首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Free radical production from the reaction of hydrazine and 1-acetyl-2-phenylhydrazine (AcPhHZ) with oxyhaemoglobin and with human red blood cells, has been observed by the electron spin resonance technique of spin trapping. Using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), the free radical intermediates detected depended on the hydrazine derivative, oxyhaemoglobin and the oxyhaem/hydrazine derivative concentration ratio.

The reaction of hydrazine with oxyhaemoglobin in the presence of DMPO gave a nitroxide which was identified as a reduced dimer of DMPO. Whereas hydrazine-treated red blood cells, in the presence of DMPO, gave a nitroxide spin adduct which was identified as the hydroxyl radical spin adduct of DMPO, 5,5-dimethyl-1-pyrrolidino-1-oxyl (DMPO-OH).

The reaction of AcPhHZ with oxyhaemoglobin, in the presence of DMPO, gave DMPO-OH, the phenyl radical spin adduct of DMPO, 5,5-dimethyl-2-phenylpyrrolidino-1-oxyl (DMPO-Ph) and an oxidised derivative of DMPO, 5,5-dimethyl-2-pyrrolidone-1-oxyl (DMPOX). The amounts of DMPO-Ph, DMPO-OH and DMPOX observed depended on the 1-acetyl-2-phenyl-hydrazine/oxyhaemoglobin concentration ratio; DMPOX replaced DMPO-OH as the concentration of AcPhHZ was decreased. DMPOX production has been previously associated with the production of highly oxidised haem iron-oxygen intermediates. AcPhHZ treated red blood cells gave DMPO-Ph and DMPO-OH spin adducts in the presence of DMPO.

DMPO had little to no effect on the rate of oxygen consumption by oxyhaemoglobin with hydrazine and AcPhHZ. Moreover, the rate of oxyhaemoglobin oxidation induced by hydrazine, was not decreased by DMPO whereas the rate of oxyhaemoglobin oxidation induced by AcPhHZ was decreased approx. 40% by DMPO. DMPO (10 mM) gave a small decrease in haemolysis and lipid peroxidation induced by 1 mM hydrazine and AcPhHZ in a 1% suspension of red blood cells.  相似文献   


2.
Photosensitizers newly developed for photodynamic therapy of cancer need to be assessed using accurate methods of measuring reactive oxygen species (ROS). Little is known about the characteristics of the reaction of singlet oxygen (1O2) with spin traps, although this knowledge is necessary in electron spin resonance (ESR)/spin trapping. In the present study, we examined the effect of various reductants usually present in biological samples on the reaction of 1O2 with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The ESR signal of the hydroxyl radical (•OH) adduct of DMPO (DMPO-OH) resulting from 1O2-dependent generation of •OH strengthened remarkably in the presence of reduced glutathione (GSH), 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox), ascorbic acid, NADPH, etc. A similar increase was observed in the photosensitization of uroporphyrin (UP), rose bengal (RB) or methylene blue (MB). Use of 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO) as a spin trap significantly lessened the production of its •OH adduct (DEPMPO-OH) in the presence of the reductants. The addition of DMPO to the DEPMPO-spin trapping system remarkably increased the signal intensity of DEPMPO-OH. DMPO-mediated generation of •OH was also confirmed utilizing the hydroxylation of salicylic acid (SA). These results suggest that biological reductants enhance the ESR signal of DMPO-OH produced by DMPO-mediated generation of •OH from 1O2, and that spin trap-mediated •OH generation hardly occurs with DEPMPO.  相似文献   

3.
Photosensitizers newly developed for photodynamic therapy of cancer need to be assessed using accurate methods of measuring reactive oxygen species (ROS). Little is known about the characteristics of the reaction of singlet oxygen (1O2) with spin traps, although this knowledge is necessary in electron spin resonance (ESR)/spin trapping. In the present study, we examined the effect of various reductants usually present in biological samples on the reaction of 1O2 with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The ESR signal of the hydroxyl radical (?OH) adduct of DMPO (DMPO-OH) resulting from 1O2-dependent generation of ?OH strengthened remarkably in the presence of reduced glutathione (GSH), 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox), ascorbic acid, NADPH, etc. A similar increase was observed in the photosensitization of uroporphyrin (UP), rose bengal (RB) or methylene blue (MB). Use of 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO) as a spin trap significantly lessened the production of its ?OH adduct (DEPMPO-OH) in the presence of the reductants. The addition of DMPO to the DEPMPO-spin trapping system remarkably increased the signal intensity of DEPMPO-OH. DMPO-mediated generation of ?OH was also confirmed utilizing the hydroxylation of salicylic acid (SA). These results suggest that biological reductants enhance the ESR signal of DMPO-OH produced by DMPO-mediated generation of ?OH from 1O2, and that spin trap-mediated ?OH generation hardly occurs with DEPMPO.  相似文献   

