首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Inorganica chimica acta》1986,119(2):187-190
Mono-ligand complexes MnLX2 (L = pyridine, 4-pyrrolidinopyridine, X = Cl, Br, I, NCS) have been prepared. The pyridine complexes contain only bridging halide and pseudohalide groups, whereas the 4-py complexes contain both bridging and terminal bound anions. Ethanol is coordinated in Mn(EtOH)X2 (X=C1, Br) and Mn(EtOH)2X2 (X=I, NCS). Although the MnLX2 complexes have the same stoichiometry as the Mn(PR3)X2complexes none show any activity towaxds binding dioxygen either in the solid state or in solution.  相似文献   

2.
The 1,1-dimethylhydrazones of cyclohexane-1,2-dione (CDDMH), 2-acetylpyridine (APDMH) and 2-benzoylpyridine (2BPDMH) from tetrahedral complexes MX2L (M = Co(II), Zn(II); X = Cl, Br) in which the ligand is chelating through the methylene nitrogen atoms (CDDMH) or one methylene and one pyridine nitrogen atom (APDMH, 2BPMDH). Octahedral complexes CoX2L2 (X = Cl, NCS; L = APDMH, 2BPDMH) have also been isolated but no tris-ligand complexes. The ligand 4-benzoylpyridine-dimethylhydrazone (4BPDMH) does not chelate but forms tetrahedral complexes MX2(4BPDMH)2 in which the unidentate ligand co-ordinates through the pyridine nitrogen atom.  相似文献   

3.
Two new ruthenium (II) complexes containing coupled di(2-pyridyl) and 1,3-dithiole units, cis-[Ru(Medpydt)2(NCS)2] (2, Medpydt = dimethyl 2-(di(2-pyridyl)methylene)-1,3-dithiole-4,5-dicarboxylate) and cis-[Ru(H2dpydt)2(NCS)2] (3, H2dpydt = 2-(di(2-pyridyl)methylene)-1,3-dithiole-4,5-dicarboxylate), have been synthesized and characterized. The structure of complex 2 has been determined by X-ray crystallography. There exist intermolecular H-bonding interactions between carbomethoxy groups on neighboring pyridine rings giving rise to 2D H-bonded arrays. The metal-to-ligand charge-transfer (MLCT) absorptions were observed around 480 nm. Redox properties of ruthenium complexes have been investigated by cyclic voltammetry. Solar cells involving thin films of anatase TiO2 impregnated with cis-[Ru(H2dpydt)2(NCS)2] were prepared, and the photovoltaic performance was preliminarily investigated.  相似文献   

4.
Iron(II) complexes of the type [Fe(L)(NCS)2] with the tripodal ligand apme (apme = N1-(2-aminoethyl)-N1-(2-pyridyl-methyl)-1,2-ethanediamine) as well as with its derivatives were prepared and structurally characterized. The bond distances thus obtained showed that all complexes investigated were high-spin at the respective temperature. Furthermore [Fe(Me4apme)(NCS)2] was analyzed using Mößbauer spectroscopy that showed that this complex remains in its high-spin state over the entire temperature range.  相似文献   

5.
Condensations of 2-(2-aminoethyl)pyridine with 4-methylimidazole-5-carboxaldehyde and 1-methyl-2-imidazolecarboxaldehyde generate the tridentate N donor ligands L and L′ respectively. Reactions of Cu(NCS)2 with L and L′ yield respectively CuL(SCN)(NCS) (1) containing a CuN4S core and CuL′(NCS)2 (2) having a CuN5 core. Both the cores are square pyramidal with SCN bound in 1 at the axial position through the S end. This differential behaviour of SCN in the two complexes despite the ligands being very similar, is investigated by DFT calculations at the B3LYP/TZV level. It is found that DFT calculations predict isolation of the Cu(ligand)(NCS)2 species for both the ligands L and L′. Presence of an offsetting intermolecular H-bonding between the N atom of the thiocyanate and the N-H proton of the ligand L of an adjacent molecule makes the binding of SCN via the S end feasible in 1 resulting in the H-bonded dimer Cu2L2(SCN)2(NCS)2. The strength of the H-bond is estimated as 27.1 kJ mol−1 from the DFT calculations. The question of such H-bonding does not arise with L′ as it lacks in a similar H atom. Dimeric 1 represents a case of two non-interacting spins.  相似文献   

