首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Dorsal–ventral patterning of the vertebrate retina is essential for accurate topographic mapping of retinal ganglion cell (RGC) axons to visual processing centers. Bone morphogenetic protein (Bmp) growth factors regulate dorsal retinal identity in vertebrate models, but the developmental timing of this signaling and the relative roles of individual Bmps remain unclear. In this study, we investigate the functions of two zebrafish Bmps, Gdf6a and Bmp4, during initiation of dorsal retinal identity, and subsequently during lens differentiation. Knockdown of zebrafish Gdf6a blocks initiation of retinal Smad phosphorylation and dorsal marker expression, while knockdown of Bmp4 produces no discernable retinal phenotype. These data, combined with analyses of embryos ectopically expressing Bmps, demonstrate that Gdf6a is necessary and sufficient for initiation of dorsal retinal identity. We note a profound expansion of ventral retinal identity in gdf6a morphants, demonstrating that dorsal BMP signaling antagonizes ventral marker expression. Finally, we demonstrate a role for Gdf6a in non-neural ocular tissues. Knockdown of Gdf6a leads to defects in lens-specific gene expression, and when combined with Bmp signaling inhibitors, disrupts lens fiber cell differentiation. Taken together, these data indicate that Gdf6a initiates dorsal retinal patterning independent of Bmp4, and regulates lens differentiation.  相似文献   

4.
Pituitary adenylate cyclase-activating polypeptide (PACAP) interacts with three types of PACAP/VIP-receptors. The PAC1-receptor accepts PACAP as a high affinity ligand but not vasoactive intestinal peptide (VIP) similarly binding to VPAC1- and VPAC2-receptors. To identify those amino acids not present in VIP defining PAC1-receptor selectivity of PACAP, radio receptor binding assays on AR4-2J cells were performed. It could be shown that PACAP(1-27) exhibited a distinct and much higher susceptibility to VIP-amino acid substitutions, compared to PACAP(1-38). Positions 4 and 5 seem to be most important for receptor binding of PACAP(1-27), whereas position 13 was identified to be crucial for maximal affinity of PACAP(1-38). PACAP(29-38) extension analogues of VIP revealed a stabilizing effect of the C-terminus of PACAP(1-38) on the optimal peptide conformation. The substitution analogues were also checked for their capacity to stimulate IP3 and cAMP formation in AR4-2J cells. Compared to PACAP(1-27) and PACAP(1-38), most analogues revealed potencies reduced congruously to their lower binding affinities. However, one of the analogues, PACAP(1-27) substituted in position 5, may represent a weak antagonist since this peptide was less potent in inducing second messengers than in label displacement. Our findings indicate that PACAP(1-27) and PACAP(1-38) differ in terms of their requirement of the amino acids in positions 4, 5, 9, 11 and 13 for maximal interaction with the PAC1-receptor.  相似文献   

5.
The retinal expression and distribution of pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP) and their receptors was investigated in early streptozotocin (STZ)-induced diabetic rats. Diabetes was induced in rats by STZ injection (60mg/kg i.p.). PACAP, VIP and their receptors in nondiabetic control and diabetic retinas were assayed by quantitative real-time PCR and Western blot 1 and 3 weeks after STZ injection. Effects of intravitreal treatment with PACAP38 on the expression of the two apoptotic-related genes Bcl-2 and p53 were also evaluated. PACAP and VIP, as well as VPAC1 and VPAC2 receptors, but not PAC1 mRNA levels, were transiently induced in retinas 1week following STZ. These findings were confirmed by immunoblot analyses. Three weeks after the induction of diabetes, significant decreases in the expression of peptides and their receptors were observed, Bcl-2 expression decreased and p53 expression increased. Intravitreal injection of PACAP38 restored STZ-induced changes in retinal Bcl-2 and p53 expression to nondiabetic levels. The initial upregulation of PACAP, VIP and related receptors and the subsequent downregulation in retina of diabetic rats along with the protective effects of PACAP38 treatment, suggest a role for both peptides in the pathogenesis of diabetic retinopathy.  相似文献   

