首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structures of two modifications of gadoliniumdicyclopentadienidebromide, [Gd(C5H5)2Br]2 (I) and 1[Gd(C5H5)2Br] (II) have been determined from X-ray diffraction data. I crystallizes in the [Sc(C5H5)2Cl]2-type structure, space group P21/c, with a=14.110(3), b=16.488(3), c= 13.765(3) Å, β=93.25(2)°, V=3197(2) Å3, and Dc= 2.289 g cm−3 for Z=6 molecules. II crystallizes in space group P21/c with a=5.946(7), b=8.447(5), c=20.239(9) Å, β=90.11(4)°, V=1020(2) Å3, Dc=2.392 g cm−3 for Z=4 formula units. The structures have been refined by full matrix least-squares techniques to conventional R factors of 0.034 for 3014 (I) and 1964 (II) reflections (with I>2σ(I)). I consists of dimers with two bromine bridges (mean GdBr 2.872 Å). II has a double chain structure with alternating juxtaposition of gadolinium and bromine atoms (GdBr 2.912 Å (once) and 3.133 Å (twice)). The arrangement of the C5H5 groups with regard to the metal η5 fashion) is nearly identical in I and II (mean GdC 2.63(1) Å (I) and 2.62(1) Å (II)). Single crystals of I and II are obtained by sublimation at different temperatures. The formation of both modifications is discussed as to its dependence on the state of the gaseous phase equilibrium [Gd(C5H5)2Br]2 ⇄ 2Gd(C5H5)2Br. Obviously, I crystallizes from gaseous phase dimers while II forms from the monomers.  相似文献   

2.
The crystal structure of Ni(C4H4NCOS)2[(C6H5)3P]2, Ni(ptc)2(Ph3P)2, has been determined by single crystal X-ray diffraction methods. This species exists as a square planar complex. The structure is monoclinic, P21/n, a=12.759(4), b=10.069(2), c= 16.158(6) Å, and β=91.96(3)°. The unit cell contains 2 formula units with an observed density of 1.31 g cm−3 (1.34 calculated). The final R index= 0.047 (Rw=0.038) for 2618 non-zero reflections having I > 3 σ(I).  相似文献   

3.
《Inorganica chimica acta》1988,147(2):265-274
Trifunctional dialkyl [1,2-bis(diethylcarbamoyl)- ethyl] phosphonates, (RO)2P(O)CH[C(O)N(C2H5)2]- [CH2C(O)N(C2H5)2] R  CH3, C2H5, i-C3H7, n-C6H13 were prepared from the respective sodium salts, Na[(RO)2P(O)CHC(O)N(C2H5)2] and N,N- diethylchloroacetamide, and they were characterized by elemental analysis, mass, infrared and NMR spectroscopy. The molecular structure of (i-C3H7O)2- P(O)CH[C(O)N(C2H5)2][CH2C(O)N(C2H5)2] was determined by single crystal X-ray diffraction analysis and found to crystallize in the monoclinic space group P21/c with a=15.589(6), b=9.783(4), c= 16.283(7) Å, β = 110.90(3)°, Z = 4 and V= 2320(2) Å3. The structure was solved by direct methods and blocked least-squares refinement converged with Rf = 5.7% and RwF= 4.4% on 2266 unique data with F>4σ(F). Important bond distances include PO 1.459(3) Å, CHCO 1.228(3) Å and CHCH2CO 1.223(3) Å. The coordination chemistry of the ligand with several lanthanides was examined, and the structure of the complex Gd(NO3)3{[(i-C3H7O)2P(O)CH[C(O)N(C2H5)2][CH2C(O)N(C2H5)2]}2·H2O was determined. The complex crystallized in the monoclinic space group P21/n with a = 13.524(5), b = 22.033(4), c = 19.604(4) Å β = 106.22(2)°, Z = 4 and V= 5609(3) Å3. The structure was solved by heavy atom techniques and blocked least-squares refinement converged with RF = 5.9% and RwF = 4.1% on 5275 reflections with F > 4σ(F). Both trifunctional ligands were found to bond to Gd(III) through only the phosphoryl oxygen atoms. The remainder of the Gd coordination sphere was composed of three bidentate nitrate oxygen atoms and an oxygen bonded water molecule. Several important bond distances include GdO(phosphoryl)av = 2.343(5) Å, GdO(nitrate)av = 2.475(7) Å, GdO(water) = 2.354(5) Å, PO(phosphoryl)av = 1.467(6) Å, CHCOav = 1.242(10) Å and CHCH2COav = 1.209(11) Å.  相似文献   

