首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Seasonal changes in the contents of two photosynthates, namely, mannitol and laminaran, were investigated in Ecklonia cava Kjellman with reference to its maturation. The samples were collected from a depth of 8 m in Nishiki Bay, central Japan. The mannitol and laminaran contents in the bladelets were measured. We also determined the content of these photosynthates in the bladelets occupying different positions on the frond and in the sorus and non‐sorus portions of the bladelets. The maturation of sori initiated in July and peaked in October. The content of the two photosynthates in the bladelets was low in winter; this coincided with the active formation of new bladelets. Mannitol levels were high during the beginning of the maturation season in summer. Laminaran, in particular, was present in the bladelets only in summer. The laminaran content was higher in the sorus portions than in the non‐sorus ones; however, the mannitol content was almost equal in both portions. The laminaran content was high only in the bladelets just prior to maturation and in the mature bladelets at the beginning of the maturation season. These results suggested that mannitol and laminaran were important energy sources for the maturation of E. cava from summer to autumn, and laminaran in particular was closely associated with the maturation of reproductive structures.  相似文献   

2.
W. F. Ruetz 《Oecologia》1973,13(3):247-269
Summary Completely climatized cuvettes were used to follow the CO2 gas exchange of red fescue (Festuca rubra L.), growing on a fertilized and an unfertilized plot, during a growing season from May through October. Objective of the study was to determine the effect of environmental factors on the seasonal CO2 gas exchange.Gas exchange rates were calculated on the basis of leaf dry weight, surface area and chlorophyll content. Photosynthetic rates differed between the fertilized and unfertilized plants when based on leaf dry weight or leaf surface area but were similar when based on chlorophyll.Multiple regression analysis was used to related photosynthetic rates to radiation, temperature, water vapor concentration difference, chlorophyll content and time. A cubic regression equation based on daily radiation alone explained 85% of the variation for the fertilized plants and 87% of the variation for the unfertilized plants.During the growing season the unfertilized plants had a continual decline in their photosynthetic rates. The fertilized plants had high photosynthetic rates in the spring and in the fall.Light response curves indicated greater photosynthetic rates at light saturation as well as in the light limited portion of the light response curve for the fertilized plants. Photosynthetic rates of the fertilized plants were generally depressed during periods of warm temperature and high light intensity in June and July.Photosynthetic rates declined at temperatures above 24°C. The decline was greater for the more mesomorphic fertilized plants. A similar response was noted to increasing water vapor difference, although it was difficult to separate from the temperature effect. Maximum photosynthetic rates were found between 14°C and 22°C, although there was considerable variation in the maximum rates.The effects of cutting (mowing) on the gas exchange were difficult to determine due to the interaction of the environmental factors.Chlorophyll content showed significant correlation with photosynthetic rates.  相似文献   

3.
Summary Photosynthetic capacity at several levels of illuminance was investigated in cells of the successive developmental stages of the high temperature strain, Chlorella 7-11-05. The saturating light intensity, rates of photosynthesis at light saturation and at half-saturation, and the slope of the light dependent portion of the light intensity curves were proved to be bound with the developmental status of cells. The effect of the choosing of the basis for calculations of photosynthetic activity — whether packed cell volume, dry weight, nitrogen, or chlorophyll content—was discussed. The fact was stressed that with the available synchronization technique the observable amplitude of changes in metabolic activity in the course of cell development is a minimal one and the actual fluctuations in photosynthetic rates in non-synchronized suspensions in the course of the life cycle of the individual cells are expected to be higher than those recorded for synchronized populations.  相似文献   

