首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adult stature and body mass represent fundamental biological characteristics of individuals and populations, as they are relevant to a range of problems from assessing nutrition and health to longer term evolutionary processes. Stature and body mass estimation from skeletal dimensions are therefore key to addressing biological and social questions about past populations. Anatomical reconstruction provides the most direct proxy for living stature but is only suitable for well-preserved remains. Regression equations for estimating stature from bone lengths are therefore extremely useful, though it is well recognized that differences in body proportions limit the cross-application of equations between samples. Here, we assess the accuracy of published stature estimation equations from worldwide and New World groups applied to archaeological samples from the central Andean coast and highlands of South America. As no existing equations are clearly appropriate, new sample-specific regression equations are presented. Anatomical stature reconstruction is further complicated by artificial cranial modification (ACM) influencing cranial height in Andean samples, so this problem is investigated in the current sample. Although ACM has minimal impact here, the possibility should be explored in other samples before anatomical stature estimation is attempted. Recommendations are also made for estimating body mass from femoral head diameter. The mean of three previously published equations is shown to offer minimal bias and the most reliable estimate of body mass in the study samples.  相似文献   

2.
Long bone lengths of all available European Upper Paleolithic (41 males, 25 females) and Mesolithic (171 males, 118 females) remains have been transformed into stature estimates by means of new regression equations derived from Early Holocene skeletal samples using "Fully's anatomical stature" and the major axis regression technique (Formicola & Franceschi, 1996). Statistical analysis of the data, with reference both to time and space parameters, indicates that: (1) Early Upper Paleolithic samples (pre-Glacial Maximum) are very tall; (2) Late Upper Paleolithic groups (post-Glacial Maximum) from Western Europe, compared to their ancestors, show a marked decrease in height; (3) a further, although not significant, reduction of stature affects Western Mesolithics; (4) no regional differences have been observed during both phases of the Upper Paleolithic; (5) a high level of homogeneity has also been found in the Mesolithic, both in Western and Eastern Europe; (6) the internal homogeneity found during the Mesolithic in Western and Eastern Europe is associated with marked inter-regional variability, with populations of the latter region showing systematically significantly greater stature than their Western contemporaries. Evaluation of possible causes for the great stature of the Early Upper Paleolithic samples points to high nutritional standards as the most important factor. Results obtained on later groups clearly indicate that the Last Glacial Maximum, rather than the Mesolithic transition, is the critical phase in the negative trend affecting Western European populations. While changes in the quality of the diet, and in particular decreased protein intake, provide a likely explanation for that trend, variations in levels of gene flow probably also played a role. Reasons for the West-East Mesolithic dichotomy remain unclear and lack of information for the Late Upper Paleolithic of Eastern Europe prevents insight into the remote origins of this phenomenon. Analysis of regional differentiation of stature, particularly well supported by data from Mesolithic sites, points to the absence of today's latitudinal gradients and suggests a relative homogeneity in dietary, cultural and biodemographic patterns for the last hunter-gatherer populations of Western Europe.  相似文献   

3.
Stature (height) is an important factor in establishing the identity of a person in the living as well as in the skeletonized state. When stature is estimated from the bones of the limbs, regression equations, which estimate the ratios of the lengths of bones to the height of the individual, are generated. The majority of bones that were used previously were the long bones. The calcaneus was used for estimating stature only in American whites and blacks (Holland [1995] Am. J. Phys. Anthropol. 96:315-320). The regression equations that he generated were found to be useful for stature estimation in these population groups. Since the calcaneus has not been used for the same purpose in South Africa, the aim of this study was to derive regression equations that will allow this bone to be used for stature estimation in South African blacks. In total, 116 complete skeletons (60 males and 56 females) were selected from the Raymond A. Dart Collection of Human Skeletons, School of Anatomical Sciences, University of the Witwatersrand (Johannesburg, South Africa). The skeletal heights of these sets of skeletons were calculated using the anatomical method of Fully ([1956] Ann. Med. Leg. 35:266-273). Nine parameters of the calcaneus were measured and matched against skeletal heights, using univariate and multivariate regression methods. Regression equations were obtained for estimation of the stature of the South African black population from the calcaneus. The standard error of estimate that was obtained with univariate regression analysis was higher than the corresponding values using multivariate regression analysis. In both cases, the standard errors of estimate compared well with the values obtained for fragmentary long bones by previous authors.  相似文献   