4.
5.
By reacting neodymium nitrate hexahydrate with the cryptand 〈222〉 in methanol, the complex Nd2-(NO3)6[C18H36O6N2]·H2O was obtained and analyzed by single-crystal X-ray diffraction. The cell is triclinic P1 with a = 14.870(2) Å, b = 13.261(2) Å, c = 8.832(1) Å, α = 91.2(1)°, β = 93.4(1)°, γ = 87.6(1)°, Z = 2 and U = 1736.6 Å3. The structure was refined by least-squares methods to the conventional R = 0.039 for 6177 observed reflections. The compound contains the cations [Nd〈222〉(NO3)]2+ and the anions [Nd(NO3)5·H2O]2?, and is isostructural with the samarium analogue. Solid state fluorescence spectra of the title complex were measured at room and liquid nitrogen temperature, and the transitions 4F3/24I9/2 and 4F3/24I11/2 analyzed.  相似文献   

6.
Two compounds of empirical formula MCl3- (THF)3, M = V and Cr, have been characterized by single crystal X-ray studies. The VCl3(THF)3 molecule, which has a mer octahedral stereochemistry, crystallizes in the monoclinic space group P21/c with a= 8.847(2),b= 12.861(5),c= 15.134(3) Å, β = 91.94(2)°, V = 1721(1) Å3 and Z = 4. The V-Ci(1) and V-CI(2) distances have a mean value of 2.330 [3] Å while V-CI(3) = 2.297(2) Å, The VO(1) and VO(2) distances have a mean value of 2.061[8] Å while V-O(3) = 2.102(3) Å cis ClVCl angles average 92.0[5]° and cis OVO angles average 86.2[2]° . The isostmctural complex, CrCl3(THF)3, has a crystal structure made up of discrete octahedral mer-CrCl3(THF)3 molecules with the following unit cell dimensions (space group P21/c): a = 8.715(1), b= 12.786(3), c = 15.122(3) Å, β = 92.15(1)°, V = 1684(1) Å3 and Z = 4. The CrCl(1) and CrCl(2) distances have a mean value of 2.310131 Å while CrCl(3) = 2.283(2) Å. The CrO(1) and CrO(2) distances have a mean value of 2.0101171 Å while CrO(3) = 2.077(4) Å. cis ClCrCl angles average 90.9[4]° and cis OCrO angles average 86.1 [2]°. The structures of these two octahedral complexes and those previously reported for ScCl3(THF)3 and TiCl3(THF)3 are compared and certain general trends are discussed.  相似文献   

7.
《Inorganica chimica acta》1988,141(1):145-149
This contribution reports the synthesis and characterization of the organothorium alkylthiolate complex [(CH3)5C5]2Th(SCH2CH2CH3)2. This compound crystallizes in the monoclinic space group C2/c (#15) with four molecules in a cell of dimensions a=19.066(2), b=11.603(1), c=16.379(2) Å, and β=130.08(1)°. Least-squares refinement led to a value for the conventional R index (on Fo) of 0.040 for 132 variables and 2030 observations having Fo2⩾3σ(Fo2). The molecular structure consists of an unexceptional ‘bent sandwich’ [(CH3)5C5]2Th fragment coordinated to two n-propylthiolate ligands. The ThS bond distance is 2.718(3) Å; the SC(α) distance, 1.78(2) Å; the ThSC(α) angle, 108.3(5)°; and the SThS′ angle, 102.5(2)°. Contrasts are drawn with the structures of analogous actinide alkoxides  相似文献   

