首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Total cellular polyadenylated RNA [poly(A)+ RNA] was prepared after guanidinium thiocyanate extraction of frozen brain tissue from age-matched normal and Down's-syndrome (trisomy 21) human foetuses. Poly(A)+ RNA populations were analysed by translation in vitro, followed by two-dimensional gel analysis by using both isoelectric focusing (ISODALT system) and non-equilibrium pH-gradient electrophoresis (BASODALT system) as the first-dimension separation. The relative concentrations of poly(A)+ RNA species coding for seven translation products were significantly altered in Down's syndrome, as determined by both visual comparisons of translation-product fluorograms from normal and Down's-syndrome samples and by quantitative radioactivity determination of individual translation products. The relative concentrations of mRNA species coding for two proteins (68 kDa and 49 kDa) were increased in Down's syndrome and may represent genes located on chromosome 21. The relative concentrations of mRNA species coding for five proteins (37 kDa, 35 kDa, 25.5 kDa, 24.5 kDa, 23 kDa) were decreased in Down's syndrome, these probably representing secondary effects of the trisomy. Six Down's-syndrome-linked translation products (49 kDa, 37 kDa, 33 kDa, 25.5 kDa, 24.5 kDa, 23 kDa) did not migrate with appreciable amounts of cellular proteins on two-dimensional gels and hence may represent either proteins of high turnover rates or those that are post-translationally modified in vivo. One translation product (68 kDa) comigrated with a major cellular protein species, which was identified as a 68 kDa microtubule-associated protein by limited peptide mapping. The significance of these changes is discussed in relation to the mechanisms whereby the Down's-syndrome phenotype is expressed in the human brain.  相似文献   

3.
The yolk sac carcinoma cell line L2 secretes a chondroitin/dermatan sulfate proteoglycan that has an Mr 10,000 core protein and carries an average of 14 glycosaminoglycan chains. The amino acid sequence of the mature core protein has been determined from cloned cDNA (Bourdon, M. A., Oldberg, A., Pierschbacher, M., and Ruoslahti, E. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 1321-1325). From additional cDNA sequences described in this report we have identified the prepro core protein precursor of the yolk sac carcinoma chondroitin/dermatan sulfate proteoglycan. From the amino acid sequence of the core protein precursor can be deduced the protein processing events in the biosynthesis of the proteoglycan. The amino acid sequence shows that the 104-amino acid mature core protein is processed from a 179-amino acid prepro core protein precursor which, in addition to the mature core protein, contains a 26-amino acid signal peptide as well as a 49-amino acid propeptide. The molecular weight of the prepro core protein predicted from the cDNA sequence (Mr = 18,600) was in good agreement with the molecular weight of the in vitro translation product (Mr = 19,000) of hybrid-selected mRNA. Accordingly, we have designated the proteoglycan core protein PG19. Further analysis of the PG19 mRNA by RNA sequencing confirmed the identification of the core protein translation initiation codon by revealing stop codons in all three reading frames of the upstream mRNA sequence. Primer extension analyses demonstrated that the 5' untranslated sequence of the proteoglycan mRNA is approximately 220 nucleotides in length, which, combined with the length of cDNA clones, accounts for the entire length of the coding sequence of PG19 mRNA from L2 cells. The cDNA sequences presented here establish the complete protein sequence of PG19 and provide evidence of polypeptide processing during the biosynthesis of the proteoglycan core protein.  相似文献   

4.
Cytokeratins are a family of polypeptides that form the intermediate-sized filament characteristic of epithelial cells. The cytoskeletons of different types of epithelial cells have been reported to possess specific combinations of the members of this protein family. Therefore, we have sought to examine the correspondence between such differential protein expression and the expression of cytokeratin genes at the nucleic acid level. A library of recombinant plasmids carrying cDNA sequences synthesized from bovine epidermal mRNAs was constructed. Clones of about 10(3) base-pairs coding for all the major epidermal keratins of molecular weights of 50,000, 54,000, 59,000, 60,000 and 68,000 were identified by means of hybridization-selection, followed by one and two-dimensional gel electrophoresis of products of translation in vitro. Under stringent conditions, each of these clones hybridizes specifically with its corresponding mRNA and does not show significant cross-hybridization with mRNAs coding for the other keratins, including those belonging to the same subfamily. Using these clones in RNA blot hybridization analysis, we have studied the expression of keratin genes in diverse bovine epithelial tissues (muzzle epidermis, cornea, esophagus, bladder urothelium, liver) and cultured cell lines from kidney (MDBK) and mammary gland (BMGE + H, BMGE -H). In each case we have found a correlation between the respective keratin polypeptides and the corresponding mRNAs. Whereas mRNA coding for keratins Ia and VIb have been found only in epidermis, genes coding for other epidermal keratins are expressed also in certain non-epidermal epithelia and in cells of the BMGE + H line. In contrast, epidermal keratin mRNA sequences have not been detected in liver or bladder tissue, nor in cultured kidney cells (MDBK) or mammary gland cells of the BMGE - H line, which all express a set of cytokeratin polypeptides entirely different from those of epidermis. In all cases, only one mRNA size species has been found, suggesting that in different cell types the same mRNA species is synthesized from the same keratin gene. We conclude that the mechanisms controlling the cell type-specific synthesis of the diverse keratin genes act at a pre-translational level.  相似文献   