4.
The fine structure and photosynthetic cost of structural leaf variegation   总被引:1,自引:0,他引:1  
The leaves of some plants display an optical patchiness on their upper side, displaying light- and dark-green areas with high and low reflectance, respectively. In this investigation, we studied the fine structure of the corresponding sectors and we asked whether the lost reflected light entails a photosynthetic cost to these leaves. Four species, i.e. Arum italicum, Ranunculus ficaria, Cyclamen hederifolium and Cyclamen persicum were investigated. Scanning electron microscope examination revealed that epidermal cells of light-green sectors of all species are more bulgy than corresponding cells of neighboring dark-green leaf sectors. The comparative anatomical study revealed that (i) epidermis thickness of the light-green areas and the number of mesophyll cell layers does not differ from those of the adjacent dark-green leaf sectors and (ii) palisade cells of light-green sectors are slightly larger and more loosely arranged, allowing a much higher percentage of intercellular air spaces. The latter histological feature seems to provide the structural basis for the different optical properties between the two leaf sectors. Contrary to expectations, net photosynthetic rates (expressed on a leaf area basis) were similar in the light-green and the dark-green areas of the two cyclamen species. Yet, in C. persicum net photosynthesis was higher in the light-green areas, if expressed on a dry mass basis. The small size of the light-green spots in the rest of the test plants precluded CO2 assimilation measurements, yet maximum linear photosynthetic electron transport rates displayed no differences between the two sectors in all plants. Thus, the assumption of a photosynthetic cost in the light-green areas was not confirmed. On the contrary, a higher construction cost was evident in the dark-green areas of three species, displaying a significantly higher specific leaf mass, without any photosynthetic benefit. The results on net photosynthesis were compatible with leaf optical properties and pigment levels. Thus, in spite of the considerably higher reflectance of the light-green areas and their lower (yet normal for a green leaf) chlorophyll levels, corresponding differences in absorptance were slight. In addition, dry mass-based pigment contents in dark-green areas were higher, while chlorophyll a/b (in two species) and carotenoid/chlorophyll ratios (in three species) were lower, pointing to a shade adaptation in these sectors. We conclude that in variegated leaves of this kind, dark-green areas are more costly to build and probably less photosynthetically active. We argue that the high pigment contents of dark-green areas establish steep light gradients in the corresponding mesophyll, rendering deeper chloroplast layers more shade adapted.  相似文献   

5.
Relationships between ash-free dry weight, viable chlorophyll a and pheopigments a were examined by linear regression analysis for non-gemmulating and gemmulated Spongilla lacustris and for an unidentified, non-gemmulating species. The primary productivity of S. lacustris was determined by both oxygen and 14C techniques and expressed on a biomass, chlorophyll a, and area basis, and the photosynthetic efficiency was calculated. The proportion of algal photosynthate excreted by the sponge was investigated, and the transfer of algal photosynthate to the sponge was examined by autoradiography.  相似文献   

6.
Photosynthetic rates, growth rates, cell carbon, cell protein, and chlorophyll a content of two diatom and two dinoflagellate species were measured. The microalgae were chosen to have one small and one large species from each phylogenetic group; the two size categories differed from each other by 1.5 orders of magnitude in terms of cell carbon or cell protein. The cultures for the experiments were grown under continuous light at an irradiance high enough for the light-saturation of growth for all four species. The four species were found to have similar maximum photosynthetic rates per unit chlorophyll a. The diatom species showed lower carbon/chlorophyll a ratios and higher photosynthetic rates per unit carbon than the dinoflagellates. The higher growth rates of the diatoms were shown to be related to their higher photosynthetic rates per unit carbon. The ecological significance of the physiological difference between these two groups of microalgae is discussed.  相似文献   

7.
Photosynthetic pigment composition was studied in batch cultures of Heterocapsa sp. and Olisthodiscus luteus growing exponentially in a 12:12 light:dark cycle. Both species divided in the dark. The synthesis of pigments was continuous for both species. However for chlorophyll c and peridinin, in Heterocapsa sp., and chlorophyll c and fucoxanthin, in O. luteus, (pigments belonging to light harvesting complexes) the synthesis was significantly higher during the light period. Concentrations per total cell volume (TCV) of chlorophyll a, chlorophyll c, peridinin and diadinoxanthin in Heterocapsa sp., and chlorophyll a, chlorophyll c, fucoxanthin and violaxanthin in O. luteus, showed a maximum at the onset of light and decreased during the light period. The values of the chlorophyll a:chlorophyll c, chlorophyll a:peridinin and chlorophyll a:fucoxanthin ratios are compared with data reported in the literature.  相似文献   