8.
《Inorganica chimica acta》1988,141(2):281-288
The crystal structures and 95Mo NMR spectra of two complexes formed between 2-α-hydroxybenzyl- benzimidazole (C6H5·CHOH·C7H5N2=HOBB), as its sodium salt, and MoO2Cl2 are reported. [MoO2- (OBB)2]·EtOH (OBB=deprotonated HOBB) crystallizes in space group P21/n, with a=12.8441(7), b=15.917(3), c=13.314(2) Å, β=97.163(8)° and Z =4. The structure was determined from 3096 observed reflections and refined to a final R value of 0.030. The complex is a six coordinate cis-dioxo species, the 95Mo spectrum of which shows a single sharp peak at 56 ppm in dimethylformamide (DMF). The second complex, [Mo2O5(OBB)2]·EtOH·H2O, crystallizes in space group Pbca, with a=22.482(4), b=16.442(3), c=18.407(3) Å and Z=8. The structure was determined from 2936 observed reflections and refined to a final R value of 0.061. The complex is a binuclear doubly bridged species in which one metal atom is six coordinate while the other is five coordinate. Its 95Mo NMR spectrum in DMF shows a sharp peak at 124 ppm and a second broader much weaker peak at 51 ppm.  相似文献   

9.
《Inorganica chimica acta》1986,115(2):153-161
In the reaction of the tetradentate ligand 3,3′-(1,4- butanediyldiamino) bis (3-methyl-2-butanone)-dioxime (BnAO) with nickel(II) and copper(II), the monomeric [Ni(BnAO-H)]I·H2O and a mixed monomer/dimer salt [Cu(BnAO-H)H2O]2[(Cu(BnAO-H))2](ClO4)4, respectively, are formed, and all complexes have an intramolecular hydrogen bond between cis oxime groups. The OHO bonds give the characteristic infrared absorptions as well as the downfield proton-NMR signal (Ni complex). [Ni(BnAO-H)]I·H2O crystallizes in space group P21/a with a=13.511(2), b=10.599(2), c=14.096(2) Å, β=97.52°, Z=4 and Dc=1.623 g/cm3. The structure was solved by Patterson and Fourier methods and refined by full-matrix least-squares techniques to a final R of 0.021 for 2124 reflections with I 2σ(I). The nickel(II) atom in the complex has slightly distorted square planar geometry with an intramolecular O···O contact of 2.417(7) Å. The copper(II) complex crystallizes in space group P21/c with a =13.425(2), b=21.446(3), c=14.349(4) Å, β= 104.4(5)°, Z=8 (monomers) and Dc=1.485 g/cm3. The final R value for this complex was 0.053 for 3033 reflections with I 2σ(I). This structure contains a monomeric [Cu(BnAO-H)H2O]+ ion and a dimeric [(Cu(BnAO-H))2]2+ ion, having intramolecular O···O hydrogen bonds of 2.421(5) and 2.531(5) Å, respectively. The copper(II) ions have square-pyramidal coordination with the axial positions occupied by an oxygen of the water of hydration in the monomer and by an oxime oxygen atom in the dimer. A center of symmetry relates the two halves of the dimer. The copper atom in each case is out of the plane of the four nitrogen atoms toward the axial site. The copper(II) complex is unusual in that the crystal contains both a monomer and a dimer.  相似文献   

10.
11.
Nickel(II) complexes with the compartmental Schiff bases derived from 2,6-diformyl-4-chlorophenol and 1,5-diamino-3-thiapentane (H2L1) or 3,3′-diamino-N-methyl-dipropylamine (H2L2) were synthesized, and the crystal structures of [Ni(L1)- (py)2] and [Ni(L2)(dmf)]·H20 were determined by X-ray crystallography.Ni(L1)(py)2 is monoclinic, space group C2/c, with a= 18.457(6), b = 11.116(7), c= 16.098(6) Å, and β = 115.79(5)°; Dc = 1.49 g cm−3 for Z = 4. The structure was refined to the final R of 6.9%. The molecule has C2 symmetry. The nickel atom is six-coordinated octahedral. Selected bond lengths are: NiO 2.04(1) Å, NiN (L1) 2.08(1) Å, NiN(py) 2.17(1) Å.[Ni(L2)(dmf)]·H2O is monoclinic, space group P21/n, with a = 17.329(6), b = 13.322(7), c = 12.476(7) Å and β = 95.43(5)°; Dc = 1.45 g cm−3 for Z = 4. The structure was refined to the final R of 5.1%. The nickel atom is bonded in the octahedral geometry to the bianionic pentadentate ligand L2 and to one molecule of dimethylformamide. Selected bond lengths are: NiO (charged) 2.063(3) Å (mean value), NiO (neutral) 2.120(3) Å, NiN (planar) 2.050(3) Å (mean value), NiN (tetrahedral) 2.177(3) Å.  相似文献   