6.
Multiple neuroactive substances are secreted by neurons and/or glial cells and modulate the sensitivity to cell death. In the developing retina, it has been shown that increased intracellular levels of cAMP protect cells from degeneration. We tested the hypothesis that the neuroactive peptide pituitary adenylyl cyclase-activating polypeptide (PACAP) has neuroprotective effects upon the developing rat retina. PACAP38 prevented anisomycin-induced cell death in the neuroblastic layer (NBL) of retinal explants, and complete inhibition of induced cell death was obtained with 1 nm. A similar protective effect was observed with PACAP27 and with the specific PAC1 receptor agonist maxadilan but not with glucagon. Photoreceptor cell death induced by thapsigargin was also prevented by PACAP38. The neuroprotective effect of PACAP38 upon the NBL could be reverted by the competitive PACAP receptor antagonist PACAP6-38 and by the specific PAC1 receptor antagonist Maxd.4. Molecular and immunohistochemical analysis demonstrated PAC1 receptors, and treatment with PACAP38 induced phospho-cAMP-response element-binding protein immunoreactivity in the anisomycin-sensitive undifferentiated postmitotic cells within the NBL. PACAP38 produced an increase in cAMP but not inositol triphosphate, and treatment with the cAMP-dependent protein kinase inhibitor R(p)-cAMPS blocked the protective effect of PACAP38. The results indicate that activation of PAC1 receptors by PACAP38 modulates cell death in the developing retina through the intracellular cAMP/cAMP-dependent protein kinase pathway.  相似文献   

7.
8.
9.
We have recently shown that corticotropin-releasing hormone (CRH) is a major thyrotropin (TSH)-releasing factor in amphibians, but we have also found that, besides CRH, other hypothalamic substances stimulate TSH secretion in frog. In order to characterize novel TSH secretagogues, we have investigated the effect of frog (Rana ridibunda) vasoactive intestinal polypeptide (VIP) (fVIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) (fPACAP38 and PACAP27) on TSH release from bullfrog (Rana catesbeiana) pituitary cells in primary culture. Incubation of pituitary cells for 24h with graded concentrations of fVIP, fPACAP38 and PACAP27 (10(-9) to 10(-6)M) induced a dose-dependent stimulation of TSH release with minimum effective doses of 10(-9)M for fVIP and 10(-8)M for fPACAP38 and PACAP27. The PAC1-R/VPAC2-R antagonist PACAP(6-38) (10(-7) and 10(-6)M) dose-dependently suppressed the stimulatory effects of fVIP and fPACAP38 (10(-7)M each). Likewise, this antagonist (10(-6) and 10(-5)M) dose-dependently attenuated the stimulatory effect of PACAP27 (10(-7)M). On the other hand, the VPAC1-R/VPAC2-R antagonist [d-pCl-Phe(6), Leu(17)]VIP (10(-6) and 10(-5)M) dose-dependently inhibited the stimulatory effect of fVIP (10(-9)M) and PACAP27 (10(-8)M), but did not affect the response to fPACAP38 (10(-8)M). These data indicate that, in amphibians, the activity of thyrotrophs can be regulated by VIP and PACAP acting likely through VPAC2-R and PAC1-R.  相似文献   

10.
Pituitary adenylate cyclase-activating polypeptide (PACAP) potentiates glucose-induced insulin release and increases cytosolic Ca2+ concentration ([Ca2+]i) in islet beta-cells in a concentration-dependent manner with two peaks at 10(-13) and 10(-9) M. PAC1 receptor (PAC1-R) and VPAC2 receptor (VPAC2-R) are expressed in pancreatic beta-cells and thought to be involved in insulin release. We aimed to determine the receptor types involved in the [Ca2+]i responses to 10(-13) and 10(-9) M PACAP. We measured [Ca2+]i in beta-cells and examined comparative effects of PAC1-R-selective agonist maxadilan, its antagonist M65, VPAC2-R-selective agonist Ro25-1553, and native ligands of PACAP and VIP. In the presence of 8.3 mM glucose, maxadilan, Ro25-1553, PACAP, and VIP at 10(-13) and 10(-9) M all increased [Ca2+]i. PACAP and maxadilan elicited greater effects at 10(-9) M than at 10(-13) M both in the incidence and amplitude of [Ca2+]i responses. For VIP and Ro25-1553, in contrast, the effects at 10(-9) and 10(-13) M were comparable. Furthermore, the amplitude of [Ca2+]i responses to 10(-9) M PACAP, but not 10(-13) M PACAP, was suppressed by M65. The results suggest that VPAC2-R and PAC1-R contribute equally to [Ca2+]i responses to sub-picomolar concentrations of PACAP, while PAC1-R has greater contribution to [Ca2+]i responses to nanomolar concentrations of this peptide.  相似文献   