5.
6.
The in vitro translation products of mRNA pretreated with methylmercuric hydroxide were examined by giant two-dimensional gel electrophoresis. In addition to increasing overall translational efficiency approximately 2.5-fold, methylmercuric hydroxide selectively increases the translation of mRNAs coding for higher molecular mass (greater than 45 kDa) proteins, allowing the routine resolution of 1500 [35S]methionine-labeled proteins. This yields 3 to 4-fold the number of translation products seen with smaller size two-dimensional gels. With this method we compare thymus cell proteins synthesized in vivo with the products of in vitro translation of mRNA recovered from thymus cells. Fifty-eight percent of the translation products are qualitatively the same as proteins synthesized in vivo (similar Mr, pI, and neighboring proteins), with 64% of these also being quantitatively similar (less than 5-fold difference). A comparison of thymus mRNA in vitro translation products with those coded for by mRNA from liver reveals only 32% qualitative similarity, with 63% of these also being quantitatively similar. These results are discussed in relation to predictions of mRNA abundance and complexity based on DNA:RNA hybridization data. Giant two-dimensional gel separations of in vitro translation products appear to be useful for detecting less abundant cellular mRNAs, including those that may be regulated by hormones or other physiological mediators.  相似文献   

7.
The genetic code is degenerate; thus, protein evolution does not uniquely determine the coding sequence. One of the puzzles in evolutionary genetics is therefore to uncover evolutionary driving forces that result in specific codon choice. In many bacteria, the first 5–10 codons of protein‐coding genes are often codons that are less frequently used in the rest of the genome, an effect that has been argued to arise from selection for slowed early elongation to reduce ribosome traffic jams. However, genome analysis across many species has demonstrated that the region shows reduced mRNA folding consistent with pressure for efficient translation initiation. This raises the possibility that unusual codon usage is a side effect of selection for reduced mRNA structure. Here we discriminate between these two competing hypotheses, and show that in bacteria selection favours codons that reduce mRNA folding around the translation start, regardless of whether these codons are frequent or rare. Experiments confirm that primarily mRNA structure, and not codon usage, at the beginning of genes determines the translation rate.  相似文献   

8.
I Edery  K A Lee  N Sonenberg 《Biochemistry》1984,23(11):2456-2462
We examined the effects of a eukaryotic mRNA cap binding protein (CBP) complex purified by cap analogue affinity chromatography [Edery, I., Humebelin, M., Darveau, A., Lee, K.A. W., Milburn, S., Hershey, J.W.B., Trachsel, H., & Sonenberg, N. (1983) J. Biol. Chem. 258, 11398 11403], on translation of several capped and naturally uncapped mRNAs in extracts prepared from poliovirus-infected or mock-infected HeLa cells. The CBP complex has activity that restores capped mRNA (globin, tobacco mosaic virus, and others) function in extracts from poliovirus-infected HeLa cells. Translation of two naturally uncapped RNAs (poliovirus and mengovirus RNAs), the translation of which is not restricted in extracts from poliovirus-infected cells, is also not stimulated by the CBP complex. Translation of several capped eukaryotic mRNAs (vesicular stomatitis virus, reovirus, and tobacco mosaic virus) in extracts from mock-infected cells is inhibited when the potassium ion concentration is increased. However, translation of capped AMV-4 RNA, which has negligible secondary structure at its 5' end, is resistant to this inhibition. Furthermore, the CBP complex reverses the high salt induced inhibition of translation of the former mRNAs. Since mRNA secondary structure is more stable at elevated salt concentrations, these data are consistent with a model in which the CBP complex has a role in melting mRNA secondary structure involving 5'-proximal sequences, to facilitate ribosome binding.  相似文献   

9.
The role of mRNA localization is presumably to effect cell asymmetry by synthesizing proteins in specific cellular compartments. However, protein synthesis has never been directly demonstrated at the sites of mRNA localization. To address this, we developed a live cell method for imaging translation of beta-actin mRNA. Constructs coding for beta-actin, containing tetracysteine motifs, were transfected into C2C12 cells, and sites of nascent polypeptide chains were detected using the biarsenial dyes FlAsH and ReAsH, a technique we call translation site imaging. These sites colocalized with beta-actin mRNA at the leading edge of motile myoblasts, confirming that they were translating. beta-Actin mRNA lacking the sequence (zipcode) that localizes the mRNA to the cell periphery, eliminated the translation there. A pulse-chase experiment on living cells showed that the recently synthesized protein correlated spatially with the sites of its translation. Additionally, localization of beta-actin mRNA and translation activity was enhanced at cell contacts and facilitated the formation of intercellular junctions.  相似文献   