8.
Effects of grazing on the quantity and quality of freshwater Aufwuchs   总被引:6,自引:5,他引:1  
Qualitative and quantitative measures of the Aufwuchs (scum flora) on artificial substrates in situ were used to evaluate the effects of grazing by freshwater pulmonate snails in a shallow pond in southeastern Michigan. Grazer densities of 216 snails/m2 marked reduced standing crop so that after 45 days grazed substrata had 6.46 mg dry weight, 604 µg C and 4.18 µg chlorophyll a as compared to controls with 30.62 mg dry weight, 3699 µg C and 6.29 µg chlorophyll a, all on a per dm2 basis.Grazing did not change carbon per mg dry matter but caused significant increases in both µg chlorophyll a (control, 0.206; and grazed, 0.649 µg chlorophyll a/mg dry weight, P < 0.01) and nitrogen (control, 8.3; and grazed, 24.2 µg N/mg dry weight, P < 0.001) after 45 days. Both abundance and diversity of the attached community was reduced by grazing from 24 taxa and 80,889 individuals/cm2 on control to 8 taxa and 501 individuals/cm2 on grazed substrates. Mean productivity of the Aufwuchs was significantly (P < 0.001) reduced by grazing from 76.3 µg C/(dm2·day) on control to 17.7 µg C/(dm2·day) on grazed substrata.Snails were very efficient at clearing smooth surfaces of living cells, detritus, and particulate inorganic matter. There was little evidence of selectivity except for an apparent inability to remove some of the smallest cells (e.g. Cocconeis sp.) probably for mechanical reasons.  相似文献   

9.
Anatomical and physiological leaf characteristics and biomass production of Fatsia japonica plants were studied. Plants were grown in a growth chamber at 300 μmol m-2 s-1 (high light) and 50 μmol m-2 s-1 (low light) photosynthetic photon flux density. Plants grown under high light showed a net maximum photosynthetic rate 44% higher than plants grown under low light; the light compensation point and the light saturation point were also higher in high-light plants. Photosynthetic oxygen evolution in isolated chloroplasts was about 40% higher in high-light plants. However, chlorophyll content on a dry weight basis, on a leaf area basis, and per chloroplast was greater in plants grown under low light. Leaf thickness in high-light plants was 13% higher than in low-light plants. The number of chloroplasts was 30% higher in high-light leaves, while chloroplast size was only slightly higher. Chloroplast ultrastructure was also affected by light. Leaf dry weight, leaf area, and biomass production per plant were drastically reduced under low light. Thus, F. japonica is a plant that is able to acclimate to different photosynthetic photon flux density by altering its anatomical and physiological characteristics. However, low-light acclimation of this plant has a considerable limiting effect on biomass production.  相似文献   

10.
C. E. Cushing 《Hydrobiologia》1967,29(1-2):125-139
Summary An investigation of the periphyton of the Columbia River below the Hanford Atomic Works, Washington, was conducted to study the relationships between productivity, radionuclide uptake, and environmental influences.Best correlations between the four biomass measurements were between dry weight, ash weight, and chlorophyll a. Net Production Rate varied from 0.005 to 0.070 mg dry weight/cm2/day and was closely related to chlorophyll a and also to solar energy.The accumulation of 32P and 65Zn was highly related to dry and ash weight and chlorophyll a. Low correlations were found between radionuclide accumulation and the radioisotope burden of the river. The data suggest that adsorption was the dominant mode of uptake.This paper is based on work performed under United States Atomic Energy Commission Contract AT(45-1)-1830.  相似文献   

11.
The above ground dry matter yields of two wild diploid Triticumspecies averaged 76 per cent of that of two hexaploid breadwheat varieties in field trials carried out over five years.A cultivated diploid species, T. monococcum, gave similar drymatter yields to the bread wheat varieties but had a longergrowth cycle. The flag leaves of wild diploid species had higher rates ofphotosynthesis than those of the bread wheat varieties bothwhen expressed per unit area of leaf or per unit weight of chlorophyll.Photosynthetic rates of other organs, expressed per unit weightof chlorophyll were also greater for the wild diploids thanfor hexaploids. For snoots at the stage when their flag leaveswere fully expanded, the investment in photosynthetic machinery,as measured by chlorophyll concentration, was less in the twowild diploids than in the hexaploids. This compensated for thehigh photosynthetic rate of the former, such that the specificgrowth rates, assessed by carbon-14 fixation per unit shootdry matter, were similar. Triticum spp., wheat, dry matter yield, photosynthesis, carbon-14, ploidy  相似文献   