11.
The distribution of pituitary adenylate cyclase-activating polypeptide (PACAP) and PACAP receptors in the brain of amphibians has been previously described. In the present study, we have investigated the ontogeny of the selective PACAP receptor, PAC1-R, and the PACAP-vasoactive intestinal polypeptide (VIP) mutual receptor, VPAC1-R, in frog embryos by whole-mount in situ hybridization histochemistry. At stage 20, expression of PAC1-R and/or VPAC1-R mRNAs was detected in the brain, the auditory vesicles, the external gills, the buds of the lateral lines and the coelomatic cavity. At stage 25, PAC1-R and/or VPAC1-R mRNAs were observed in the buds of the orbital lateral line, the pancreas and heart. At stage 30, PAC1-R and VPAC1-R mRNAs were widely distributed in the telencephalon and diencephalon as well as in the bud of the lateral line, the heart and the pancreas. The anatomical distribution of PAC1-R and VPAC1-R mRNAs, although similar, did not totally overlap, indicating that PACAP and VIP may exert differential effects in frog during development.  相似文献   

12.
13.
Glutamate neurotoxicity is one of the causative factors leading to neural degeneration including retina. Inhibition of NMDA receptors has been shown neuroprotective effects. However, specifically inhibition of glycine subunit in NMDA receptors and its effects on retina neural protection has not been tested. In this study, using a glycine site‐specific NMDA receptor antagonist, we investigated its neuroprotective effects on rat retinal ganglion cells (RGCs) from a transient ischemic injury and its possible underlying mechanisms. Following an ischemia/reperfusion injury the structural damages of rat retinas were assessed by an immunofluorescence method and the apoptosis of retinal neural cells was evaluated by using a terminal deoxynucleotidyl transferase‐mediated dUTP nick‐end labeling (TUNEL) method. The survived RGCs were labeled by retrograde manner and counted on whole‐mounted retinas. In the presence of glycine site‐specific NMDA receptor antagonist, the thickness of retina was sustained, especially in the inner nuclear layers compared with mock controls. While a significantly higher numbers of TUNEL‐positive apoptotic cells and fewer of RGCs were observed in the retina without the glycine antagonist, indicating its strong protective roles. Some apoptotic factors such as Bax, Bcl‐2, CAMK II, COX1, COX4, Caspase‐3, and GRIN1 gene have been tested from retinal samples with or without the glycine antagonist. A significantly lower of expressions of Bax, CAMK II, COX1, COX4, Caspase‐3, and GRIN1 have been shown in the retinas with the antagonist. Bcl‐2/Bax ratio was significantly higher with the antagonist, suggested that the glycine site‐specific NMDA receptor antagonist protecting RGC death might through inhibition of apoptotic signaling. J. Cell. Physiol. 223:819–826, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Axial eye patterning determines the positional code of retinal ganglion cells (RGCs), which is crucial for their topographic projection to the midbrain. Several asymmetrically expressed determinants of retinal patterning are known, but it is unclear how axial polarity is first established. We find that Fgf signals, including Fgf8, determine retinal patterning along the nasotemporal (NT) axis during early zebrafish embryogenesis: Fgf8 induces nasal and/or suppresses temporal retinal cell fates; and inhibition of all Fgf-receptor signaling leads to complete retinal temporalization and concomitant loss of all nasal fates. Misprojections of RGCs with Fgf-dependent alterations in retinal patterning to the midbrain demonstrate the importance of this early patterning process for late topographic map formation. The crucial period of Fgf-dependent patterning is at the onset of eye morphogenesis. Fgf8 expression, the restricted temporal requirement for Fgf-receptor signaling and target gene expression at this stage suggests that the telencephalic primordium is the source of Fgf8 and acts as novel signaling center for non-autonomous axial patterning of the prospective neural retina.  相似文献   

