首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The preparation of cationic rhodium complexes of the types [RhL(IQNO)2]ClO4 (L  COD, COT and NBD) and [Rh(COD)(IQNO)L′]ClO4 (L′ = 4-NH2py, 4-NMe2py and PPh3) and the reactions of [Rh(COD)(IQNO)2]ClO4 with N- and P-donor ligands are described.  相似文献   

2.
Rh(I), Ir(I), Pd(II) and Pt(II) metal complexes of bis(2-diphenylphosphino)ethyl)benzylamine(DPBA) and bis(2-diphenylarsino)ethyl)benzylamine (DABA) have been synthesized using various starting materials. Reaction of RhCl(CO)(AsPh3)2 with DPBA or DABA in methanol resulted in the formation of cationic complexes of the composition, [Rh(CO)(L)]Cl (L = DPBA or DABA). Interaction of [IrCl(COD)]2 with DPBA in benzene resulted in the formation of a neutral complex [IrCl(DPBA)]. Reaction of [PdCl2(COD)] with the ligand DPBA in benzene resulted in a cationic complex of the composition [PdCl(DPBA)]Cl. Interaction of [PdCl(DPBA)]BPh4 with SnCl2 gave the complex [Pd(SnCl3)(DPBA)]BPh4. The ligands DPBA and DABA react with PtCl2(COD) in acetone to give neutral, Pt(II) complexes of the type, [PtCl2L] (L = DPBA or DABA). All the complexes were fully characterized by elemental analysis, conductivity measurements, IR and far-IR and 31P{1H} NMR spectral data.  相似文献   

3.
Reaction of [Rh(CO)2](μ-Cl)]2 with bis-1,2-(di{4-dimethylaminophenyl)phosphino-ethane (L) gives the monomeric Rh(I) complex of type cis-[RhCl(L)(CO)] that was separated from a side product of type [Rh(L)2]Cl, and characterised by X-ray crystallography. This complex reacts with methyl iodide at high temperature to give the Rh(III) acetyl complex, [Rh(I)2(C(O)Me)(L)], which was also structurally characterised by X-ray crystallography. There is no sign of quaternisation of the dimethylamino groups under these conditions. This complex is soluble in organic solvent and insoluble in the polar media used in methanol carbonylation (AcOH/H2O/MeOH). However, in the presence of HI, this complex is readily soluble in AcOH/H2O/MeOH, in contrast to [Rh(I)2(C(O)Me)(dppe)] and most other Rh-acetyl complexes of diphosphine ligands.  相似文献   

4.
Reaction of 2-imidazolyl-5,7-dimethyl-1,8-naphthyridine (L1) with [Rh(COD)Cl]2 (COD = 1,5-cyclooctadiene) affords the dinuclear complex [Rh(COD)Cl]2(μ-L1) (1). Elimination of chloride from the metal coordination sphere leads to a self-assembled tetranuclear macrocycle [Rh(COD)L1]4[ClO4]4 (2). A subtle alteration in the ligand framework results in the polymeric chain compound {Rh(COD)(L2)}n(PF6)n (3) (L2 = 2-imidazolyl-3-phenyl-1,8-naphthyridine). In all these complexes, the imidazole nitrogen and one of the naphthyridine nitrogen (away from the imidazole substituent) bind the metal. The ‘parallel’ and ‘perpendicular’ dispositions of nitrogens are observed in these compounds contributing to different Rh···Rh separations. The L1 ligand adopts planar configuration, whereas the naphthyridine-imidazole rings deviate from planarity in L2 yielding a polymeric structure. The extent of deviation is less in the polymeric structure {Mo2(OAc)4(L2)}n (4) in which the ligand exhibits weak axial interactions to the metal.  相似文献   