4.
When micromolar concentrations of benzoyl peroxide (BPO) are added to rat liver mitochondria, inhibition of mitochondrial NADH-oxidase and succinoxidase is observed. The addition of 2,4-dinitrophenol, an uncoupler of oxidative phosphorylation, results in only partial release of this inhibition, suggesting that BPO inhibits both electron and energy transfer in mitochondria. Release of inhibition is also observed when an electron donor, N,N,N',N'-tetramethyl-p-phenylenediamine, is added, suggesting that inhibition occurs on the substrate side of cytochrome c. When BPO is added to respiring submitochondrial particles, only reduced cytochrome b is observed to accumulate in the difference spectrum (reduced minus oxidized) in a manner analogous to that observed in the presence of antimycin A. These results indicate that BPO interacts at coupling site II between cytochromes b and c1. When respiring SMP are treated with BPO in the presence of the spin trap 5,5-dimethyl-1-pyrroline-N-oxide, electron spin resonance signals attributable to the hydroxyl and superoxide adducts are observed. Catalase and superoxide dismutase inhibit the formation of these adducts, suggesting the involvement of both hydrogen peroxide and superoxide radicals in this process. BPO also induces rapid, large-amplitude swelling of mitochondria; the swelling is dependent on the presence of monovalent cations but is independent of the presence of calcium, oxygen, and respiratory substrate. BPO-induced swelling appears to be disassociated from radical production and lipid peroxidation.  相似文献   

5.
Eleven peroxides have been tested to determine if there is a correlation between tumor-promoting activity and the ability to stimulate radical production in mitochondria. When non-respiring rat liver mitochondria are treated with these peroxidic compounds in the presence of DMPO, ESR signals are observed from the spin trapping of carbon- and oxygen-centered radicals in the case of 4 of the 7 peroxides that are known to be tumor promoters. Enhancement of carbon-centered radical production is observed in the presence of respiratory substrate. Thus there does not appear to be a correlation between tumor-promoting activity of peroxidic compounds and radical production in mitochondria. Oxidants can act as promoters either by 1- or 2-electron oxidation pathways; both types of mechanisms may be inhibited by antioxidants, which can scavenge either radicals or electrophiles.  相似文献   

6.
Acetonitrile extracts of cigarette tar inhibit state 3 and state 4 respiration of intact mitochondria. Exposure of respiring submitochondrial particles to acetonitrile extracts of cigarette tar results in a dose-dependent inhibition of oxygen consumption and reduced nicotinamide adenine dinucleotide (NADH) oxidation. This inhibition was not due to a solvent effect since acetonitrile alone did not alter oxygen consumption or NADH oxidation. Intact mitochondria are less sensitive to extracts of tar than submitochondrial particles. The NADH-ubiquinone (Q) reductase complex is more sensitive to inhibition by tar extract than the succinate-Q reductase and cytochrome complexes. Nicotine or catechol did not inhibit respiration of intact mitochondria. Treatment of submitochondrial particles with cigarette tar results in the formation of hydroxyl radicals, detected by electron spin resonance (ESR) spin trapping. The ESR signal attributable to the hydroxyl radical spin adduct requires the presence of NADH and is completely abolished by catalase and to a lesser extent superoxide dismutase (SOD). Catalase and SOD did not protect the mitochondrial respiratory chain from inhibition by tar extract, indicating that the radicals detected by ESR spin trapping are not responsible for the inhibition of the electron transport. We propose that tar causes at least two effects: (1) Tar components interact with the electron transport chain and inhibit electron flow, and (2) tar components interact with the electron transport chain, ultimately to form hydroxyl radicals.  相似文献   