12.
The photosynthetic CO2-fixation rates, chlorophyll content, chloroplast ultrastructure and other leaf characteristics (e.g. variable fluorescence, stomata density, soluble carbohydrate content) were studied in a comparative way in sun and shade leaves of beech (Fagus sylvatica) and in high-light and low-light seedlings.
  1. Sun leaves of the beech possess a smaller leaf area, higher dry weight, lower water content, higher stomata density, higher chlorophyll a/b ratios and are thicker than the shade leaves. Sun leaves on the average contain more chlorophyll in a leaf area unit; the shade leaf exhibits more chlorophyll on a dry weight basis. Sun leaves show higher rates for dark respiration and a higher light saturation of photosynthetic CO2-fixation. Above 2000 lux they are more efficient in photosynthetic quantum conversion than the shade leaves.
  2. The development of HL-radish plants proceeds much faster than that of LL-plants. The cotyledons of HL-plants show a higher dry weight, lower water content, a higher ratio of chlorophyll a/b and a higher gross photosynthesis rate than the cotyledons of the LL-plants, which possess a higher chlorophyll content per dry weight basis. The large area of the HL-cotyledon on the one hand, as well as the higher stomata density and the higher respiration rate in the LL-cotyledon on the other hand, are not in agreement with the characteristics of sun and shade leaves respectively.
  3. The development, growth and wilting of wheat leaves and the appearance of the following leaves (leaf succession) is much faster at high quanta fluence rates than in weak light. The chlorophyll content is higher in the HL-leaf per unit leaf area and in the LL-leaf per g dry weight. There are no differences in the stomata density and leaf area between the HL- and LL-leaf. There are fewer differences between HL- and LL-leaves than in beech or radish leaves.
  4. The chloroplast ultrastructure of shade-type chloroplasts (shade leaves, LL-leaves) is not only characterized by a much higher number of thylakoids per granum and a higher stacking degree of thylakoids, but also by broader grana than in sun-type chloroplasts (sun leaves, HL-leaves). The chloroplasts of sun leaves and of HL-leaves exhibit large starch grains.
  5. Shade leaves and LL-leaves exhibit a higher maximum chlorophyll fluorescence and it takes more time for the fluorescence to decline to the steady state than in sun and HL-leaves. The variable fluorescence VF (ratio of fluorescence decrease to steady state fluorescence) is always higher in the sun and HL-leaf of the same physiological stage (maximum chlorophyll content of the leaf) than in the shade and LL-leaf. The fluorescence emission spectra of sun and HL-leaves show a higher proportion of chlorophyli fluorescence in the second emission maximum F2 than shade and LL-leaves.
  6. The level of soluble carbohydrates (reducing sugars) is significantly higher in sun and HL-leaves than in shade and LL-leaves and even reflects changes in the amounts of the daily incident light.
  7. Some but not all characteristics of mature sun and shade leaves are found in HL- and LL-leaves of seedlings. Leaf thickness, dry weight, chlorophyll content, soluble carbohydrate level, photosynthetic CO2-fixation, height and width of grana stacks and starch content, are good parameters to describe the differences between LL- and HL-leaves; with some reservations concerning age and physiological stage of leaf, a/b ratios, chlorophyll content per leaf area unit and the variable fluorescence are also suitable.
  相似文献   

13.
Cruz  J.L.  Mosquim  P.R.  Pelacani  C.R.  Araújo  W.L.  DaMatta  F.M. 《Plant and Soil》2003,257(2):417-423
Plants of cassava (Manihot esculenta Crantz cv. Cigana Preta) grown in a sand root medium were watered with nutrient solutions containing either 3 mM nitrate (low N) or 12 mM nitrate (high N). Chlorophyll concentration, chlorophyll a/b ratio, stomatal conductance, photorespiration rate and net carbon assimilation rate (on an area and a mass basis, but not on a chlorophyll basis) all decreased in low-N plants as compared with high-N ones. By contrast, photosynthetic nitrogen-use efficiency increased in low-N plants. As indicated by chlorophyll a fluorescence data, these plants exhibited increases in both excitation pressure on Photosystem II and thermal energy dissipation, with a corresponding decrease in quantum yield of electron transport, when contrasted with high-N plants. This decrease paralleled an unchanged maximal Photosystem II photochemical efficiency, suggesting a down-regulation of the Photosystem II photochemistry. It is proposed that decline in biochemical capacity for carboxylation, rather than stomatal limitation or electron transport, were the major constraints associated to the reduced photosynthetic rates induced by nitrogen deficiency in cassava plants.  相似文献   

