共查询到20条相似文献,搜索用时 15 毫秒
1.
The consequences of chronic nitric oxide synthase (NOS) blockade on the myocardial metabolic and guanylyl cyclase stimulatory effects of exogenous nitric oxide (NO) were determined. Thirty-three anesthetized open-chest rabbits were randomized into four groups: control, NO donor S-nitroso-N-acetyl-penicillamine (SNAP, 10(-4 )M), NOS blocking agent N(G)-nitro-L-arginine methyl ester (L-NAME, 20 mg/kg/day) for 10 days followed by a 24 hour washout and L-NAME for 10 days followed by a 24 hour washout plus SNAP. Myocardial O(2) consumption was determined from coronary flow (microspheres) and O(2) extraction (microspectrophotometry). Cyclic GMP and guanylyl cyclase activity were determined by radioimmunoassay. There were no baseline metabolic, functional or hemodynamic differences between control and L-NAME treated rabbits. SNAP in controls caused a reduction in O(2) consumption (SNAP 5.9+/-0.6 vs. control 8.4+/-0.8 ml O(2)/min/100 g) and a rise in cyclic GMP (SNAP 18.3+/-3.8 vs. control 10.4+/-0.9 pmol/g). After chronic L-NAME treatment, SNAP caused no significant changes in O(2) consumption (SNAP 7.1+/-0.8 vs. control 6.4+/-0.7) or cyclic GMP (SNAP 14.2+/-1.8 vs. control 12.1+/-1.3). In controls, guanylyl cyclase activity was significantly stimulated by SNAP (216.7+/-20.0 SNAP vs. 34.4+/-2.5 pmol/mg/min base), while this increase was blunted after L-NAME (115.9+/-24.5 SNAP vs. 24.9+/-4.7 base). These results demonstrated that chronic NOS blockade followed by washout blunts the response to exogenous NO, with little effect on cyclic GMP or myocardial O(2) consumption. This was related to reduced guanylyl cyclase activity after chronic L-NAME. These results suggest that, unlike many receptor systems, the NO-cyclic GMP signal transduction system becomes downregulated upon chronic inhibition. 相似文献
2.
Metamorphosis in the ascidian Ciona intestinalis is a very complex process which converts a swimming tadpole to an adult. The process involves reorganisation of the body plan and a remarkable regression of the tail, which is controlled by caspase-dependent apoptosis. However, the endogenous signals triggering apoptosis and metamorphosis are little explored. Herein, we report evidence that nitric oxide (NO) regulates tail regression in a dose-dependent manner, acting on caspase-dependent apoptosis. An increase or decrease of NO levels resulted in a delay or acceleration of tail resorption, without affecting subsequent juvenile development. A similar hastening effect was induced by suppression of cGMP-dependent NO signalling. Inhibition of NO production resulted in an increase in caspase-3-like activity with respect to untreated larvae. Detection of endogenously activated caspase-3 and NO revealed the existence of a spatial correlation between the diminution of the NO signal and caspase-3 activation during the last phases of tail regression. Real-time PCR during development, from early larva to early juveniles, showed that during all stages examined, NO synthase (NOS) is always more expressed than arginase and it reaches the maximum value at late larva, the stage immediately preceding tail resorption. The spatial expression pattern of NOS is very dynamic, moving rapidly along the body in very few hours, from the anterior part of the trunk to central nervous system (CNS), tail and new forming juvenile digestive organs. NO detection revealed free diffusion from the production sites to other cellular districts. Overall, the results of this study provide a new important link between NO signalling and apoptosis during metamorphosis in C. intestinalis and hint at novel roles for the NO signalling system in other developmental and metamorphosis-related events preceding and following tail resorption. 相似文献
3.