6.
Amphiphilic ligands 4′-((4-(5-pyridin-4-yloxy)pentyloxy)styryl)-4-methyl-2,2′-bipyridine (L1), 4,4′-bis((E)-4-(5-(pyridin-4-yloxy)pentyloxy)styryl)-2,2′-bipyridine (L2), 4′-(4-(5-(4′-cyano-4-biphenoxy)pentyloxy)styryl)-4-methyl-2,2′-bipyridine (L3), and 4′-(4-(5-(zinc tetrakis-5,10,15-tritolyl-20-(4-hydroxyphenyl)porphyrin)pentyloxy)styryl)-4-methyl-2,2′-bipyridine (L4) and their heteroleptic ruthenium(II) complexes of the types [Ru(L1)(L)(NCS)2] (D20), [Ru(L2)(L)(NCS)2] (D21), [Ru(L3)(L)(NCS)2] (D22), and [Ru(L4)(L)(NCS)2] (D23) (where L = 4,4′-bis(carboxylic acid)-2,2′-bipyridine) have been synthesized, as photosensitizers for nanocrystalline dye-sensitized solar cells. All complexes D20-D23 exhibit a broad MLCT band around 520-530 nm in DMF and an emission band around 740-790 nm in DMF. We have studied photovoltaic performances based on the newly synthesized dyes. Under standard AM 1.5 sunlight, the dye D20 gave a short-circuit photocurrent density of 13.31 mA/cm2, an open-circuit voltage of 0.64 V, and a fill factor of 0.68, corresponding to an overall conversion efficiency of 5.81%.  相似文献   

7.
The preparation and characterisation of complexes of 2-amino-5-nitrothiazole (ANT) with Co(II), Ni(II), Cu(II), Cd(II), Cu(I) and Ag(I) are described. From spectral data it is inferred that the complexes fall into two groups: those in which ANT is bound through the ring nitrogen, and those in which the exocyclic amine group is bound to the metal ion. In the former group are complexes of the type MCl2(ANT)2 (M  Co, NJ, Cu, Cd); compounds containing methanol, NiBr2(ANT)3(MeOH), Ni- (NCS)2(ANT)2(MeOH)2, Ni(NCS)2(ANT)2(MeOH); and AgNO3(ANT)2, Cu(AcO)2(ANT) and CuCl- (ANT)2 In the latter group are complexes prepared from and containing N,N′-dimethylformamide: CoSO4(ANT)2(DMF)2, NiSO4(ANT)2(DMF)2, NiCl2- (ANT)2(DMF)2, CuSO4(ANT)(DMF) and CuCl2- (ANT)(DMF). The probable structures of the nickel and cobalt complexes are discussed. The coordination chemistry of the thiazole group and the effect of the electron withdrawing nitro-group are discussed.  相似文献   

8.
The reaction of [Mn{SSi(OBut)3}2(MeOH)4] with pyridine and its three monosubstituted methyl derivatives leads to the formation of two distinct types of complexes, although both with the MnO2NS2 kernel. The first two compounds (with pyridine or 2-picoline) contain two silanethiolate ligands, heterocyclic base and two methanol molecules. In the second case (3- and 4-picoline) the role of O-donor and simultaneously S-donor ligand is fulfilled by tri-tert-butoxysilanethiolate rest which under favorable conditions can serve as a chelating agent.  相似文献   

9.
Copper(II) complexes with the non-steroidal anti-inflammatory drugs (NSAIDs) naproxen and diclofenac have been synthesized and characterized in the presence of nitrogen donor heterocyclic ligands (2,2′-bipyridine, 1,10-phenanthroline or pyridine). Naproxen and diclofenac act as deprotonated ligands coordinated to Cu(II) ion through carboxylato oxygens. The crystal structures of (2,2′-bipyridine)bis(naproxenato)copper(II), , (1,10-phenanthroline)bis(naproxenato)copper(II), and bis(pyridine)bis(diclofenac)copper(II), have been determined by X-ray crystallography. The UV study of the interaction of the complexes with calf-thymus DNA (CT DNA) has shown that the complexes can bind to CT DNA with (2,2′-bipyridine)bis(naproxenato)copper(II) exhibiting the highest binding constant to CT DNA. Competitive study with ethidium bromide (EB) indicates that the complexes can displace the DNA-bound EB suggesting strong competition with EB. The cyclic voltammograms of the complexes recorded in the presence of CT DNA have shown that the complexes can bind to CT DNA by the intercalative binding mode which has also been verified by DNA solution viscosity measurements. The NSAID ligands and their complexes exhibit good binding propensity to human or bovine serum albumin protein having relatively high binding constant values. The biological properties of the previously reported complexes [Cu2(naproxenato)4(H2O)2], [Cu2(diclofenac)4(H2O)2] and [Cu(naproxenato)2(pyridine)2(H2O)] have been also evaluated. The dinuclear complexes exhibit similar affinity for CT DNA as the 2,2′-bipyridine or 1,10-phenanthroline containing complexes. The pyridine containing complexes exhibit the lowest affinity for CT DNA and the lowest ability to displace EB from its EB-DNA complex.  相似文献   

