-bound (Mg2+-free) factor IX Gla domain (IXGD1-46) in complex with its binding protein (IX-bp) at 1.55 and 1.80 A resolutions, respectively. Three Mg2+ and five Ca2+ ions were bound in the Mg2+/Ca2+-bound IXGD1-46, and the Mg2+ ions were replaced by Ca2+ ions in Mg2+-free IXGD1-46. Comparison of Mg2+/Ca2+-bound with Ca2+-bound structures of the complexes showed that Mg2+ ion, which formed a bridge between IXGD1-46 and IX-bp, forced IXGD1-46 to rotate 4 degrees relative to IX-bp and hence might be the cause of a more tight interaction between the molecules than in the case of the Mg2+-free structure. The results clearly suggest that Mg2+ ions are required to maintain native conformation and in vivo function of factor IX Gla domain during blood coagulation.  相似文献   

12.
The crystal structure of the core domain (N-terminal 30 kDa domain) of cytoskeletal protein 4.1R has been determined and shows a cloverleaf-like architecture. Each lobe of the cloverleaf contains a specific binding site for either band 3, glycophorin C/D or p55. At a central region of the molecule near where the three lobes are joined are two separate calmodulin (CaM) binding regions. One of these is composed primarily of an alpha-helix and is Ca 2+ insensitive; the other takes the form of an extended structure and its binding with CaM is dramatically enhanced by the presence of Ca 2+, resulting in the weakening of protein 4.1R binding to its target proteins. This novel architecture, in which the three lobes bind with three membrane associated proteins, and the location of calmodulin binding sites provide insight into how the protein 4.1R core domain interacts with membrane proteins and dynamically regulates cell shape in response to changes in intracellular Ca2+ levels.  相似文献   

13.
The active site residues in calpain are mis-aligned in the apo, Ca(2+)-free form. Alignment for catalysis requires binding of Ca2+ to two non-EF-hand sites, one in each of the core domains I and II. Using domain swap constructs between the protease cores of the mu and m isoforms (which have different Ca2+ requirements) and structural and biochemical characterization of site-directed mutants, we have deduced the order of Ca2+ binding and the basis of the cooperativity between the two sites. Ca2+ binds first to the partially preformed site in domain I. Knockout of this site through D106A substitution eliminates binding to this domain as shown by the crystal structure of D106A muI-II. However, at elevated Ca2+ concentrations this mutant still forms the double salt bridge that links the two Ca2+ sites and becomes nearly as active as muI-II. Elimination of the bridge in E333A muI-II has a more drastic effect on enzyme action, especially at low Ca2+ concentrations. Domain II Ca2+ binding appears essential, because Ca(2+)-coordinating side-chain mutants E302R and D333A have severely impaired muI-II activation and activity. The introduction of mutations into the whole heterodimeric enzyme that eliminate the salt bridge or Ca2+ binding to domain II produce similar phenotypes, suggesting that the protease core Ca2+ switch is crucial and cannot be overridden by Ca2+ binding to other domains.  相似文献   

14.
The structural features and evolutionary interrelationships of the intracellular Ca2+-dependent cysteine enzymes calpains, proteases of the family C2 (EC 3.4.22.17), are considered. A variety of identified sequences of calpains and calpain-like polypeptides found in organisms of different taxons, from the simplest to mammals, are described. Calpains of the major evolutionary groups, typical and atypical, are classified by the analysis of their phylogenetic tree and are differentiated due to the presence of the calmodulin-like Ca2+-binding domain. It is shown that, along with enzymes having "advanced" characteristics (heterodimeric structure, presence of tissue-specific isoforms and splice variants, regulation by the endogenous inhibitor calpastatin, and others), higher organisms contain homologues of calpains of lower eukaryotes. A high degree of homology of the catalytic domain of calpains and the variable structure of other functional domains indicate that calpains are implicated in various physiological processes with the retention of their regulatory role.  相似文献   

15.
The Na+/Ca2+ exchanger is a plasma membrane protein that regulates intracellular Ca2+ levels in cardiac myocytes. Transport activity is governed by Ca2+, and the primary Ca2+ sensor (CBD1) is located in a large cytoplasmic loop connecting two transmembrane helices. The binding of Ca2+ to the CBD1 sensory domain results in conformational changes that stimulate the exchanger to extrude Ca2+. Here, we present a crystal structure of CBD1 at 2.5A resolution, which reveals a novel Ca2+ binding site consisting of four Ca2+ ions arranged in a tight planar cluster. This intricate coordination pattern for a Ca2+ binding cluster is indicative of a highly sensitive Ca2+ sensor and may represent a general platform for Ca2+ sensing.  相似文献   

16.
Ca2+ channel beta subunits regulate trafficking and gating (opening and closing) of voltage-dependent Ca2+ channel alpha1 subunits. Based on primary sequence comparisons, they are thought to be modular structures composed of five domains (A-E) that are related to the large family of membrane associated guanylate-kinase (MAGUK) proteins. The crystal structures of the beta subunit core, B-D, domains have recently been reported; however, very little is known about the structures of the A and E domains. The N-terminal A domain is a hypervariable region that differs among the four subtypes of Ca2+ channel beta subunits (beta1-beta4). Furthermore, this domain undergoes alternative splicing to create multiple N-terminal structures within a given gene class that have distinct effects on gating. We have solved the solution structure of the A domain of the human beta4a subunit, a splice variant that we have shown previously to have alpha1 subunit subtype-specific effects on Ca2+ channel trafficking and gating.  相似文献   