5.
Reaction of [Rh(CO)2I]2 (1) with MeI in nitrile solvents gives the neutral acetyl complexes, [Rh(CO)(NCR)(COMe)I2]2 (R=Me, 3a; tBu, 3b; vinyl, 3c; allyl, 3d). Dimeric, iodide-bridged structures have been confirmed by X-ray crystallography for 3a and 3b. The complexes are centrosymmetric with approximate octahedral geometry about each Rh centre. The iodide bridges are asymmetric, with Rh-(μ-I) trans to acetyl longer than Rh-(μ-I) trans to terminal iodide. In coordinating solvents, 3a forms mononuclear complexes, [Rh(CO)(sol)2(COMe)I2] (sol=MeCN, MeOH). Complex 3a reacts with pyridine to give [Rh(CO)(py)(COMe)I2]2 and [Rh(CO)(py)2(COMe)I2] and with chelating diphosphines to give [Rh(Ph2P(CH2)nPPh2)(COMe)I2] (n=2, 3, 4). Addition of MeI to [Ir(CO)2(NCMe)I] is two orders of magnitude slower than to [Ir(CO)2I2]. A mechanism for the reaction of 1 with MeI in MeCN is proposed, involving initial bridge cleavage by solvent to give [Rh(CO)2(NCMe)I] and participation of the anion [Rh(CO)2I2] as a reactive intermediate. The possible role of neutral Rh(III) species in the mechanism of Rh-catalysed methanol carbonylation is discussed.  相似文献   

6.
The preparation and properties of binuclear complexes containing the pyrazolate and azide groups as bridging ligands are reported. Representative formulae are: M2(μ-pz)(μ-N3)(CO)4, M2(μ-pz)(μ-N3)- (COD)2 (M = Rh or Ir), (CO)2Rh(μ-pz)(μ-N3)ML2 (M = Rh, L2 = COD, M = Ir, L = CO) and (η3-C3H5)- Pd(μ-pz)(μ-N3)Rh(CO)2. The crystal and molecular structure of the latter complex has been determined by single-crystal X-ray methods. Crystals are monoclinic, space group C2/c with cell constants a = 18.4750(10), b = 10.0351(3), c = 13.6399(6) Å, α = 90, β = 100.022(4), γ = 90°, and Z = 8. The final R and Rw values were 0.051 and 0.062 for 1417 observed reflexions. This binuclear compound packs in the crystal zig-zag chains of rhodium atoms, along the c axis, wtth intermolecular Rh···Rh contacts of 3.290(1) and 3.604(1) Å. The Rh···Rh···Rh angle is 163.16(4)°.  相似文献   

7.
The rhodium(III) complexes containing 2-thiopyridone (pySH) and its conjugate anion 2-thiopyridonato (pyS) as the only ligands, [Rh(pyS)2(pySH)2]Cl, [Rh(pyS)3(pySH)], and [Rh(pyS)3], react with the tertiary phosphines PMe2Ph, PPh3, Ph2PCH2PPh2 (dppm), and Ph2PCH2CH2PPh2 (dppe) to give mixed pyS/tertiary phosphine complexes of the type [Rh(pyS)3L], [Rh(pyS)3L2], and [Rh(pyS)2L2]ClO4 where L represents a single phosphorus donor atom. These compounds were characterized mainly by 1H and 31P NMR spectroscopy.  相似文献   

8.
Treatment of 7,8-benzo[h]quinoline (bhq-H, 1) and 10-methyl benzo[h]quinoline (bhq-Me, 3) with [Rh(C2H4)2(THF)2][BF4] resulted in double C-H activation of aliphatic and aromatic C-H bonds, yielding the Rh(III) complexes 4 and 5, respectively. The structures of 4 and 5 were revealed by X-ray diffraction. The reaction of 1 with two other slightly different rhodium precursors, [Rh(olefin)n(THF)2][BF4] (COE (n = 2), COD (n = 1)), led to completely different products, a dinuclear complex 7 and a trinuclear complex 6, respectively, which were characterized by X-ray diffraction. Complex 6 exhibits a rare linear Rh-Rh-Rh structure. Utilizing excess of 1 with [Rh(COD)(THF)2][BF4] led to the formation of a new product 8 with no C-H bond activation taking place. Additional C-H activation products of 1, cationic and neutral, in the presence of PiPr3 (9a, 9b and 10) are also presented.  相似文献   

9.
The polyether bridged diphosphines,
(n = 1,2) have been prepared in 60–70% yield by reduction of the corresponding diphosphinedioxides with Si2Cl6 or (i-Bu)2AlH. These diphosphinedioxides have been prepared in 75–90% yield by reaction of two equivalents of the appropriate
with one equivalent of di- and triethylene glycol ditosylate.In general, reaction between the diphosphines, Rh(COD)acac and HClO4 gives a mixture of species, cis-[Rh(COD)(PP)] [ClO4] being the main complex. This complex reacts with CO to η3-trans- [Rh(CO)(POP)] [ClO4].  相似文献   