4.
Regression equations for estimating living stature from long bone lengths have been calibrated on a sample of European Neolithic skeletons (33 males and 27 females) by using both least-squares (model I) and major-axis (model II) regression techniques. Stature estimates of the skeletal sample have been made by means of Fully's anatomical method, a procedure based on the sum of all osseous components of height, providing the best approximations to the actual stature. The calculated equations have been tested, along with those generally used to predict stature of earlier European remains, on a small, well-preserved sample including Late Upper Paleolithic, Mesolithic, and Neolithic skeletons. The results indicate that the model II equations are particularly useful when very short or very tall individuals are involved and, at the same time, are among the best predictors of stature in less extreme conditions. © 1996 Wiley-Liss, Inc.  相似文献   

5.
Stature reconstructions from skeletal remains are usually obtained through regression equations based on the relationship between height and limb bone length. Different equations have been employed to reconstruct stature in skeletal samples, but this is the first study to provide a systematic analysis of the reliability of the different methods for Italian historical samples. Aims of this article are: 1) to analyze the reliability of different regression methods to estimate stature for populations living in Central Italy from the Iron Age to Medieval times; 2) to search for trends in stature over this time period by applying the most reliable regression method. Long bone measurements were collected from 1,021 individuals (560 males, 461 females), from 66 archeological sites for males and 54 for females. Three time periods were identified: Iron Age, Roman period, and Medieval period. To determine the most appropriate equation to reconstruct stature the Delta parameter of Gini (Memorie di metodologia statistica. Milano: Giuffre A. 1939), in which stature estimates derived from different limb bones are compared, was employed. The equations proposed by Pearson (Philos Trans R Soc London 192 (1899) 169-244) and Trotter and Gleser for Afro-Americans (Am J Phys Anthropol 10 (1952) 463-514; Am J Phys Anthropol 47 (1977) 355-356) provided the most consistent estimates when applied to our sample. We then used the equation by Pearson for further analyses. Results indicate a reduction in stature in the transition from the Iron Age to the Roman period, and a subsequent increase in the transition from the Roman period to the Medieval period. Changes of limb lengths over time were more pronounced in the distal than in the proximal elements in both limbs.  相似文献   

6.
Archaeological assemblages often lack the complete long bones needed to estimate stature and body mass. The most accurate estimates of body mass and stature are produced using femoral head diameter and femur length. Foot bones including the first metatarsal preserve relatively well in a range of archaeological contexts. In this article we present regression equations using the first metatarsal to estimate femoral head diameter, femoral length, and body mass in a diverse human sample. The skeletal sample comprised 87 individuals (Andamanese, Australasians, Africans, Native Americans, and British). Results show that all first metatarsal measurements correlate moderately to highly (r = 0.62-0.91) with femoral head diameter and length. The proximal articular dorsoplantar diameter is the best single measurement to predict both femoral dimensions. Percent standard errors of the estimate are below 5%. Equations using two metatarsal measurements show a small increase in accuracy. Direct estimations of body mass (calculated from measured femoral head diameter using previously published equations) have an error of just over 7%. No direct stature estimation equations were derived due to the varied linear body proportions represented in the sample. The equations were tested on a sample of 35 individuals from Christ Church Spitalfields. Percentage differences in estimated and measured femoral head diameter and length were less than 1%. This study demonstrates that it is feasible to use the first metatarsal in the estimation of body mass and stature. The equations presented here are particularly useful for assemblages where the long bones are either missing or fragmented, and enable estimation of these fundamental population parameters in poorly preserved assemblages.  相似文献   