17.
The calmodulin-binding domain of myristoylated alanine-rich C kinase substrate (MARCKS), which interacts with various targets including calmodulin, actin and membrane lipids, has been suggested to function as a crosstalk point among several signal transduction pathways. We present here the crystal structure at 2 A resolution of a peptide consisting of the MARCKS calmodulin (CaM)-binding domain in complex with Ca2+-CaM. The domain assumes a flexible conformation, and the hydrophobic pocket of the calmodulin N-lobe, which is a common CaM-binding site observed in previously resolved Ca2+-CaM-target peptide complexes, is not involved in the interaction. The present structure presents a novel target-recognition mode of calmodulin and provides insight into the structural basis of the flexible interaction module of MARCKS.  相似文献   

18.
The backbone resonance assignments have been completed for the apo (1H and 15N) and calcium-loaded (1H, 15N, and 13C) regulatory N-domain of chicken skeletal troponin-C (1-90), using multidimensional homonuclear and heteronuclear NMR spectroscopy. The chemical-shift information, along with detailed NOE analysis and 3JHNH alpha coupling constants, permitted the determination and quantification of the Ca(2+)-induced secondary structural change in the N-domain of TnC. For both structures, 5 helices and 2 short beta-strands were found, as was observed in the apo N-domain of the crystal structure of whole TnC (Herzberg O, James MNG, 1988, J Mol Biol 203:761-779). The NMR solution structure of the apo form is indistinguishable from the crystal structure, whereas some structural differences are evident when comparing the 2Ca2+ state solution structure with the apo one. The major conformational change observed is the straightening of helix-B upon Ca2+ binding. The possible importance and role of this conformational change is explored. Previous CD studies on the regulatory domain of TnC showed a significant Ca(2+)-induced increase in negative ellipticity, suggesting a significant increase in helical content upon Ca2+ binding. The present study shows that there is virtually no change in alpha-helical content associated with the transition from apo to the 2Ca2+ state of the N-domain of TnC. Therefore, the Ca(2+)-induced increase in ellipticity observed by CD does not relate to a change in helical content, but more likely to changes in spatial orientation of helices.  相似文献   

19.
The C2 domain of protein kinase Calpha (PKCalpha) corresponds to the regulatory sequence motif, found in a large variety of membrane trafficking and signal transduction proteins, that mediates the recruitment of proteins by phospholipid membranes. In the PKCalpha isoenzyme, the Ca2+-dependent binding to membranes is highly specific to 1,2-sn-phosphatidyl-l-serine. Intrinsic Ca2+ binding tends to be of low affinity and non-cooperative, while phospholipid membranes enhance the overall affinity of Ca2+ and convert it into cooperative binding. The crystal structure of a ternary complex of the PKCalpha-C2 domain showed the binding of two calcium ions and of one 1,2-dicaproyl-sn-phosphatidyl-l-serine (DCPS) molecule that was coordinated directly to one of the calcium ions. The structures of the C2 domain of PKCalpha crystallised in the presence of Ca2+ with either 1,2-diacetyl-sn-phosphatidyl-l-serine (DAPS) or 1,2-dicaproyl-sn-phosphatidic acid (DCPA) have now been determined and refined at 1.9 A and at 2.0 A, respectively. DAPS, a phospholipid with short hydrocarbon chains, was expected to facilitate the accommodation of the phospholipid ligand inside the Ca2+-binding pocket. DCPA, with a phosphatidic acid (PA) head group, was used to investigate the preference for phospholipids with phosphatidyl-l-serine (PS) head groups. The two structures determined show the presence of an additional binding site for anionic phospholipids in the vicinity of the conserved lysine-rich cluster. Site-directed mutagenesis, on the lysine residues from this cluster that interact directly with the phospholipid, revealed a substantial decrease in C2 domain binding to vesicles when concentrations of either PS or PA were increased in the absence of Ca2+. In the complex of the C2 domain with DAPS a third Ca2+, which binds an extra phosphate group, was identified in the calcium-binding regions (CBRs). The interplay between calcium ions and phosphate groups or phospholipid molecules in the C2 domain of PKCalpha is supported by the specificity and spatial organisation of the binding sites in the domain and by the variable occupancies of ligands found in the different crystal structures. Implications for PKCalpha activity of these structural results, in particular at the level of the binding affinity of the C2 domain to membranes, are discussed.  相似文献   

20.
Synapsins are multidomain proteins that are critical for regulating neurotransmitter release in vertebrates. In the present study, two crystal structures of the C domain of rat synapsin I (rSynI-C) in complex with Ca(2+) and ATP reveal that this protein can form a tetramer and that a flexible loop (the "multifunctional loop") contacts bound ATP. Further experiments were carried out on a protein comprising the A, B, and C domains of rat synapsin I (rSynI-ABC). An ATP-stabilized tetramer of rSynI-ABC is observed during velocity sedimentation and size-exclusion chromatographic experiments. These hydrodynamic results also indicate that the A and B domains exist in an extended conformation. Calorimetric measurements of ATP binding to wild-type and mutant rSynI-ABC demonstrate that the multifunctional loop and a cross-tetramer contact are important for ATP binding. The evidence supports a view of synapsin I as an ATP-utilizing, tetrameric protein made up of monomers that have a flexible, extended N terminus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号