10.
[Rh2Cl2(CO)4] reacts with the ligands L (2-pyridone, 2-thiopyridone, and the isomers 6-methyl-2-thiopyridone, 2-methylmercaptopyridine, and N-methylthiopyridone) to give initially, when L/Rh = 1, the bridged-cleaved compounds cis- [RhCl(CO)2L]. Further additions of 2-methyl- mercaptopyridine, N-methylthiopyridone, or 2-pyridone caused no further change, but 2- thiopyridone and 6-methyl-2-thiopyridone gave new cis-dicarbonyl species (L/Rh = 2) and eventually monocarbonyl species (L/Rh > 3). All these solutions are air-sensitive and air oxidation of a solution of [Rh2Cl2(CO)4] with an excess of 6-methyl-2- thiopyridone gave fac-[Rh(MeC5H3NS)3] the X-ray structure of which shows three equivalent chelating 6-methyl-2-thiopyridonato ligands.  相似文献   

11.
Stereodynamic ligands and complexes bearing functional groups to attach chiral or achiral binding sites and auxiliaries are highly attractive due to the interesting opportunities for controlling the stereochemical outcome of enantioselective transformations. In this study we report the preparation of a 3,3′‐functionalized biphenol (BIPOL) phosphoramidite ligand (PAm) bearing 3,5‐dichlorobenzoyl (3,5‐DCB) amide binding sites for noncovalent interactions. Upon coordination to [Rh(COD)2]BF4 this substitution pattern directs one of the 3,5‐DCB binding sites in close proximity of the metal center resulting in liberation of both COD ligands and the formation of a [Rh(PAm)2]BF4 complex. Coordination of the amide carbonyl unit was found to be reversible, since the complex acted as an active catalyst in the hydrogenation of dehydroamino acid derivatives. X‐ray crystallographic investigation revealed that the second 3,5‐DCB unit is capable of forming noncovalent π–π interactions connecting both phosphoramidite ligands.  相似文献   

12.
《Inorganica chimica acta》1989,156(2):251-256
The title compounds (1, X=F; 2, X=Cl) were obtained in quantitative yield by refluxing together (NBu4)2[Pd2(μ-Br)2(C6X5)4] and (NBu4)2[Pd2(μ-Br)2Br4]. Treatment of 1 or 2 with AgClO4 (Pd:Ag= 1:1) gave solutions which behaved as containing ‘Pd(C6X5)Br’. 1, 2 and the ‘Pd(C6X5)Br’ solutions were checked as precursors of mono-pentahalophenyl derivatives, yielding a variety of complexes [Pd(C6X5)Br(L-L)] (L-L=bipy, tmen, dpe, COD), [Pd(C6X5)BrL2] (L=p-TolNH2, py, PPh3, AsPh3, SbPh3), [Pd2(μ-Br)2(C6X5)2L2] (X=F, L=AsPh3; X=Cl, L=SbPh3) and (NBu4)[Pd(C6X5)Br2L] (X=F, L= py, AsPh3, SbPh3; X=Cl, L=p-TolNH2, py, PPh3, AsPh3, SbPh3). The solutions of ‘Pd(C6X5)Br’ proved to be the best general precursors of complexes [Pd(C6X5)BrL2] although complexes with OPPh3 could not be obtained.  相似文献   

13.
The Schiff base, non-symmetrical, compartmental ligand N-[5-(2-{[2-hydroxy-3-methoxy-phenyl-methylidene]-amino}-phenyl-sulfamoyl)-[1,3,4]thiadiazol-2-yl]-acetamide (H3L) has been prepared by condensation of the acetazolamide derivative N-[5-(2-amino-phenylsulfamoyl)-[1,3,4]thiadiazol-2-yl]-acetamide (3) with 2-hydroxy-3-methoxy-benzaldehyde. The complexation of H3L with cobalt(II) chloride in pyridine under aerobic conditions yielded [CoIII(HL)(py)2][CoII(py)Cl3] · CH3CH2OH (4). The single crystal X-ray structures of H3L and 4 are reported. In the mononuclear cation [CoIII(HL)(py)2]+ of 4 the octahedral cobalt(III) ion is bound at the inner, metal ion binding site, and the larger, empty, outer metal binding site is partly occupied by the hydrogen-bonded ethanol molecule of crystallisation.  相似文献   