10.
The coordination of 2-cyanopyridine molecule to Ni(II) atom promotes a nucleophilic addition of solvent molecules (water, methanol, ethanol) to the nitrile group. The addition of water leads to the formation of solid complexes containing pyridine-2- carboxamide as a chelate ligand. An analogous reaction of 2-cyanopyridine with NiX2 (X = Cl, Br, I, NCS) in methanolic solutions gives, however, complexes containing two or three molecules of O-methylpyridine-2-carboximidate. No nucleophilic addition of solvent occurred with 3- and 4-cyanopyridine under the same reaction conditions.The complexes under study exhibit an octahedral geometry. The structure and the mode of the ligand coordination have been determined by IR spectra.  相似文献   

11.
Several iridium complexes containing trifluoromethyl-substituted phenyl pyridine based ligands have been synthesized and characterized to try to investigate the effect of trifluoromethyl group and its position on physical properties. The complexes have the general structure of (C-N)2Ir(LX), where the C-N are 2-phenylpyridine (ppy), 2-(3,5-bis-trifluoromethylphenyl)pyridine (fmppy), 2-(3,5-bis-trifluoromethylphenyl)-4-methylpyridine (fmpmpy), 2-(3,5-bis-trifluoromethylphenyl)-5-trifluoromethylpyridine (tfmppy) and the LX are 2-picolinic acid (pic) and acetylacetonate (acac). The (tfmppy)2Ir(pic) was characterized using X-ray crystallography. The absorption, emission, and thermostability of the complexes were systematically investigated. Introduction of CF3 substituents into 2-phenylpyridine in (ppy)2Ir(pic) lead to some decrease in the sublimation temperature, which is more suitable to devices fabrication. The experimental results revealed that the emissive colors of these complexes could be finely tuned by suitable incorporation of trifluoromethyl substituents on the 2-phenylpyridine ligand, obtaining bright green-blue emission λmax values from 471 to 489 nm in CH2Cl2 solution at room temperature, with high solution quantum efficiencies ranging from 0.37 to 1.89 relative to Ir(ppy)3.  相似文献   

12.
New copper(II) complexes of general empirical formula, Cu(mpsme)X · xCH3COCH3 (mpsme = anionic form of the 6-methyl-2-formylpyridine Schiff base of S-methyldithiocarbazate; X = Cl, N3, NCS, NO3; x = 0, 0.5) have been synthesized and characterized by IR, electronic, EPR and susceptibility measurements. Room temperature μeff values for the complexes are in the range 1.75-2.1 μB typical of uncoupled or weakly coupled Cu(II) centres. The EPR spectra of the [Cu(mpsme)X] (X = Cl, N3, NO3, NCS) complexes reveal a tetragonally distorted coordination sphere around the mononuclear Cu(II) centre. We have exploited second derivative EPR spectra in conjunction with Fourier filtering (sine bell and Hamming functions) to extract all of the nitrogen hyperfine coupling matrices. While the X-ray crystallography of [Cu(mpsme)NCS] reveals a linear polymer in which the thiocyanate anion bridges the two copper(II) ions, the EPR spectra in solution are typical of a magnetically isolated monomeric Cu(II) centres indicating dissociation of the polymeric chain in solution. The structures of the free ligand, Hmpsme and the {[Cu(mpsme)NO3] · 0.5CH3COCH3}2 and [Cu(mpsme)NCS]n complexes have been determined by X-ray diffraction. The {[Cu(mpsme)NO3] 0.5CH3COCH3}2 complex is a centrosymmetric dimer in which each copper atom adopts a five-coordinate distorted square-pyramidal geometry with an N2OS2 coordination environment, the Schiff base coordinating as a uninegatively charged tridentate ligand chelating through the pyridine and azomethine nitrogen atoms and the thiolate, an oxygen atom of a unidentate nitrato ligand and a bridging sulfur atom from the second ligand completing the coordination sphere. The [Cu(mpsme)(NCS)]n complex has a novel staircase-like one dimensional polymeric structure in which the NCS ligands bridge two adjacent copper(II) ions asymmetrically in an end-to-end fashion providing its nitrogen atom to one copper and the sulfur atom to the other.  相似文献   