15.
The purpose of this study was to determine whether the MPAPO, derived peptide of pituitary adenylate cyclase-activating polypeptide (PACAP), would protect trigeminal ganglion cells (TGCs) and the mice retinas from a hypoxic insult. The nerve endings of the ophthalmic nerve of the trigeminal nerve are widely distributed in eye tissues. In TGCs after hypoxia exposure, we discovered that reactive oxygen species level, the contents of cytosolic cytochrome c and cleaved-caspase-3 were significantly increased, in the meanwhile, m-Calpain was activated and cytoskeleton proteins (αII-spectrin and Synapsin) were degraded, neurites of TGCs disappeared, but these effects were reversed in TGCs treated with MPAPO. The structure of the mice retinas after hypoxic exposure was disordered. Increased lipid peroxidation (LPO), decreased glutathione (GSH) levels, and decreased superoxide dismutase (SOD) activity, positive cells of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), the disintegration of nerve fibers was examined in the retinas following a hypoxic insult. Disordered retina was attenuated with MPAPO eye drops, as well as hypoxia-induced apoptosis in the developing retina, increase in LPO, and decrease in GSH levels and SOD activity of the retina. Moreover, the disintegrated retinal nerve fibers were reassembled after MPAPO treatment. These results suggest that hypoxia induces oxidative stress, apoptosis, and neurites disruption, while MPAPO is remarkably protective against these adverse effects of hypoxia in TGCs and the developing retinas by specifically activating PAC1 receptor.  相似文献   

16.
Pituitary adenylate cyclase-activating polypeptide (PACAP) has widespread physiological/pathophysiological actions and there is increased interest for its use therapeutically, especially in the CNS (neuroprotection). Unfortunately, no selective PACAP-analogs exist for PACAP-preferring PAC1-receptors, primarily because of its high sequence identity to VIP and particularly, because of the inability of structure–function studies to separate the pharmacophore of PAC1-R from VPAC1-R, which has high affinity for PACAP and VIP. The present study attempted to develop PAC1-R-selective agonists primarily by making conformationally restricted PACAP-analogs in positions important for receptor-selectivity/affinity. Forty-six PACAP-related-analogs were synthesized with substitutions in positions 1–4, 14–17, 20–22, 28, 34, 38 and receptor-selectivity determined in PAC1-R,VPAC1-R,VPAC2-R-transfected or native cells from binding or cAMP-generation experiments. Fifteen PACAP-analogs had 6–78-fold higher affinities for PAC1-R than VPAC1-R and 13 were agonists. Although binding-affinities correlated significantly with agonist potency, the degree of receptor-spareness varied markedly for the different PACAP-analogs, resulting in selective potencies for activating the PAC1 receptor over the VPAC1 receptor from 0- to 103-fold. In addition, a number of PACAP-analogs were identified that had high selectivity for PAC1-R over VPAC2-R as well as PACAP-analogs that could prove more useful therapeutically because of substitutions known to extend their half-lives (substitutions at potential sites of proteolysis and attachment of long-chain fatty acids). This study provides for the first time a separation of the pharmacophores for PAC1-R and VPAC1-R, resulting in PACAP-related analogs that are PAC1-R-preferring. Some of these analogs, or their modifications, could prove useful as therapeutic agents for various diseases.  相似文献   

17.
Retinal ganglion cells (RGCs) play important roles in retinogenesis. They are required for normal retinal histogenesis and retinal cell number balance. Developmental RGC loss is typically characterized by initial retinal neuronal number imbalance and subsequent loss of retinal neurons. However, it is not clear whether loss of a specific non-RGC cell type in the RGC-depleted retina is due to reduced cell production or subsequent degeneration. Taking advantage of three knockout mice with varying degrees of RGC depletion, we re-examined bipolar cell production in these retinas from various aspects. Results show that generation of the cone bipolar cells is correlated with the existing number of RGCs. However, generation of the rod bipolar cells is unaffected by RGC shortage. Results report the first observation that RGCs selectively influence the genesis of subsequent retinal cell types.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号