7.
This study focuses on the age adjustment of statures estimated with the anatomical method. The research material includes 127 individuals from the Terry Collection. The cadaveric stature (CSTA)–skeletal height (SKH) ratios indicate that stature loss with age commences before SKH reduction. Testing three equations to estimate CSTA at the age at death and CSTA corrected to maximum stature from SKH indicates that the age correction of stature should reflect the pattern of age‐related stature loss to minimize estimation error. An equation that includes a continuous and linear age correction through the entire adult age range [Eq. (1)] results in curvilinear stature estimation error. This curvilinear stature estimation error can be largely avoided by applying a second linear equation [Eq. (2)] to only individuals older than 40 years. Our third equation [Eq. (3)], based on younger individuals who have not lost stature, can be used to estimate maximum stature. This equation can also be applied to individuals of unknown or highly uncertain age, because it provides reasonably accurate estimates until about 60/70 years at least for males. Am J Phys Anthropol 152:96–106, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
The Uto‐Aztecan premolar (UAP) is a dental polymorphism characterized by an exaggerated distobuccal rotation of the paracone in combination with the presence of a fossa at the intersection of the distal occlusal ridge and distal marginal ridge of upper first premolars. This trait is important because, unlike other dental variants, it has been found exclusively in Native American populations. However, the trait's temporal and geographic variation has never been fully documented. The discovery of a Uto‐Aztecan premolar in a prehistoric skeletal series from northern South America calls into question the presumed linguistic and geographic limits of this trait. We examined published and unpublished data for this rare but highly distinctive trait in samples representing over 5,000 Native Americans from North and South America. Our findings in living Southwest Amerindian populations corroborate the notion that the variable goes beyond the bounds of the Uto‐Aztecan language family. It is found in prehistoric Native Americans from South America, eastern North America, Northern and Central Mexico, and in living and prehistoric populations in the American Southwest that are not members of the Uto‐Aztecan language stock. The chronology of samples, its geographic distribution, and trait frequencies suggests a North American origin (Southwest) for UAP perhaps between 15,000 BP and 4,000 BP and a rapid and widespread dispersal into South America during the late Holocene. Family data indicate that it may represent an autosomal recessive mutation that occurred after the peopling of the Americas as its geographic range appears to be limited to North and South Amerindian populations. Am J Phys Anthropol, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
Although previous paleopathological studies have used disturbances in enamel formation as indicators of childhood stress, the full potential of this technique has not been realized. This paper presents a test case which demonstrates that the frequency of disturbed enamel formation (i.e., Wilson bands) is associated with other stress indicators (i.e., probability of dying and infectious lesions) in three prehistoric skeletal samples representing the Middle Woodland (10.3%), Mississippian Acculturated Late Woodland (21.4%), and the Middle Mississippian (40.0%). Additionally, the mean ages at death of individuals with at least one Wilson band are lower than those without bands.These results suggest that Wilson bands are an indicator of the relative proportion of individuals who are high susceptibles in prehistoric populations. The data also corroborate the hypothesis that the adoption of maize agriculture in the prehistoric American Midwest is associated with increased stress.  相似文献   

10.
Trotter and Gleser's (Trotter and Gleser: Am J Phys Anthropol 10 (1952) 469-514; Trotter and Gleser: Am J Phys Anthropol 16 (1958) 79-123) long bone formulae for US Blacks or derivations thereof (Robins and Shute: Hum Evol 1 (1986) 313-324) have been previously used to estimate the stature of ancient Egyptians. However, limb length to stature proportions differ between human populations; consequently, the most accurate mathematical stature estimates will be obtained when the population being examined is as similar as possible in proportions to the population used to create the equations. The purpose of this study was to create new stature regression formulae based on direct reconstructions of stature in ancient Egyptians and assess their accuracy in comparison to other stature estimation methods. We also compare Egyptian body proportions to those of modern American Blacks and Whites. Living stature estimates were derived using a revised Fully anatomical method (Raxter et al.: Am J Phys Anthropol 130 (2006) 374-384). Long bone stature regression equations were then derived for each sex. Our results confirm that, although ancient Egyptians are closer in body proportion to modern American Blacks than they are to American Whites, proportions in Blacks and Egyptians are not identical. The newly generated Egyptian-based stature regression formulae have standard errors of estimate of 1.9-4.2 cm. All mean directional differences are less than 0.4% compared to anatomically estimated stature, while results using previous formulae are more variable, with mean directional biases varying between 0.2% and 1.1%, tibial and radial estimates being the most biased. There is no evidence for significant variation in proportions among temporal or social groupings; thus, the new formulae may be broadly applicable to ancient Egyptian remains.  相似文献   

11.
Regression equations for the estimation of stature from long bones, although derived from modern human populations, are frequently applied to early hominids. In fact, some of these equations have even been recommended or especially created to be applied to Australopithecus remains. In this study, 45 sets of regression and correlation formulae, recurrent in anthropological and medico-legal literature, are applied to long bones of the Pliocene hominid A.L.288-1 ('Lucy'), in order to assess which, if any, could be considered suitable for stature reconstruction in 'gracile' australopithecines. Virtually every method based on regression equations overestimates stature as compared with the estimate based on reconstruction of all the preserved skeletal parts. In addition, most methods failed to give consistent results with data from different limb segments. None of the sets of regression formulae tested here can be recommended as a reliable means of stature estimation in 'gracile' australopithecines.  相似文献   