12.
The crystal structure of the dimeric Ag maleonitriledithiolate complex, Ag2[S2C2(CN)2] [P(C6- H5)3]4 (1), has been performed. Complex 1 crystallizes in the space group P21/c with a = 12.2898(77), b = 23.8325(91), c = 23.1790(118) Å, β = 101.315(43)° and Z = 4. Refinement using 3253 reflections with Fo2>3σ(Fo2) yielded R = 0.0662, Rw= 0.0669. The most interesting aspect of the structure is the strong bridging interaction of the chelating maleonitriledithiolate ligand with the second Ag center, where a Ag-S distance of 2.478 Å is observed. The residual bonding capability of the sulfur atoms in the chelating anion [Ag(S2C2(CN)2)(PPh3)2] for [Ag(PPh3)2]+ is demonstrated.  相似文献   

13.
Synthesis of complexes cis,cis-WVOXL (X=Cl, NCS), cis,trans-WVOXL (X=Cl, OPh, SPh) and cis,trans-WVIE2L (E2=O2, OS, S2) of the title ligand LH2 are reported. cis,cis-WVOCIL crystallises in space group P21/c with a=13.6541(9) Å, b=7.1555(11) Å, c=18.198(2) Å, β=95.294(6)°, V=1770.4(3) Å3 and Z=4 while the cis,trans isomer crystallises in space group P21/n with a=10.361(3) Å, b=14.141(4) Å, c=12.213(5) Å, β=102.56(3)°, V=1747(2) Å3 and Z=4. cis,trans-WVIS2L crystallises in space group P21/n with a=10.645(2) Å, b=13.929(2) Å, c=12.189(2) Å, β=103.14(2)°, V=1760(1) Å3 and Z=4. A short CH3···Cl distance of 3.067(7) Å and an acute OWCl angle of 94.1(2)° are seen in cis,cis-WVOClL, which converts to the cis,trans form on heating in MeCN. The latter isomer features a CH3···Cl distance of 3.38(2) Å and an OWCl angle of 105.1(8)°. Electrochemical and EPR data are reported. In particular, cis,trans-WVIE2L may be reduced to [WVE2L]. EPR properties of these anions and those of complexes WVOXL are discussed in the context of WV centres in tungsten enzymes.  相似文献   

14.
《Inorganica chimica acta》1988,153(4):219-225
The preparations are reported of [Rh(RCO2)2L]2 [where R = CH3, C2H5, and CH3OCH2; L = 6-chloro-2-methoxy-9-[2(NR′2)ethyl]aminoacridine (R′ = H, CH3)]. X-ray structural studies have been carried out on two of the compounds [ R = C2H5, R′ = H, (1); R = CH3, R′ = CH3, (2)]. Compound 1 is monoclinic, space group C2/c, with a = 20.864(11), b = 15.736(4), c = 14.402(4) Å, β = 93.14(4)°, V = 4721 Å3, and Z = 4; 2 is monoclinic, space group P21/n, a = 8.861(2), b = 23.089(10), c = 12.014(2) Å, β = 105.84(2)°, V = 2365 Å3, and Z = 2. Both compounds comprise the standard dinuclear rhodium(II) carboxylate unit with the substituted acridine ligands coordinated to rhodium in the axial positions, via the NH2 group nitrogen in 1 and the N(CH3)2 nitrogen in 2.The dimethyl substitution on the tertiary amine group in 2, and an associated conformational change in the diamine chain, result in an increased separation of the acridine ligand from the metal centre. There is a pronounced acridine base stacking in 1 but not in 2.  相似文献   