7.
Cyanide (CN(-)) is a frequently used inhibitor of mitochondrial respiration due to its binding to the ferric heme a(3) of cytochrome c oxidase (CcO). As-isolated CcO oxidized cyanide to the cyanyl radical ((.)CN) that was detected, using the ESR spin-trapping technique, as the 5,5-dimethyl-1-pyrroline N-oxide (DMPO)/(.)CN radical adduct. The enzymatic conversion of cyanide to the cyanyl radical by CcO was time-dependent but not affected by azide (N(3)(-)). The small but variable amounts of compound P present in the as-isolated CcO accounted for this one-electron oxidation of cyanide to the cyanyl radical. In contrast, as-isolated CcO exhibited little ability to catalyze the oxidation of azide, presumably because of azide's lower affinity for the CcO. However, the DMPO/(.)N(3) radical adduct was readily detected when H(2)O(2) was included in the system. The results presented here indicate the need to re-evaluate oxidative stress in mitochondria "chemical hypoxia" induced by cyanide or azide to account for the presence of highly reactive free radicals.  相似文献   

8.
Aerobic incubations of the Tritrichomonas foetus hydrogenosomal fraction containing pyruvate, CoA, and the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) gave spectra of two radical adducts. One was a carbon-centered radical adduct of DMPO. This radical was centered at C-3 of pyruvate as determined in experiments using [13C]pyruvate. The other radical detected was identified as the CoA radical adduct of DMPO by comparison with an adduct obtained by incubating CoA with DMPO, H2O2 and horseradish peroxidase. Deletion of CoA led to an increased stability of the carbon-centered radical adduct of DMPO, disappearance of the thiyl radical adduct of DMPO, and appearance of a hydroxyl radical adduct of DMPO. Superoxide dismutase suppressed the appearance of the DMPO-hydroxyl radical adduct but did not have any inhibitory effect on the appearance of the other adducts. Catalase had no significant effect on any of the adducts. Addition of pyruvate to these hydrogenosomal preparations stimulated oxygen consumption. Addition of CoA led to a further increase in the rate of O2 uptake but had no effect in the absence of pyruvate. The formation of two substrate free radicals as intermediates in the generation of acetyl-CoA represents a novel mechanism for this enzymatic reaction and indicates that the pyruvate:ferredoxin oxidoreductase from T. foetus differs significantly from the pyridine nucleotide-dependent pyruvate dehydrogenase complex of other eukaryotic cells in its catalytic mechanism.  相似文献   

9.
Cytochrome c (cyt c)-derived protein radicals, radical adduct aggregates, and protein tyrosine nitration have been implicated in the pro-apoptotic event connecting inflammation to the development of diseases. During inflammation, one of the reactive oxygen species metabolized via neutrophil activation is hypochlorite (HOCl); destruction of the mitochondrial electron transport chain by hypochlorite is considered to be a damaging factor. Previous study has shown that HOCl induces the site-specific oxidation of cyt c at met-80. In this work, we have assessed the hypothesis that exposure of cyt c to physiologically relevant concentrations of HOCl leads to protein-derived radical and consequent protein aggregation, which subsequently affects cyt c's regulation of nitric oxide metabolism. Reaction intermediates, chemical pathways available for protein aggregation, and protein nitration were examined. A weak ESR signal for immobilized nitroxide derived from the protein was detected when a high concentration of cyt c was reacted with hypochlorite in the presence of the nitroso spin trap 2-methyl-2-nitrosopropane. When a low concentration of cyt c was exposed to the physiologically relevant levels of HOCl in the presence of 5,5-dimethyl-pyrroline N-oxide (DMPO), we detected DMPO nitrone adducts derived from both protein and protein aggregate radicals as assessed by Western blot using an antibody raised against the DMPO nitrone adduct. The cyt c-derived protein radicals formed by HOCl were located on lysine and tyrosine residues, with lysine predominating. Cyt c-derived protein aggregates induced by HOCl involved primarily lysine residues and hydrophobic interaction. In addition, HOCl-oxidized cyt c (HOCl-cyt c) exhibited a higher affinity for NO and enhancement of nonenzymatic NO synthesis from nitrite reduction. Furthermore, HOCl-mediated cyt c oxidation also resulted in a significant elevation of cyt c nitration derived from either NO trapping of the cyt c-derived tyrosyl radical or cyt c-catalyzed one-electron oxidation of nitrite.  相似文献   