13.
《Inorganica chimica acta》1988,144(2):237-240
Two new complexes of 1,3-dimethyl-2(3H)- imidazolethione (dmit) and lead(II) halides have been synthesized and characterized. Addition of dmit in molar excess to PbX2 (X = Cl, Br, I, SCN) solutions in hot water yielded PbCl2dmit and Pb(NCS)2(dmit)2. No adducts were isolated for PbBr2 or PbI2. Complexes were characterized via standard methods including both solid state and solution state information. Both complexes were high melting solids and appeared to be polymeric in the solid state, and IR data indicated polymerization occurred through halogen (of pseudohalogen) bridges only. Thiocyanate was N-bonded to the metal. Solution studies concluded that both were dissociated in DMF with PbCl2dmit being a non-electrolyte and Pb(NCS)2(dmit)2 acting like a 1:1 electrolyte.  相似文献   

14.
We have prepared and structurally characterized six-coordinate Fe(II), Co(II), and Ni(II) complexes of types [MII(HL1)2(H2O)2][ClO4]2 (M = Fe, 1; Co, 3; and Ni, 5) and [MII(HL2)3][ClO4]2 · MeCN (M = Fe, 2 and Co, 4) of bidentate pyridine amide ligands, N-(phenyl)-2-pyridinecarboxamide (HL1) and N-(4-methylphenyl)-2-pyridinecarboxamide (HL2). The metal centers in bis(ligand)-diaqua complexes 1, 3 and 5 are coordinated by two pyridyl N and two amide O atoms from two HL1 ligands and six-coordination is completed by coordination of two water molecules. The complexes are isomorphous and possess trans-octahedral geometry. The metal centers in isomorphous tris(ligand) complexes 2 and 4 are coordinated by three pyridyl N and three amide O atoms from three HL2 ligands. The relative dispositions of the pyridine N and amide O atoms reveal that the pseudo-octahedral geometry have the meridional stereochemistry. To the best of our knowledge, this work provides the first examples of structurally characterized six-coordinate iron(II) complexes in which the coordination is solely by neutral pyridine amide ligands providing pyridine N and amide O donor atoms, with or without water coordination. Careful analyses of structural parameters of 1-5 along with that reported in the literature [MII(HL1)2(H2O)2][ClO4]2 (M = Cu and Zn) and [CoIII(L2)3] have allowed us to arrive at a number of structural correlations/generalizations. The complexes are uniformly high-spin. Spectroscopic (IR and UV/Vis) and redox properties of the complexes have also been investigated.  相似文献   

15.
New complexes of the general compositions M(LH)X2 (M = Co, Zn; X = Cl, Br, I), Zn(LH)(NCS)2, Zn(LH)(NO3)2 ·H2O, Cu(LH)X2 (X = Cl, Br, ONO2), Ni(LH)Cl2·H2O, Co(LH)2X2 (X = NCS, ONO 2), Ni(LH)2X2 (X = Cl, Br, NCS, ONO2), Pt(LH)2Cl2 and MLCl·nH2O (M = Ni, Cu, Pd; n = 2, 3), where LH = N-(2-pyridyl)pyridine-2′-carboxamide, have been isolated. The complexes were characterized by elemental analyses, conductivity measurements, X-ray powder patterns, thermal methods, magnetic susceptibilities and spectroscopic (IR, ligand field, 1H NMR) studies. Pseudotetrahedral, square planar, square pyramidal and distorted octahedral stereochemistries are tentatively assigned in the solid state. Most complexes appear to be monomeric, while polymeric structural types are attributed for Ni(LH)Cl2·H2O and CuLCl·2H2O. The neutral amide group of LH is coordinated to Co(II), Ni(II), Cu(II) and Zn(II) through oxygen, while N-coordination is observed for PdLCl·2H2O. The amide group of L is bound to different Cu(II) atoms in CuLCl·2H2O through both its nitrogen and oxygen. The rare O-coordination of the deprotonated amide bound is proposed for NiLCl· 3H2O. The N(1) atom is not involved in coordination except in the complexes Ni(LH)Cl2·H2O, NiLCl· 3H2O and CuLCl·2H2O, where both pyridine residues are coordinated. The variation in structural types observed is believed to be a consequence of the stereochemical adaptability of the ligand to the electronic demands of the metal ions.  相似文献   