14.
Photosynthetic characteristics of Dunaliella salina with high (red form) and low β-carotene (green form) concentrations were studied. D. salina growing in brine saltworks exhibited a high level of β-carotene (15 pg cell−1). The rate of oxygen evolution as a function of irradiance was higher in the red than in the green form (on chlorophyll basis). Photosynthetic inhibition of the green form was observed above 500 μmol m−2 s−1. The red form appeared more resistant to high irradiance and no inhibition in O2 evolution was observed up 2000 μmol m−2 s−1. However, when these results are expressed on a cell number basis the rate of oxygen evolution was significantly higher in the green form. Carbonic anhydrase (CA) activity (total, soluble, membrane bound) was found in red and green forms. CA was higher in the red form on a chlorophyll basis, but lower if expressed on a protein basis. The light dependent rate of oxygen evolution and photoinhibition depends on the concentration of β-carotene in D. salina cells.  相似文献   

15.
The differences in pigment levels, photosynthetic activity and the chlorophyll fluorescence decrease ratio R Fd (as indicator of photosynthetic rates) of green sun and shade leaves of three broadleaf trees (Platanus acerifolia Willd., Populus alba L., Tilia cordata Mill.) were compared. Sun leaves were characterized by higher levels of total chlorophylls a + b and total carotenoids x + c as well as higher values for the weight ratio chlorophyll (Chl) a/b (sun leaves 3.23–3.45; shade leaves: 2.74–2.81), and lower values for the ratio chlorophylls to carotenoids (a + b)/(x + c) (with 4.44–4.70 in sun leaves and 5.04–5.72 in shade leaves). Sun leaves exhibited higher photosynthetic rates P N on a leaf area basis (mean of 9.1–10.1 μmol CO2 m−2 s−1) and Chl basis, which correlated well with the higher values of stomatal conductance G s (range 105–180 mmol m−2 s−1), as compared to shade leaves (G s range 25–77 mmol m−2 s−1; P N: 3.2–3.7 μmol CO2 m−2 s−1). The higher photosynthetic rates could also be detected via imaging the Chl fluorescence decrease ratio R Fd, which possessed higher values in sun leaves (2.8–3.0) as compared to shade leaves (1.4–1.8). In addition, via R Fd images it was shown that the photosynthetic activity of the leaves of all trees exhibits a large heterogeneity across the leaf area, and in general to a higher extent in sun leaves than in shade leaves.  相似文献   

16.
多穗柯是一种珍贵天然野生药用植物,可以开发出保健食品色素和天然医用药品,广西的资源较丰富,该研究采集巴马、那坡、德保及田林等4个产地的多穗柯种子进行播种育苗,并跟踪调查测定一年生幼苗的叶片性状及幼苗生长量,并进行相关性分析。结果表明:(1)不同产地间叶片性状及幼苗生长指标均存在不同程度的差异,其中巴马与那坡、德保、田林在叶长、叶宽、叶面积、叶脉间距、叶鲜重、叶片干物质含量、叶片组织密度等叶片性状上的差异均达到显著水平,在株高、地径、单株干重、主根长、单株根干重及单株叶干重等生长指标上亦存在显著差异,且生长量是后3个产地的1~2倍;通过比较各产地的叶片保水力及植株净生长量,巴马的多穗柯植株耐旱性及生长速度优于其他三地。综合各性状表现,认为巴马的多穗柯苗期表现比较好,生长速度快,长势好,抗旱性较强,可作为多穗柯优良种源的初步选择。(2)8月份是多穗柯株高、地径的生长高峰期,建议此时应加强肥水管理,调节适宜的水肥光热条件,尽量延长幼苗的快速生长时间,以获得苗木的最大累积生长量。(3)叶片性状与幼苗生长量的相关性分析结果显示,叶面积与株高、地径、单株干重、单株根干重以及单株叶干重等呈极显著正相关,叶脉间距、叶绿素相对含量(SPAD)与株高、单株干重呈显著或极显著正相关,比叶面积与株高、地径呈显著负相关。因此,在以后的优株表型选择中,要优先考虑叶子大、叶脉间距宽、中老熟叶片叶色浓绿的植株。该研究结果为多穗柯优良种质资源的早期筛选提供了一定的依据。  相似文献   