The reaction of nitric oxide (NO) with fast and reduced cytochrome bo(3)(cyt bo(3)) from Escherichia coli has been investigated. The stoichiometry of NO binding to cyt bo(3) was determined using an NO electrode in the [NO] range 1-14 microM. Under reducing conditions, the initial decrease in [NO] following the addition of cyt bo(3) corresponded to binding of 1 NO molecule per cyt bo(3) functional unit. After this "rapid" NO binding phase, there was a slow, but significant rate of NO consumption ( approximately 0.3molNOmol bo(3)(-1)min(-1)), indicating that cyt bo(3) possesses a low level of NO reductase activity. The binding of NO to fast pulsed enzyme was also investigated. The results show that in the [NO] range used (1-14 microM) both fast and pulsed oxidised cyt bo(3) bind NO with a stoichiometry of 1:1 with an observed dissociation constant of K(d)=5.6+/-0.6 microM and that NO binding was inhibited by the presence of Cl(-). The binding of nitrite to the binuclear centre causes spectral changes similar to those observed upon NO binding to fast cyt bo(3). These results are discussed in relation to the model proposed by Wilson and co-workers [FEBS Lett. 414 (1997) 281] where the binding of NO to Cu(B)(II) results in the formation of the nitrosonium (Cu(B)(I)-NO(+)) complex. NO(+) then reacts with OH(-), a Cu(B) ligand, to form nitrite, which can bind at the binuclear centre. This work suggests for the first time that the binding of NO to oxidised cyt bo(3) does result in the reduction of Cu(B). 相似文献
4.
Nitric oxide has been extensively studied as an effector molecule of the host immune response against both protozoa and helminths, but parasites can also produce this molecule, through the action of nitric oxide (NO) synthases or NO synthases-like enzymes. The aim of this study was to verify the possible production of NO by Trichinella britovi L(1) larvae and the enzymes involved in this process. The NO synthase immunoreactivity and putative nitric oxide synthase-activity was analysed using antibodies to mammalian NO synthase III and to nitrotyrosine with immunohistochemistry, gold immunocytochemistry and immunoblot analysis and NADPH-diaphorase histochemistry. Our results show that T. britovi L(1) larvae possess an enzymatic activity capable of producing NO. The localisation of this activity, according to the NADPH-diaphorase histochemistry, is both at the cuticular and the internal level. This localisation is confirmed by nitrotyrosine immunohistochemistry both under optical and electron microscopy. Using the NO synthase III antibody, a similar pattern of labelling was found: in particular, electron microscopy showed a localisation of this immunoreactivity in the cuticle and in the stichocytes, where only the alpha2 granules contained gold particles, mainly concentrated at their periphery. Four polypeptides reacting to the NO synthase III antibody are revealed by Western blotting. Their molecular weight ranged from 38 to 50 kDa. A significant reaction of the anti-nitrotyrosine antibody to polypeptides 95, 60, 48 and 39 kDa from the same sample suggested the presence of different nitrosylated proteins. 相似文献
5.
Sulfuretin is one of major constituents of Rhus verniciflua that exerts anti-inflammatory activities . Some of aurones were synthesized as sulfuretin derivatives and evaluated for their abilities to inhibit NO and PGE 2 production in LPS-induced RAW 264.7 cells in order to reveal the relationship. Of the aurones synthesized in the present study, 2h and 2i, which possess C-6 hydroxyl group in A-ring and methoxy substituents in B-ring, more potently inhibited NO and PGE 2 production and were less cytotoxic than sulfuretin. 相似文献
6.