14.
New and improved procedures are reported for the synthesis of [M(DBCOT)(μ-Cl)]2 (M = Rh, Ir; DBCOT = dibenzo[a,e]cyclooctatetraene) from MCl3(H2O)x or [M(COD)(μ-Cl)]2 and DBCOT. Treatment of [M(DBCOT)(μ-Cl)]2 with [(LAu)3(μ-O)]BF4(L = PPh3, PtBu3) yields the mixed-metal oxo complexes [M(DBCOT)(μ4-O)(AuL)2]2(BF4)2. Dimeric [Rh(DBCOT)(μ-OH)]2 is obtained from the reaction of [M(DBCOT)(μ-Cl)]2 with KOH in EtOH/H2O. All complexes except [Rh(DBCOT)(μ-Cl)]2 have been structurally characterized by single crystal X-ray diffraction.  相似文献   

15.
The reaction of [Pd(OAc)2(py)2] with [Li((OEt2)2.5)][B(C6F5)4] was conducted with intent to generate the cationic palladium complex [Pd(OAc)(py)3][B(C6F5)4], (2, py = pyridine). A single crystal structure of this material, however, reveals a 1-D polymer structure formed by the self-assembly of alternating dicationic ([Pd(py)4]2+) and neutral ([Pd(OAc)2(py)2]) palladium units bridged by acetato linkages to give [Pd(py)4][Pd(OAc)2(py)2][B(C6F5)4]2 (3). These two palladium sites are produced by disproportionation of the pyridine ligands in [Pd(OAc)(py)3][B(C6F5)4]. Proton NMR studies confirm the existence of a solvent dependent equilibrium between [Pd(py)4]2+, [Pd(OAc)2(py)2] and [Pd(OAc)(py)3]+.  相似文献   

16.
A series of Rh(III) mixed ligand polypyridine type complexes have been prepared. Complexes of the form [Rh(L)2(L)]n+, where n=2/3, L=2,2-bipyridine (bpy)/1,10-phenanthroline (phen) and L=3-(pyridin-2-yl)-1,2,4-triazole (Hpytr), 1-methyl-3-(pyridin-2-yl)-1,2,4-triazole (1M3pytr), 4-methyl-3-(pyridin-2-yl)-1,2,4-triazole (4Mpytr), 3,5-bis(pyridin-2-yl)-1,2,4-triazole (Hbpt), 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole (NH2bpt) and 3-(pyridin-2-yl)-5-phenyl-1,2,4-triazole (HPhpytr), have been prepared and their synthesis and characterisation are reported. Crystals of [Rh(bpy)2(Phpytr)](PF6)2 and [Rh(phen)2(NHbpt)](PF6)2 were obtained and their structures determined. Analysis of X-ray crystallographic data showed that coordination of the metal centre in [Rh(phen)2(NHbpt)](PF6)2 occurs via the amine moiety and a nitrogen of the pyridine ring. NMR studies illustrated that coordination to the NH2bpt ligand was also possible via a nitrogen of the triazole ring and the pyridine ring forming the complex [Rh(phen)2(NH2bpt)](PF6)3. The absorption and emission properties of the complexes studied were found to be π-π* in nature and preliminary evidence suggests that all complexes with the exception of [Rh(phen)2(NHbpt)](PF6)2 and [Rh(bpy)2(NHbpt)](PF6)2 are dual emitting at 77 K.  相似文献   

17.
The antibacterial activity and surfactant activity of the compounds trans-[Rh(L)4Cl2]Cl·nH2O increase in the order L = pyridine<4-methylpyridine<4-ethylpyridine<4-n-propylpyridine.As surfactants, the compounds are far more effective at reducing the interfacial tension, n-hexadecaneH2O, than the surface tension, H2Oair.The most effective and efficient surfactant in this series, trans-[Rh(4-n-propylpyridine)4Cl2]Cl·H2O, can cause the leakage of intracellular manganese ions from the gram-positive bacteria, Bacillus brevis ATCC 9999, at a concentration of 130 ppm but there is no observable effect on the retention of intracellular manganese ions at the minimum concentration required to prevent growth of this organism (~0.6 ppm at 23°C in nutrient broth).At 130 ppm, trans-[Rh(4-n-propylpyridine)4Cl2]Cl·H2O does not cause the loss of intracellular manganese ions from the gram-negative bacteria, Escherichia coli JS-1. In this case, a concentration of at least 63 ppm of this rhodium compound is required to prevent the growth of this organism in M9TUH medium at 35°C.On the basis of these results, it is suggested that gross membrane disruption effects caused by the surfactants trans-[Rh(L)4Cl2]Cl·nH2O are not directly responsible for their observed antibacterial action.  相似文献   