12.
13.
Adult stature variation is commonly attributed to differential stress-levels during development. However, due to selective mortality and heterogeneous frailty, a population's tall stature may be more indicative of high selective pressures than of positive life conditions. This article examines stature in a biocultural context and draws parallels between bioarchaeological and living populations to explore the multidimensionality of stature variation in the past. This study investigates: 1) stature differences between archaeological populations exposed to low or high stress (inferred from skeletal indicators); 2) similarities in growth retardation patterns between archaeological and living groups; and 3) the apportionment of variance in growth outcomes at the regional level in archaeological and living populations. Anatomical stature estimates were examined in relation to skeletal stress indicators (cribra orbitalia, porotic hyperostosis, linear enamel hypoplasia) in two medieval bioarchaeological populations. Stature and biocultural information were gathered for comparative living samples from South America. Results indicate 1) significant (P < 0.01) differences in stature between groups exposed to different levels of skeletal stress; 2) greater prevalence of stunting among living groups, with similar patterns in socially stratified archaeological and modern groups; and 3) a degree of regional variance in growth outcomes consistent with that observed for highly selected traits. The relationship between early stress and growth is confounded by several factors—including catch-up growth, cultural buffering, and social inequality. The interpretations of early life conditions based on the relationship between stress and stature should be advanced with caution. Am J Phys Anthropol 155:229–242, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
On the basis of 552 boys and 542 girls aged 6 to 20 years, this study examines the estimation of stature from dimensions and maturity of second metacarpals by means of linear regression equations. A combination of length and width measurements provided a more accurate estimation than each measurement individually. When taken alone, length produced a more accurate estimation than width. Sex and age factors are useful for the estimation of stature, though these variables are often unknown in the isolated bone. The samples are divided into immature and mature groups (according to skeletal maturity). Regardless of sex, stature could be estimated from the metacarpal length and width with a standard error of 4.19 cm by means of a multiple linear equation in the immature group. The mature group should be considered with adults for this purpose. Thus, taking into account their skeletal maturity, living stature could be practically estimated from the second metacarpal with significant degrees of accuracy in children.  相似文献   

15.
Techniques that are currently available for estimating stature and body mass from European skeletal remains are all subject to various limitations. Here, we develop new prediction equations based on large skeletal samples representing much of the continent and temporal periods ranging from the Mesolithic to the 20th century. Anatomical reconstruction of stature is carried out for 501 individuals, and body mass is calculated from estimated stature and biiliac breadth in 1,145 individuals. These data are used to derive stature estimation formulae based on long bone lengths and body mass estimation formulae based on femoral head breadth. Prediction accuracy is superior to that of previously available methods. No systematic geographic or temporal variation in prediction errors is apparent, except in tibial estimation of stature, where northern and southern European formulae are necessary because of the presence of relatively longer tibiae in southern samples. Thus, these equations should bebroadly applicable to European Holocene skeletal samples.  相似文献   

16.
Mitochondrial DNA (mtDNA) was extracted and analyzed from the skeletal remains of 44 individuals, representing four prehistoric populations, and compared to that from two other prehistoric and several contemporary Native American populations to investigate biological relationships and demographic history in northeastern North America. The mtDNA haplogroup frequencies of ancient human remains from the Morse (Red Ocher tradition, 2,700 BP) and Orendorf (Mississippian tradition, 800 BP) sites from the Central Illinois River Valley, and the Great Western Park (Western Basin tradition, 800 BP) and Glacial Kame (2,900 BP) populations from southwestern Ontario, change over time while maintaining a regional continuity between localities. Haplotype patterns suggest that some ancestors of present day Native Americans in northeastern North America have been in that region for at least 3,000 years but have experienced extensive gene flow throughout time, resulting, at least in part, from a demic expansion of ancestors of modern Algonquian-speaking people. However, genetic drift has also been a significant force, and together with a major population crash after European contact, has altered haplogroup frequencies and caused the loss of many haplotypes.  相似文献   