The plants belonging to Pfaffia genus are used in folk medicine to treat gastric disturbances. This study examined the effects of an aqueous extract of Pfaffia glomerata (Spreng) Pedersen (AEP) on the gastrointestinal tract. Wistar rats were pretreated orally (p.o.) with the AEP (125, 250, 500 and 1000 mg.kg(-1)) before induction of ulcers by hypothermic restraint stress (HRS, 3 h restraint stress at 4 degrees C), ethanol (ET, 70%; 0.5 ml/animal; p.o.) or indomethacin (IND, 20 mg.kg(-1); s.c.). Control animals received water (C) or ranitidine (60 mg.kg(-1)) p.o. The AEP protected rats against HRS and ET-induced ulcers, but was not able to protect the gastric mucosa against IND-induced ulcers. When injected into the duodenal lumen, the AEP reduced total acidity and both basal and histamine-stimulated acid secretion in pylorus-ligated rats. In addition, gastric secretion from AEP-treated animals exhibited increased concentrations of nitrite and nitrate. Treatment of animals with L-NAME (120 mg.kg(-1), p.o.) prevented both the reduction of total acidity and the increase in NOx levels promoted by AEP treatment. In conclusion, AEP effectively protected the gastric mucosa and inhibited gastric acid secretion in rats, probably by involving the histaminergic pathway and an enhanced production of nitric oxide in the stomach. 相似文献
7.
Cobalamins are important cofactors for methionine synthase and methylmalonyl-CoA mutase. Certain corrins also bind nitric oxide (NO), quenching its bioactivity. To determine if corrins would inhibit NO synthase (NOS), we measured their effects on - l-[ 14C]arginine-to- l-[ 14C]citrulline conversion by NOS1, NOS2, and NOS3. Hydroxocobalamin (OH-Cbl), cobinamide, and dicyanocobinamide (CN 2-Cbi) potently inhibited all isoforms, whereas cyanocobalamin, methylcobalamin, and adenosylcobalamin had much less effect. OH-Cbl and CN 2-Cbi prevented binding of the oxygen analog carbon monoxide (CO) to the reduced NOS1 and NOS2 heme active site. CN 2-Cbi did not react directly with NO or CO. Spectral perturbation analysis showed that CN 2-Cbi interacted directly with the purified NOS1 oxygenase domain. NOS inhibition by corrins was rapid and not reversed by dialysis with l-arginine or tetrahydrobiopterin. Molecular modeling indicated that corrins could access the unusually large heme- and substrate-binding pocket of NOS. Best fits were obtained in the “base-off” conformation of the lower axial dimethylbenzimidazole ligand. CN 2-Cbi inhibited interferon-γ-activated Raw264.7 mouse macrophage NO production. We show for the first time that certain corrins directly inhibit NOS, suggesting that these agents (or their derivatives) may have pharmacological utility. Endogenous cobalamins and cobinamides might play important roles in regulating NOS activity under normal and pathological conditions. 相似文献
8.
Nitric oxide synthase (NOS) is amongst a family of evolutionarily conserved enzymes, involved in a multi-turnover process that results in NO as a product. The significant role of NO in various pathological and physiological processes has created an interest in this enzyme from several perspectives. This study describes for the first time, cloning and expression of a NOS-like protein, baNOS, from Bacillus anthracis, a pathogenic bacterium responsible for causing anthrax. baNOS was expressed in Escherichia coli as a soluble and catalytically active enzyme. Homology models generated for baNOS indicated that the key structural features that are involved in the substrate and active site interaction have been highly conserved. Further, the behavior of baNOS in terms of heme-substrate interactions and heme-transitions was studied in detail. The optical perturbation spectra of the heme domain demonstrated that the ligands perturb the heme site in a ligand specific manner. baNOS forms a five-coordinate, high-spin complex with l-arginine analogs and a six-coordinate low-spin complex with inhibitor imidazole. Studies indicated that the binding of l-arginine, N(omega)-hydroxy-l-arginine, and imidazole produces various spectroscopic species that closely correspond to the equivalent complexes of mammalian NOS. The values of spectral binding constants further corroborated these results. The overall conservation of the key structural features and the correlation of heme-substrate interactions in baNOS and mammalian NOS, thus, point towards an interesting phenomenon of convergent evolution. Importantly, the NO generated by NOS of mammalian macrophages plays a potent role in antimicrobicidal activity. Because of the existence of high structural and behavioral similarity between mammalian NOS and baNOS, we propose that NO produced by B. anthracis may also have a pivotal pathophysiological role in anthrax infection. Therefore, this first report of characterization of a NOS-like protein from a pathogenic bacterium opens up avenues for further studies in understanding the importance of this protein in pathogenicity. 相似文献
9.