17.
Anatomical and physiological characteristics of leaves of triazinesusceptible and -resistant biotypes of common groundsel (Senecio vulgaris L.) were studied in order to explain the differences in light-saturated photosynthetic rates previously reported. Leaves were of uniform leaf plastochron index from greenhouse-grown plants. Susceptible plants had greater leaf fresh and dry weights and leaf areas, while resistant plants had greater specific leaf mass (mg fresh weight/cm2). Susceptible plants had greater amounts of total chlorophyll per unit leaf weight and a higher chlorophyll a/b ratio. Soluble protein in leaves was higher in susceptible chloroplasts on a weight and area basis, but similar to resistant chloroplasts on a unit chlorophyll basis. Activity of ribulose 1,5-bisphosphate carboxylase was higher in resistant plants on a fresh weight, leaf area, and milligram chlorophyll basis. Stomatal frequency, length, and arrangement were similar between biotypes, as were transpiration and conductance. Resistant leaves had less air space (v/v), more cells in palisade and spongy mesophyll, and a greater volume of palisade tissue than spongy, when compared to susceptible leaves. Differences in leaf structure and function between biotypes are probably due to a complex of developmental adaptations which may be only indirectly related to modified photosystem II in resistant plants. These results indicate that the consistently lower rates of net photosynthesis and yield in resistant plants cannot be explained solely on the basis of these leaf characteristics. Several possible mechanisms to account for reduced productivity are suggested.  相似文献   

18.
Photosynthetic acclimation of two co-occurring deciduous oaks (Quercus petraea and Quercus pyrenaica) to a natural light gradient was studied during one growing season. In the spring of 2003, 90 seedlings per species were planted along a transect resulting from a dense Pinus sylvestris stand, an adjacent thinned area and a 10-m-wide firebreak (16.5–60.9% Global Site Factor (GSF)). In two dates of the following summer, we measured leaf gas exchange, carboxylation efficiency (CE), chlorophyll and nitrogen content, light–response curves of chlorophyll a fluorescence parameters, and leaf mass per area (LMA). Summer was mild, as evidenced by leaf predawn water potential (Ψpd), which reduced the interactive effect of water stress on the response of seedlings to light. Q. pyrenaica had higher LMA, CE, stomatal conductance (g s max) and photosynthesis per unit area than Q. petraea at all growth irradiances. , LMA, g s max and electron transport rate (ETR) all increased with light availability (GSF) in a similar fashion in both species. Light had also a clear effect on the organization of Photosystem II (PS II), as deduced by chlorophyll a fluorescence curves. Chlorophyll concentration (Chlm) decreased with increasing light availability in Q. pyrenaica but it did not in Q. petraea. Seedlings of Q. petraea acclimated to higher irradiances showed a greater non-photochemical quenching (NPQ) than those of Q. pyrenaica. This suggests a higher susceptibility to high light in Q. petraea, which would be consistent with a better adaptation to shade, inferred from the lower LMA or the lower rate of photosynthesis.  相似文献   

19.
为探究印度梨形孢(Piriformospora indica)对铁皮石斛(Dendrobium officinale)种子萌发和原球茎生长的影响,在铁皮石斛种子离体培养和原球茎生长阶段分别接种印度梨形孢,对其形态发育特征和生理特性进行研究.结果表明,接种印度梨形孢的铁皮石斛种子的起始萌发时间提前,接种印度梨形孢的铁皮石...  相似文献   

20.
Contact between endosperm and cotyledons of germinating Fraxinuspennsylvanica Marsh. seedlings was not essential for continuationof seedling growth or adaptation of cotyledons for photosynthesis.However, when cotyledons were in contact with endosperm, thecotyledons had faster rates of elongation and dry weight increase,slower depletion of reserves, and higher chlorophyll contents.Photosynthetic contributions by cotyledons may be enhanced ifenviron mental conditions support rapid emergence of cotyledonsfrom surrounding seed structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号