17.
One of the greatest limitations to the application of the revised Fully anatomical stature estimation method is the inability to measure some of the skeletal elements required in its calculation. These element dimensions cannot be obtained due to taphonomic factors, incomplete excavation, or disease processes, and result in missing data. This study examines methods of imputing these missing dimensions using observable Fully measurements from the skeleton and the accuracy of incorporating these missing element estimations into anatomical stature reconstruction. These are further assessed against stature estimations obtained from mathematical regression formulae for the lower limb bones (femur and tibia). Two thousand seven hundred and seventeen North and South American indigenous skeletons were measured, and subsets of these with observable Fully dimensions were used to simulate missing elements and create estimation methods and equations. Comparisons were made directly between anatomically reconstructed statures and mathematically derived statures, as well as with anatomically derived statures with imputed missing dimensions. These analyses demonstrate that, while mathematical stature estimations are more accurate, anatomical statures incorporating missing dimensions are not appreciably less accurate and are more precise. The anatomical stature estimation method using imputed missing dimensions is supported. Missing element estimation, however, is limited to the vertebral column (only when lumbar vertebrae are present) and to talocalcaneal height (only when femora and tibiae are present). Crania, entire vertebral columns, and femoral or tibial lengths cannot be reliably estimated. Further discussion of the applicability of these methods is discussed.  相似文献   

18.
Estimation of age-at-death of subadults in prehistoric skeletal samples based on modern reference standards rests on a number of assumptions of which many are untestable. If these assumptions are not met error of unknown magnitude and direction will be introduced to the subadult age estimates. This situation suggests that an independent estimate or estimates of age-related features, free of most of the assumptions made when using modern reference standards may be useful supplements in evaluating the age of subadults in prehistoric samples. The present study provides an internally consistent, population-specific measure of maturity for prehistoric Ohio valley Native Americans based on the seriation of dental development that may be used as a supplement to age-estimation. The developing dentition of 581 subadults from eight Ohio valley prehistoric-protohistoric groups was seriated within and among individuals resulting in a sequence of tooth development and a sequence of individuals from least to most mature. Dental maturity stages or sorting categories were then defined based on exclusive, easily observable, and highly repeatable tooth-formation stages. Tooth eruption (into occlusion), bone lengths, and fusion of skeletal elements are summarized by dental maturity stage. This procedure provides maturity estimates for skeletal features ordered by dental maturity stages derived from the same sample thus making explicit the relationship between dental and skeletal maturity.  相似文献   

19.
Body size (stature and mass) estimates are integral to understanding the lifeways of past populations.Body size estimation of an archaeological skeletal sample can be problematic when the body size or proportions of the population are distinctive. One such population is that of the Holocene Later Stone Age (LSA) of southern Africa, in which small stature (mean femoral length = 407 mm, n = 52) and narrow pelves (mean bi‐iliac breadth = 210 mm, n = 50) produce a distinctive adult body size/shape, making it difficult to identify appropriate body size estimation methods. Material culture, morphology, and culture history link the Later Stone Age people with the descendant population collectively known as the Khoe‐San. Stature estimates based on skeletal “anatomical” linear measures (the Fully method) and on long bone length are compared, along with body mass estimates derived from “morphometric” (bi‐iliac breath/stature) and “biomechanical” (femoral head diameter) methods, in a LSA adult skeletal sample (n = 52) from the from coastal and near‐coastal regions of South Africa. Indices of sexual dimorphism (ISD) for each method are compared with data from living populations. Fully anatomical stature is most congruent with Olivier's femur + tibia method, although both produce low ISD. McHenry's femoral head body mass formula produces estimates most consistent with the bi‐iliac breadth/staturemethod for the females, although the males display higher degrees of disagreement among methods. These results highlight the need for formulae derived from reference samples from a wider range of body sizes to improve the reliability of existing methods. Am J Phys Anthropol, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Analyses of genetic polymorphism data have the potential to be highly informative about the demographic history of Native American populations, but due to a combination of historical and political factors, there are essentially no autosomal sequence polymorphism data from any Native American group. However, there are many resequencing studies involving Latinos, whose genomes contain segments inherited from their Native American ancestors. In this study, we introduce a new method for estimating local ancestry across the genomes of admixed individuals and show how this method, along with dense genotyping and targeted resequencing, can be used to assay genetic variation in ancestral Native American groups. We analyze roughly 6 Mb of resequencing data from 22 Mexican Americans to provide the first large-scale view of sequence level variation in Native Americans. We observe low levels of diversity and high levels of linkage disequilibrium in the Native American-derived sequences, consistent with a recent severe population bottleneck associated with the initial peopling of the Americas. Using two different computational approaches, one novel, we estimate that this bottleneck occurred roughly 12.5 Kya; when uncertainty in the estimation process is taken into account, our results are consistent with archeological estimates for the colonization of the Americas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号