10.
Metal-catalysed radical oxidation of diacyl-glycerophosphatidylcholines (GPC) with ω-6 acyl polyunsaturated fatty acids (PAPC, palmitoyl-arachidonoyl-glycerophosphatidylcholine and PLPC, palmitoyl-lineloyl-glycerophosphatidylcholine) was studied. Free radical oxidation products were trapped by spin trapping with 5,5-dimethyl-1-pyrrolidine-N-oxide (DMPO) and identified by electrospray mass spectrometry (ES-MS). The spin adducts of oxidised GPC containing one and two oxygen atoms and one and two DMPO molecules were observed as doubly charged ions. Structural characterisation by tandem mass spectrometry (MS/MS) of these ions revealed product ions corresponding to loss of the acyl chains (sn-1-palmitoyl and sn-2-oxidised spin adduct of lineloyl or arachidonoyl), loss of the spin trap (DMPO) and product ions attributed to oxidised sn-2 fatty acid spin adduct (lineloyl and arachidonoyl). Product ions formed by homolytic cleavages near the spin trap and also from 1,4 hydrogen elimination cleavages involving the hydroxy group in the sn-2 fatty acid spin adduct allowed to infer the nature of the radical. Altogether, the presence of GPC hydroxy-alkyl/DMPO and hydroxy-alkoxyl/DMPO spin adducts was proposed.  相似文献   

11.
Mitochondria-derived oxygen-free radical(s) are important mediators of oxidative cellular injury. It is widely hypothesized that excess NO enhances O(2)(?-) generated by mitochondria under certain pathological conditions. In the mitochondrial electron transport chain, succinate-cytochrome c reductase (SCR) catalyzes the electron transfer reaction from succinate to cytochrome c. To gain the insights into the molecular mechanism of how NO overproduction may mediate the oxygen-free radical generation by SCR, we employed isolated SCR, cardiac myoblast H9c2, and endothelial cells to study the interaction of NO with SCR in vitro and ex vivo. Under the conditions of enzyme turnover in the presence of NO donor (DEANO), SCR gained pro-oxidant function for generating hydroxyl radical as detected by EPR spin trapping using DEPMPO. The EPR signal associated with DEPMPO/(?)OH adduct was nearly completely abolished in the presence of catalase or an iron chelator and partially inhibited by SOD, suggesting the involvement of the iron-H(2)O(2)-dependent Fenton reaction or O(2)(?-)-dependent Haber-Weiss mechanism. Direct EPR measurement of SCR at 77K indicated the formation of a nonheme iron-NO complex, implying that electron leakage to molecular oxygen was enhanced at the FAD cofactor, and that excess NO predisposed SCR to produce (?)OH. In H9c2 cells, SCR-dependent oxygen-free radical generation was stimulated by NO released from DEANO or produced by the cells following exposure to hypoxia/reoxygenation. With shear exposure that led to overproduction of NO by the endothelium, SCR-mediated oxygen-free radical production was also detected in cultured vascular endothelial cells.  相似文献   

12.
The cysteine thiyl radical has been detected in a variety of biological systems by means of the ESR spectrum of the adduct between the radical and nitrone spin traps. 5,5-Dimethyl-1-pyroline N-oxide (DMPO) is the spin trap of choice in these studies for several reasons. However, we show here that the adduct between the cysteine thiyl radical and phenyl-N-t-butylnitrone (PBN) spin trap can be observed under certain oxidizing conditions where the adduct with DMPO is not detected. This suggests the use of PBN in searching for the thiyl radical under such conditions.  相似文献   

13.
Soybean lipoxygenase is shown to catalyze the breakdown of polyunsaturated fatty acid hydroperoxides to produce superoxide radical anion as detected by spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). In addition to the DMPO/superoxide radical adduct, the adducts of peroxyl, acyl, carbon-centered, and hydroxyl radicals were identified in incubations containing linoleic acid and lipoxygenase. These DMPO radical adducts were observed just prior to the system becoming anaerobic. Only a carbon-centered radical adduct was observed under anaerobic conditions. The superoxide radical production required the presence of fatty acid substrates, fatty acid hydroperoxides, active lipoxygenase, and molecular oxygen. Superoxide radical production was inhibited when nordihydroguaiaretic acid, butylated hydroxytoluene, or butylated hydroxyanisole was added to the incubation mixtures. We propose that polyunsaturated fatty acid hydroperoxides are reduced to form alkoxyl radicals and that after an intramolecular rearrangement, the resulting hydroxyalkyl radical reacts with oxygen, forming a peroxyl radical which subsequently eliminates superoxide radical anion.  相似文献   