Host-parasite interaction during infection with the liver fluke Opisthorchis viverrini plays an important role in opisthorchiasis-associated cholangiocarcinoma via nitric oxide (NO) production. Host cells induce nitric oxide synthase (NOS)-dependent DNA damage and secrete Ras-related C3 botulinum toxin substrate (Rac)1, heme oxygenase (HO)-1, and gelatinases (matrix metalloproteinase (MMP)2 and MMP9). We evaluated whether these enzymes are expressed in O. viverrini. Colocalization of NOS and Rac1 was most prominently detected on day 30 post-infection (p.i.) in the gut, reproductive organ, eggs, acetabular and tegument. Expression of HO-1, an antioxidative enzyme, increased in a similar pattern to NOS, but was not present in the tegument. The levels of nitrate/nitrite, end products of NO, and ferric reducing antioxidant capacity, an indicator of antioxidant enzyme capacity, in parasite homogenates were highest on day 30 p.i. and then decreased on day 90 p.i. In contrast, zymography revealed that MMP2 and MMP9 were not present in parasite homogenates at all time points. In conclusion, O. viverrini induces NOS expression and NO production, but does not express gelatinases. The study may provide basic information and an insight into drug design for prevention and/or intervention approaches against O. viverrini infection. 相似文献
10.
In the present study, we examined the effects of L-nitroarginine methylester (L-NAME), a non-selective nitric oxide synthase (NOS) inhibitor, indomethacin (IND), a non-selective COX inhibitor and a combination of these agents (L-NAME+IND) on carrageenan-induced pleurisy in rats. Exudate volume, albumin leakage, leukocyte influx, exudate and plasma nitrite/nitrate (NO(x)) levels and exudate PGE(2) levels increased markedly 6 h after an intrapleural injection of 2% carrageenan. First, the effects of L-NAME and IND alone were investigated. L-NAME non-significantly reduced exudate volume by 26% at 10 mg/kg (i.p.), and significantly by 45% at 30 mg/kg. IND dose-dependently decreased the exudate volume at 0.3-10 mg/kg (p.o.) and the effect reached the maximal level at 1 mg/kg (33%). Second, the effects of L-NAME (10 mg/kg, i.p.), IND (1 mg/kg, p.o.) and L-NAME+IND were examined. L-NAME and IND alone at the dose employed significantly reduced the exudate volume and albumin levels by 21-26%. L-NAME but not IND tended to reduce the increased exudate and plasma NO(x) by 18% and 19%, respectively. IND but not L-NAME significantly reduced leukocyte numbers and PGE(2) levels in the exudates by 25% and 77%, respectively. L-NAME+IND significantly reduced exudate volume, albumin leakage, leukocyte number, PGE(2) and NO(x) by 43%, 41%, 31%, 80% and 37%, respectively. The inhibitory effects of L-NAME+IND on exudate volume, albumin leakage and NO(x) levels were greater than those of L-NAME and IND alone. In conclusion, a non-selective NOS inhibitor and COX inhibitor showed anti-inflammatory effects at the early phase of carrageenan-induced pleurisy, and a combination of both inhibitors had a greater effect than each alone probably via the potentiation of NOS inhibition. The simultaneous inhibition of NOS and COX could be a useful approach in therapy for acute inflammation. 相似文献
11.