15.
The crystal structure of the title compound, SnCl(C6H5)(C4H9)[S2CN(C2H5)2], was determined and refined to an R factor of 3.2% for 4876 reflections. The molecule contains five-coordinate tin in a distorted trigonal bipyramidal arrangement with the tin atom lying 0.20 Å below the equatorial plane formed by one of the sulphur atoms, S(1), and the donor carbons of the butyl and phenyl groups. The chlorine and the other sulphur atom, S(2), occupy axial sites, making a S(2)SnCl angle of 156.85(1)°. The SnS(2) bond is markedly elongated (2.764(1) Å) compared to the SnCl bond (2.449(1) Å) and the SnS(1) bond (2.454(1) Å). The structure resembles those of analogues such as (C6H5)2Sn(glygly) in having both hydrocarbon ligands located in the equatorial plane. Crystal data: space group P1: a = 8.291(2) Å, b = 14.726(3) Å, c = 9.509(2) Å, α = 96.24(2)°, β = 107.02(3)°, γ = 116.70(2)°, Z = 2, R = 3.2% for 4876 independent reflections.  相似文献   

16.
2-Deoxy-β-d-arabino-hexopyranose, C6H12O5, is orthorhombic, P212121, with cell dimensions at ?150° [20°], a = 6.484(2) [6.510(3)], b = 10.364(2) [10.427(4)], c = 11.134(3) [11.153(5)] Å, V = 748.2 [757.1] Å3, Z = 4, Dx = 1.457 [1.440], and Dm = [1.455] g.cm?3. The intensities of 1269 reflections were measured by using MoKα radiation. The structure was solved by direct methods, and refined by full-matrix least-squares, with anisotropic, thermal parameters for the carbon and oxygen atoms, and isotropic parameters for the hydrogen atoms. The pyranose has the 4C1(d) conformation, with puckering parameters Q = 0.563 Å, θ = 3.9°, and ? = 350.3°. The departure from ideality is very small, and less than that in β-d-glucopyranose, Q = 0.584 Å and θ = 6.9°. The β-glycosidic, CO bond is short, 1.383(4) Å, and the OCOH torsion angle is ?87°, consistent with the anomeric effect. The hydrogen-bonding scheme consists of infinite chains, with side chains terminating at a ring-oxygen atom.  相似文献   

17.
《Inorganica chimica acta》2001,312(1-2):215-220
The reaction of [M(H2O)3(CO)3]+ (M=Tc, Re) with Na[CpCo[PO(OR)2]3] (NaLOR; R=Me, Et) in water produced the compounds M(CO)3(LOR), all of which were yellow solids, in yields varying from 55 to 89%. The two compounds M(CO)3(LOEt) were structurally characterized by single crystal X-ray crystallography. In both cases, the ligand LOEt was bound to the metal center in a tridentate fashion utilizing an {OOO} donor set. The ligands LOR can be used as models for facially coordinated triaqua groups owing to their position in the spectrochemical series. Therefore, these four compounds, M(CO)3(LOR), can be considered structural models for [M(H2O)3(CO)3]+. Crystal data for Tc(CO)3(LOEt) are as follows: molecular formula C20H35CoO12P3Tc, MW=717.32, monoclinic, a=11.5661(11) Å, b=18.671(2) Å, c=13.7852(13) Å, β=92.770(2)°, V=2973.5(5) Å3, space group P21/n, Z=4, final R1=0.0669, wR2=0.1361. Crystal data for Re(CO)3(LOEt) are as follows: molecular formula C20H35CoO12P3Re, MW=805.52, monoclinic, a=11.5113(7) Å, b=18.6022(12) Å, c=13.7397(8) Å, β=92.7580(10)°, V=2938.7(3) Å3, space group P21/n, Z=4, final R1=0.0384, wR2=0.0760.  相似文献   