18.
Mononuclear [2.2]paracyclophane complexes of Rh and Ir, [M(η6-pcp)(η5-C5Me5)](BF4)2 (M=Rh (1) and Ir (2); pcp=[2.2]paracyclophane) were crystallized and their structures were first characterized crystallographically. On both pcp complexes the metal atom is bonded to the benzene ring on one side of the pcp ligand in the η6-coordination mode. The metal atom is also supported by the η5-C5Me5 ligand to afford a triple-decker sandwich structure. In Rh pcp complex 1 the average RhC(pcp) and RhC(C5Me5) distances are 2.284(2) and 2.161(2) Å, respectively. The average C(pcp)C(pcp) distance of 1.407(4) Å with the Rh atom is longer than that (1.388(4) Å) without a Rh atom. Similarly, the average IrC(pcp) and IrC(C5Me5) distances in Ir pcp complex 2 are 2.275(3) and 2.174(3) Å, respectively. The average C(pcp)C(pcp) distance of 1.410(4) Å with the Ir atom is longer than that (1.388(4) Å) without an Ir atom. It is interesting that the average interannular distances of 2.97 Å for 1 and 2 between two decks of the pcp ligand are shorter than that (3.09 Å) of the metal-free pcp ligand, indicative of the decrease of the repulsive π-interaction between benzene rings. The Rh pcp complex gave the well-resolved 1H NMR signals of [Rh(η6-pcp)(η5-C5Me5)]2+, whereas the Ir pcp complex exhibited two kinds of 1H NMR signals which were assigned as [Ir(η6-pcp)(η5-C5Me5)]2+ and [Ir26-pcp)(η5-C5Me5)2]4+ in (CD3)2CO at 23 °C.  相似文献   

19.
《Inorganica chimica acta》2004,357(9):2483-2493
Hexaaquarhodium(III) perchlorate has been found to be an interesting starting material for the preparation of rhodium compounds. New mononuclear hydrido- and carbonylrhodium compounds with bis(benzimidazol-2-ylmethyl)methylamine (L) and PPh3 of the type [Rh(H)L(PPh3)2](ClO4)2 (1) and [Rh(CO)L(PPh3)2](ClO4) (2) have been synthesized. The monomeric Rh(II) compound was identified as an intermediate. Complexes 1 and 2 were characterized by elemental analysis, mass spectrometry and IR, and NMR spectroscopies. The fluxional behaviour of 2 was studied by variable-temperature 1H and 31P{H} NMR experiments.  相似文献   

20.
Treatment of [MCl(CO)(PPh3)2] with K[N(R2PQ)2] afforded [M{N(Ph2PQ)2}(CO)(PPh3)] (M = Ir, Rh; Q = S, Se). The IR C=O stretching frequencies for [M(CO)(PPh3){N(Ph2PQ)2}] were found to decrease in the order S > Se. Treatment of [M(COD)Cl]2 with K[N(Ph2PQ)2] afforded [M(COD){N(Ph2PQ)2}] (COD = 1,5-cyclooctadiene; M = Ir, Rh; Q = S, Se). Treatment of [Ir(ol)2Cl] with afforded (ol = cyclooctene COE, C2H4; Q = S, Se). Oxidative addition of [Ir(CO)(PPh3){N(Ph2PS)2}] and [Ir(COD){N(Ph2PS)2}] with HCl afforded [Ir(H)(Cl)(CO)(PPh3){N(Ph2PS)2}] and trans-[Ir(H)(Cl)(COD){N(Ph2PS)2}], respectively. Oxidative addition of [Ir(CO)(PPh3){N(Ph2PS)2}] with MeI afforded [Ir(Me)(I)(CO)(PPh3){N(Ph2PS)2}]. Treatment of [Ir(COE)2Cl]2 with K[N(R2PO)2] afforded [Ir(COE)2{N(Ph2PO)2}] that reacted with MeOTf (OTf = triflate) to give [Ir{N(Ph2PO)2}(COE)2(Me)(OTf)]. The crystal structures of [Ir(CO)(PPh3){N(Ph2PS)2}], [M(COD){N(Ph2PS)2}] (M = Ir, Rh), (ol = COE, C2H4), trans-[Ir(H)(Cl)(COD){N(Ph2PS)2}], and [Ir(COE)2{N(Ph2PO)2}] have been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号