The presence of nitric oxide synthase (NOS) and role of nitric oxide (NO) in vascular regulation was investigated in the Australian lungfish, Neoceratodus forsteri. No evidence was found for NOS in the endothelium of large and small blood vessels following processing for NADPH-diaphorase histochemistry. However, both NADPH-diaphorase histochemistry and neural NOS immunohistochemistry demonstrated a sparse network of nitrergic nerves in the dorsal aorta, hepatic artery, and branchial arteries, but there were no nitrergic nerves in small blood vessels in tissues. In contrast, nitrergic nerves were found in non-vascular tissues of the lung, gut and kidney. Dual-wire myography was used to determine if NO signalling occurred in the branchial artery of N. forsteri. Both SNP and SIN-1 had no effect on the pre-constricted branchial artery, but the particulate guanylyl cyclase (GC) activator, C-type natriuretic peptide, always caused vasodilation. Nicotine mediated a dilation that was not inhibited by the soluble GC inhibitor, ODQ, or the NOS inhibitor, L-NNA, but was blocked by the cyclooxygenase inhibitor, indomethacin. These data suggest that NO control of the branchial artery is lacking, but that prostaglandins could be endothelial relaxing factors in the vasculature of lungfish. 相似文献
12.
A new pyrrolidinone diterpenoid, excisusin F ( 1), was isolated from the aerial parts of Isodon excisus (Lamiaceae), together with four known compounds, and their structures were determined mainly by NMR (1D and 2D) and mass spectrometry. Excisusin F ( 1) and inflexarabdonin E ( 3) showed potent inhibitory effects of LPS-induced nitric oxide production in RAW264.7 cells with the IC 50 value of 10.4 and 3.8 μM, respectively. 相似文献
13.
The lectin of Dioclea virgata (DvirL), both native and complexed with X-man, was submitted to X-ray diffraction analysis and the crystal structure was compared to that of other Diocleinae lectins in order to better understand differences in biological properties, especially with regard to the ability of lectins to induce nitric oxide (NO) production. An association was observed between the volume of the carbohydrate recognition domain (CRD), the ability to induce NO production and the relative positions of Tyr12, Arg228 and Leu99. Thus, differences in biological activity induced by Diocleinae lectins are related to the configuration of amino acid residues in the carbohydrate binding site and to the structural conformation of subsequent regions capable of influencing site-ligand interactions. In conclusion, the ability of Diocleinae lectins to induce NO production depends on CRD configuration. 相似文献
14.
Mitochondrial cytochrome oxidase is competitively and reversibly inhibited by inhibitors that bind to ferrous heme, such as carbon monoxide and nitric oxide. In the case of nitric oxide, nanomolar levels inhibit cytochrome oxidase by competing with oxygen at the enzyme's heme-copper active site. This raises the Km for cellular respiration into the physiological range. This effect is readily reversible and may be a physiological control mechanism. Here we show that a number of in vitro and in vivo conditions result in an irreversible increase in the oxygen Km. These include: treatment of the purified enzyme with peroxynitrite or high (μM) levels of nitric oxide; treatment of the endothelial-derived cell line, b.End5, with NO; activation of astrocytes by cytokines; reperfusion injury in the gerbil brain. Studies of cell respiration that fail to vary the oxygen concentration systematically are therefore likely to significantly underestimate the degree of irreversible damage to cytochrome oxidase. 相似文献
15.
Nitric oxide (NO) has diverse biological functions. Numerous studies have documented NO’s biosynthetic pathway in a wide variety of organisms. Little is known, however, about NO production in intraerythrocytic Plasmodium falciparum. Using diaminorhodamine-4-methyl acetoxymethylester (DAR-4M AM), a fluorescent indicator, we obtained direct evidence of NO and NO-derived reactive nitrogen species (RNS) production in intraerythrocytic P. falciparum parasites, as well as in isolated food vacuoles from trophozoite stage parasites. We preliminarily identified two gene sequences that might be implicated in NO synthesis in intraerythrocytic P. falciparum. We showed localization of the protein product of one of these two genes, a molecule that is structurally similar to a plant nitrate reductase, in trophozoite food vacuole membranes. We confirmed previous reports on the antiproliferative effect of NOS (nitric oxide synthase) inhibitors in P. falciparum cultures; however, we did not obtain evidence that NOS inhibitors had the ability to inhibit RNS production or that there is an active NOS in mature forms of the parasite. We concluded that a nitrate reductase activity produce NO and NO-derived RNS in or around the food vacuole in P. falciparum parasites. The food vacuole is a critical parasitic compartment involved in hemoglobin degradation, heme detoxification and a target for antimalarial drug action. Characterization of this relatively unexplored synthetic activity could provide important clues into poorly understood metabolic processes of the malaria parasite. 相似文献
16.