14.
The aim of this work was to study the proliferation pathological perturbations of cultured chondrocytes in response to menadione, an oxygen free radicals producing drug. Rabbit articular chondrocytes in monolayer culture were treated with 10-5, 1.5.M-5 and 2.10-5M of menadione during three days. A dose dependent decrease of the proliferative capacity was observed. Flow cytometry analysis revealed a perturbation of the cell cycle progression consisting in an accumulation of cells in the S and G2 + M phases. This growth perturbation was due to oxygen radicals production since a treatment with catalase suppressed these toxic effects. Furthermore, to identify oxygen derived radicals in the cellular suspension of cultures treated with menadione, we used a technique of spin-trapping coupled with electron spin resonance (ESR). The ESR signal corresponding to the DMPO hydroxyl radical adduct (DMPO-OH) has been detected. The spectra observation indicated the actual production of hydroxyl radical. However, superoxide anions have not been identified; this fact can be explained by the low reactivity of these anions with DMPO and by the decomposition of signal DMPO-OOH to DMPO-OH.  相似文献   

15.
Evaluation of DEPMPO as a spin trapping agent in biological systems   总被引:5,自引:0,他引:5  
Cellular toxicity, pharmacokinetics, and the in vitro and in vivo stability of the SO3*- spin adduct of the spin trap, 5-diethoxyphosphoryl-5-methyl-1-pyrroline-n-oxide (DEPMPO), was investigated, and the results were compared with those of the widely used spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). Similar to DMPO, DEPMPO was quickly taken up (<15 min) after intraperitoneal injection, and distributed evenly in the liver, heart, and blood of the mice. In the presence of ascorbate the in vitro stability of the adduct DEPMPO/SO3*- was 7 times better than DMPO/SO3*-. Under in vivo conditions, the spin adduct DEPMPO/SO3*- was 2-4 times more stable than DMPO/ SO3*-, depending on the route of administration of the adducts. Using a low frequency EPR spectrometer, we were able to observe the spin trapped SO3*- radical both with DMPO and DEPMPO directly in the intact mouse. DEPMPO had a detectable spin adduct signal at a concentration as low as 1 mM, as compared to 5 mM for DMPO. We conclude that DEPMPO is potentially a good candidate for trapping radicals in functioning biological systems, and represents an improvement over the commonly used trap DMPO.  相似文献   

16.
In this study, radicals in pure cultures of Lactobacillus acidophilus NCFM and Listeria innocua were detected in a quantitative way by electron spin resonance spectroscopy using spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) or N-tert-butyl-α-phenylnitrone (PBN). No adverse effect of spin trap addition on viability was observed for any of the bacterial strains. L. acidophilus NCFM had a higher production of radicals than L. innocua when incubated in a growth medium. Furthermore, by using DMPO in a buffer system, the radicals produced by L. acidophilus NCFM could be identified as hydroxyl radicals. The presence of polyethylene glycol, impermeable for bacterial cells, decreased the signal intensity of the ESR spectrum of the DMPO–OH adduct in cultures of L. acidophilus NCFM and indicated quenching of hydroxyl radicals outside the bacteria. This suggests that radical production is an extracellular event for L. acidophilus NCFM.  相似文献   

17.
Near-UV irradiation caused the decomposition of hinokitiol in an aqueous solution. During the photochemical reaction, the distinct electron spin resonance signal characteristic of the adduct of 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) with the hydroxyl radical was accompanied by small signals corresponding to the adduct of DMPO with the superoxide anion radical. More than 95% of Escherichia coli cells were killed by the incubation with hinokitiol under near-UV irradiation by BLB fluorescent lamps. These results indicated the generation of reactive oxygen species during photochemical reaction of hinokitiol under near-UV irradiation.  相似文献   