16.
A novel long chain diphosphine ligand with a pyridine-diamino bridge, 2,6-bis(N-benzyl-N-diphenylphosphinomethylamino)pyridine (PNP1), was prepared conveniently using the Mannich reaction of HPPh2 with paraformaldehyde and 2,6-bis(N-benzylamino)pyridine in high yield. Reactions of the ligand with metal complexes, M(COD)Cl2 (M = Pd, Pt), M(CH3CN)4ClO4 (M = Cu, Ag) and M(CO)6 (M = Mo, W) afforded the corresponding 10-numbered monometallic macrocyclic complexes with an uncoordinated pyridyl bridge. The monometallic chelate PdCl2(PNP1) continued to react with Ag+ or Cu+ giving the μ-Cl bridged bicyclic metallic complex (μ-Cl)2[PdCl(PNP1)]2. The diphenylphosphine group coordinated with metal ion in cis-form in all the 10-numbered macrocyclic metal complexes. Ligand PNP1 and another known analogous 2,6-bis(N-diphenylphosphinoamino)pyridine (PNP2) reacted with Au(SMe2)Cl giving the corresponding bimetallic Au2Cl2(PNP1) and Au2Cl2(PNP2), respectively. The latter bimetallic complexes continued to react with Ag+ and diphosphine ligand to give the corresponding bimetallic macrocyclic complexes Au2(ligand)2(ClO4)2. All the complexes were characterized and the structures of some complexes were confirmed by X-ray single crystallography determination.  相似文献   

17.
《Inorganica chimica acta》1988,141(1):125-130
The use of Ru(DMSO)4Cl2 and Ru(PY)4Cl2 (DMSO=dimethyl sulphoxide; Py=pyridine) in synthesizing mixed ligand complexes is reported. The bidentate ligands used are of the diimine type, namely, 2,2′-bipyrimidine (bpm); 3,6-di-(2-pyridyl)-1,2,4, 5-tetrazine (dpt); 2,3-bis(2-pyridyl)-5,6-dihydropyrazine (dhp); 2,3-bis(2-pyridyl)-pyrazine (dpp); 2,3-bis-(2-pyridyl)-quinoxaline (dpq); 2,3,5,6-tetrakis(2-pyridyl)-pyrazine (tpp). Characterization of the complexes has been accomplished using elemental analysis, conductivity, IR and UV-Vis spectroscopy.  相似文献   

18.
Cobalt(II), copper(II) and nickel(II) complexes of the ligands 1,5,9-triazacyclotetradecane (tatd) and 1,5,9-triazacyclopentadecane (tapd), which have 8- and 9-membered chelate rings, respectively, have been prepared and characterised. Crystal structures of [Ni(tatd)(NCS)2]·H2O and [Co(tatd)(NCS)2] have been determined. The nickel(II) complex has a distorted square pyramidal geometry and the cobalt(II) complex has a distorted trigonal bipyramidal geometry. Agostic interactions between a hydrogen on the central carbon of the 8-membered chelate ring and the metal ion are observed in both complexes.  相似文献   

19.
The reactions of [Cu(NCCH3)4]BF4 with 2,6-(dicyclohexylphosphinomethyl)pyridine and 2-(diisopropylphosphinomethyl)-1-methylimidazole afford Cu(I) species that convert slowly to the Cu(II) complexes [CuCl{Cy2P(O)CH2pyCH2P(O)Cy2}(H2O)]BF4 and [Cu{MelmCH2P(O)Pri2}2](BF4)2, respectively, when their solutions are exposed to air. The structures of the Cu(II) complexes have been established by X-ray crystallography.  相似文献   

20.
New binucleating ligands, bis(isocyclam) with a linear methylene chain bridge, n-bicy (n = 2, 3, 4) and their copper(II) complexes, Cu2(n-bicy)(ClO4)4· xH2O and Cu2(n-bicy)(NCS)4·yH2O have been synthesized. The magnetic moments of these complexes were normal, but the presence of magnetic coupling between copper(II) ions were clearly demonstrated by the hyperfine structure in the ESR spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号