The fungal respiratory pathogen Histoplasma capsulatum evades the innate immune response and colonizes macrophages during infection. Although macrophage production of the antimicrobial effector nitric oxide (NO) restricts H. capsulatum growth, the pathogen is able to establish a persistent infection. H. capsulatum contains a P450 nitric oxide reductase homologue ( NOR1) that may be important for detoxifying NO during infection. To characterize the activity of this putative P450 enzyme, a 404 amino acid fragment of Nor1p was expressed in Escherichia coli and purified to homogeneity. Spectral characterization of Nor1p indicated that it was similar to other fungal P450 nitric oxide reductases. Nor1p catalyzed the reduction of NO to N 2O using NADH as the direct reductant. The KM for NO was determined to be 20 μM and the kcat to be 5000 min −1. Together, these results provide evidence for a protective role of a P450 nitric oxide reductase against macrophage-derived NO. 相似文献
17.
Nitric oxide (NO) plays a crucial role in the antimicrobial activity of host defense systems. We investigated the function of Pseudomonas aeruginosa NO reductase as a detoxifying enzyme in phagocytes. We found that the growth of the NO reductase-deficient mutant of P. aeruginosa under a microaerobic condition was inhibited by the exogenous NO. Furthermore, the intracellular survival assay within the NO-producing RAW 264.7 macrophages revealed that the wild-type strain survived longer than the NO reductase-deficient mutant. These results suggest that the P. aeruginosa NO reductase may contribute to the intracellular survival by acting as a counter component against the host's defense systems. 相似文献
18.
We examined the influence of S-nitrosoglutathione (GSNO) on alpha(IIb)beta(3) integrin-mediated platelet adhesion to immobilised fibrinogen. GSNO induced a time- and concentration-dependent inhibition of platelet adhesion. Inhibition was cGMP-independent and associated with both reduced platelet spreading and protein tyrosine phosphorylation. To investigate the cGMP-independent effects of NO we evaluated integrin beta(3) phosphorylation. Adhesion to fibrinogen induced rapid phosphorylation of beta(3) on tyrosines 773 and 785, which was reduced by GSNO in a cGMP independent manner. Similar results were observed in suspended platelets indicating that NO-induced effects were independent of spreading-induced signalling. This is the first demonstration that NO directly regulates integrin beta(3) phosphorylation. 相似文献
20.
A novel assay was developed for the measurement of nitric oxide. The proposed method is based on fluorescence, using a fluorophore-heme dual functionality probe (FHP). The heme group can serve as an effective NO-trap, due to its very fast reaction with NO and the high stability of the resulting complex. Since the heme is connected with a fluorophore as a part of the FHP dual-functionality probe, the heme can quench the fluorophore fluorescence, under certain conditions, by a singlet–singlet energy transfer mechanism. The proposed method was tested using myoglobin covalently modified by a stilbene label. The change in emission intensity of the stilbene fragment, versus an increasing concentration of NO precursors, clearly demonstrated the spectral sensitivity required to monitor the formation of a heme–NO complex in a concentration range of 10 nM–2 μM. Furthermore, the new methodology for NO measurement was also found to be an effective assay using tissues from rabbit and porcine trachea epithelium. The measured NO flux (in an initial time interval) in tissue sample from rabbit trachea epithelia and porcine trachea epithelia is 7.9 × 10− 12 mol/s × g and 3.0 × 10− 12 mol/s × g respectively. 相似文献
|