18.
Antimycin-insensitive succinate-cytochrome c reductase activity has been detected in pure, reconstitutively active succinate dehydrogenase. The enzyme catalyzes electron transfer from succinate to cytochrome c at a rate of 0.7 mumole succinate oxidized per min per mg protein, in the presence of 100 microM cytochrome c. This activity, which is about 2% of that of reconstitutive (the ability of succinate dehydrogenase to reconstitute with coenzyme ubiquinone-binding proteins (QPs) to form succinate-ubiquinone reductase) or succinate-phenazine methosulfate activity in the preparation, differs from antimycin-insensitive succinate-cytochrome c reductase activity detected in submitochondrial particles or isolated succinate-cytochrome c reductase. The Km for cytochrome c for the former is too high to be measured. The Km for the latter is about 4.4 microM, similar to that of antimycin-sensitive succinate-cytochrome c activity in isolated succinate-cytochrome c reductase, suggesting that antimycin-insensitive succinate-cytochrome c activity of succinate-cytochrome c reductase probably results from incomplete inhibition by antimycin. Like reconstitutive activity of succinate dehydrogenase, the antimycin-insensitive succinate-cytochrome c activity of succinate dehydrogenase is sensitive to oxygen; the half-life is about 20 min at 0 degrees C at a protein concentration of 23 mg/ml. In the presence of QPs, the antimycin-insensitive succinate-cytochrome c activity of succinate dehydrogenase disappears and at the same time a thenoyltrifluoroacetone-sensitive succinate-ubiquinone reductase activity appears. This suggests that antimycin-insensitive succinate-cytochrome c reductase activity of succinate dehydrogenase appears when succinate dehydrogenase is detached from the membrane or from QPs. Reconstitutively active succinate dehydrogenase oxidizes succinate using succinylated cytochrome c as electron acceptor, suggesting that a low potential intermediate (radical) may be involved. This suggestion is confirmed by the detection of an unknown radical by spin trapping techniques. When a spin trap, alpha-phenyl-N-tert-butylnitrone (PBN), is added to a succinate oxidizing system containing reconstitutively active succinate dehydrogenase, a PBN spin adduct is generated. Although this PBN spin adduct is identical to that generated by xanthine oxidase, indicating that a perhydroxy radical might be involved, the insensitivity of this antimycin-insensitive succinate-cytochrome c reductase activity to superoxide dismutase and oxygen questions the nature of this observed radical.  相似文献   

19.
An electron paramagnetic resonance (EPR) signal characteristic of the 5,5'-dimethyl-1-pyrroline-N-oxide (DMPO)-OH spin adduct, which is formed from the reaction of DMPO with superoxide radicals generated by xanthine oxidase-mediated reaction, was significantly reduced by the cadaverine or Escherichia coli Mn-containing superoxide dismutase (MnSOD). Likewise, cytochrome c reduction by superoxide was inhibited by cadaverine, and the inhibition level increased in proportion to the level of cadaverine. The cadA mutant of Vibrio vulnificus, which does not produce cadaverine because of the lack of lysine decarboxylase, exhibits less tolerance to superoxide stress in comparison with wild type. The results indicate that cadaverine scavenges superoxide radicals, and protects cells from oxidative stress.  相似文献   

20.
Although it is assumed from in vitro experiments that the hydroxyl radical (*OH) may be responsible for chromium(VI) toxicity/carcinogenicity, no electron spin resonance (ESR) evidence for the generation of *OH in vivo has been reported. In this study, we have employed an ESR spin-trapping technique with 5,5-dimethylpyrroline-N-oxide (DMPO), a selective *OH trap, to detect *OH in blood. The ESR spectrum of spin adduct observed in the blood of mice given 4.8 mmol Cr(VI)/kg body weight exhibited the 1:2:2:1 intensity pattern of a quartet with a hyperfine coupling constant A(N) = A(H) = 14.81 G and g-value = 2.0067. The concentration of the spin adduct detected in the blood was 7.37 microM. The adduct production was inhibited by the addition of specific *OH scavengers such as sodium benzoate and methional to the blood. The results indicate that the spin adduct is nitroxide produced by the reaction of *OH with DMPO. This is the first report of ESR evidence for the in vivo generation of *OH in mammals by Cr(VI).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号