10.
Poly(A)-containing RNA from frozen adult rat brain were fractionated by centrifugation in a formamide/sucrose gradient. Individual fractions were used to program protein synthesis in vitro in a reticulocyte lysate. The cell-free translation products were analyzed by two-dimensional electrophoresis in polyacrylamide slab gels. We observed a heterodispersion of the mRNA translation activity coding for the beta-tubulin subunit which contrasts with a relatively homogeneous distribution of the alpha-tubulin subunit mRNA. These last mRNA species are present in a peak which sediments near the 18-S region of the gradient whereas the beta-tubulin mRNA activity is predominant in the fractions corresponding to the heaviest mRNA species. When these heaviest RNAs were separated again by centrifugation in a second formamide/sucrose gradient, a poly(A)-rich RNA population was obtained that was enriched in RNA for programming the beta-tubulin subunit. Analysis of the products whose synthesis in vitro was directed by this mRNA population revealed that beta tubulin was the main protein formed, the ratio beta/alpha being more than tenfold greater than in the products translated in vitro using total poly(A)-rich RNA.  相似文献   

11.
12.
13.
14.
Two distinct types of cDNA clones encoding for the pyruvate dehydrogenase (PDH) E1 beta subunit were isolated from a human liver lambda gt11 cDNA library and characterized. These cDNA clones have identical nucleotide sequences for PDH E1 beta protein coding region but differ in their lengths and in the sequences of their 3'-untranslated regions. The smaller cDNA had an unusual polyadenylation signal within its protein coding region. The cDNA-deduced protein of PDH E1 beta subunit revealed a precursor protein of 359 amino acid residues (Mr 39,223) and a mature protein of 329 residues (Mr 35,894), respectively. Both cDNAs shared high amino acid sequence similarity with that isolated from human foreskin (Koike, K.K., Ohta, S., Urata, Y., Kagawa, Y., and Koike, M. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 41-45) except for three regions of frameshift mutation. These changes led to dramatic alterations in the local net charges and predicted protein conformation. One of the different sequences in the protein coding region of liver cDNA (nucleotide position 452-752) reported here was confirmed by sequencing the region after amplification of cDNA prepared from human skin fibroblasts by the polymerase chain reaction. Southern blot analysis verified simple patterns of hybridization with E1 beta cDNA, indicating that the PDH E1 beta subunit gene is not a member of a multigene family. The mechanisms of differential expression of the PDH E1 alpha and E1 beta subunits were also studied in established fibroblast cell lines obtained from patients with Leigh's syndrome and other forms of congenital lactic acidosis. In Northern blot analyses for PDH E1 alpha and E1 beta subunits, no apparent differences were observed between two Leigh's syndrome and the control fibroblasts studied: one species of PDH E1 alpha mRNA and three species of E1 beta mRNA were observed in all the cell lines examined. However, in one tricarboxylic acid cycle deficient fibroblast cell line, which has one-tenth of the normal enzyme activity, the levels of immunoreactive PDH E1 alpha and E1 beta subunits were markedly decreased as assessed by immunoblot analyses. These data indicated a regulatory mutation caused by either inefficient translation of E1 alpha and E1 beta mRNAs into protein or rapid degradation of both subunits upon translation. In contrast, the PDH E1 alpha and E1 beta subunits in two fibroblast cell lines from Leigh's syndrome patients appeared to be normal as judged by 1) enzyme activity, 2) mRNA Northern blot, 3) genomic DNA Southern blot, and 4) immunoblot analyses indicating that the lactic acidosis seen in these patients did not result from a single defect in either of these E1 alpha and E1 beta subunits of the PDH complex.  相似文献   

15.
16.
Abstract: Free and membrane-bound polysomes and polyadenylated mRNA isolated from rabbit brain were translated in an mRNA-dependent rabbit reticulocyte lysate system. Electrophoretic analysis of the cell-free translation products demonstrated that although most of the nascent proteins were common to both free and membrane-bound brain polysomes, qualitative and quantitative differences were observed. Compared with the results obtained with purified polyadenylated mRNA, the addition of intact polysomes to the cell-free translation assay was more efficient and produced higher molecular weight products. Analysis of the translation products of free and membrane-bound polysomes revealed the appearance of 74K protein following either LSD administration or hyperthermia induced by elevated temperature treatment. The presence of this 74K protein was verified by analysis of the translation products by two-dimensional gel electrophoresis.  相似文献   

17.
18.
19.
20.
Translational initiation of hepatitis C virus (HCV) mRNA occurs by internal entry of ribosomes into an internal ribosomal entry site (IRES) at the 5' nontranslated region. A region encoding the N-terminal part of the HCV polyprotein has been shown to augment the translation of HCV mRNA. Here we show that a cellular protein, NS1-associated protein 1 (NSAP1), augments HCV mRNA translation through a specific interaction with an adenosine-rich protein-coding region within the HCV mRNA. The overexpression of NSAP1 specifically enhanced HCV IRES-dependent translation, and knockdown of NSAP1 by use of a small interfering RNA specifically inhibited the translation of HCV mRNA. An HCV replicon RNA capable of mimicking the HCV proliferation process in host cells was further used to confirm that NSAP1 enhances the translation of HCV mRNA. These results suggest the existence of a novel mechanism of translational enhancement that acts through the interaction of an RNA-binding protein with a protein coding sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号