18.
The crystal structure of [Sm(OPMePh2)4I2]I, 1, was determined by X-ray diffraction and refined anisotropically to a final R value of 0.067 from 3040 reflections with I>3.0σ(I). The space group was P2/a and Z=2. The unit cell dimensions were: a= 17.777(6), b=13.559(2), c=11.656(4) Å, α=γ= 90.0 and β=97.25(3)°. The cation geometry was octahedral with the Sm(III) bonded to two mutually trans I ions and four OPMePh2 groups. A third non-bonded I was present elsewhere in the cell. The SmI and SmO distances were 3.077(1) and 2.27(1) Å respectively. Two of the SmOP angles were 172.1(6)° and the other two were 162.0(6)°.  相似文献   

19.
《Inorganica chimica acta》1987,127(1):95-101
The pentadentate ligand 2,6-diacetylpyridinedisemicarbazone, DAPSC, reacts with Cr(NO3)3·9H2O and forms two kinds of complexes. At pH=3, the ligand is singly-deprotonated and crystals of [Cr- (DAPSCH)(H2O)2](NO3)2·H2O (Ia) are obtained. Evaporation of a solution at pH=0, yields crystals of [Cr(DAPSC)(H2O)2](NO3)3·2H2O (II) in which the ligand is fully protonated. The reaction of DAPSC with UO2(O2CCH3)2 in methanol, followed by crystallization of the product from DMSO yields crystals of [UO2(DAPSC2H)(H2O)]·2DMSO (III) in which the ligand is fully deprotonated. Compound Ia is monoclinic, space group P21/n with a=11.746(1), b=14.752(2), c=11.866(1) Å,β=105.53(2)°, V= 1981(1) Å3 and Z=4. Compound II is monoclinic, space group, P21/n with a=38.000(3), b= 14.939(2), c=8.233(1) Å, β=96.12(2)°, V= 4647(1) Å and Z=8. Compound III is monoclinic, space group P21/n with a=18.048(2), b=15.207(2), c=8.842(1) Å,β=97.72(2)°, V=2405(1) Å3 and Z=4. The structures were refined using 2084, 4169 and 2516 reflections to R values of 4.4%, 7.8% and 4.8% respectively.  相似文献   

20.
The crystal structure of the complexes (I)Ni[C11N8N2(OH)2]2SO4, (II) Cu[C11H8N2(OH)2]2Cl2· 4H2O and (III) Cu[C11H8N2(OH)2]2(NO3)2·2H2O have been determined by three-dimensional X-ray analysis methods. Crystal data are: (I), monoclinic, space group C2/c, Z = 4, a = 19.666(4), b = 7.994(2), c = 16.045(6) /rA, /gb = 111.231(9)°, (II), monoclinic, space group C2/c, Z = 4, a = 14.504(4), b = 12.333(8), c = 14.630(3) Å, /gb = 90.92°; and (IIl), monoclinic, space group P21/n, Z = 2, a = 7.601(5), b = 11.977(4), c = 14.463(6) Å, β = 93.10(8)°. These structural investigations clearly demonstrate that in each case hydration occurs across the ketone double bond in the ligand and that the resulting hydroxyl group coordinates to the metal. Two di-2-pyridyl ketone ligands are thus bonded to the metal atom in a tridentate fashion. In the nickel complex (I), all six coordination interactions appear to have approximately the same strength. However, in the copper complexes (II) and (III), the pyridyl nitrogens are strongly coordinating to the metal in the equatorial plane, while the hydroxyl groups are more weakly coordinating in the axial direction. The metal to ligand bond distances are: (I) dNi−O = 2.098(4), dNiN = 2.062(4), 2.087(4) Å, (II) dCuO = 2.465(5), dCuN = 1.994(5), 2.006(5) Å, (III) dCuO = 2.464(5), dCuN = 1.990(5), 2.036(5) Å. The neutral diol that results from hydrolysis of di-2-pyridyl ketone is stabilized by coordination to the metal and such coordination is little affected by changes in the metal, the anion or the extent of hydration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号