首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mutagenic and lethal action of methyl methanesulphonate (MMS) and dichlorvos (DDVP) has been studied on Escherichia coli WP2 and some derivatives deficient in DNA repair genes. The exrA+ and recA+ alleles were necessary for significant mutagenesis by either compound, and the uvrA gene affected neither the lethal nor mutagenic responses. Increased sensitivity to both compounds was shown by the exrA and uvrAexrA strains and in a more pronounced way by the uvrApolA, recA, and uvrAexrApolA strains.Bacteria deficient at the polA locus were 2 and 3 times more mutable by DDVP and MMS respectively, consistent with the hypothesis that the absence of the polA system for the repair of single-strand gaps results in a greater proportion of the total repair being channelled through the error-prone exrA+/recA+-dependent system. Single-strand breaks were detectable by alkaline sucrose gradient centrifugation after both MMS and DDVP treatment of polA bacteria. Thus in all the tests carried out, both compounds showed similar patterns of activity, and the results are consistent with their known ability to alkylate DNA. The chief differences were quantitative; sensitivity increases were far more pronounced with MMS which was also a far more potent mutagen than DDVP.  相似文献   

2.
Cross-links between DNA and proteins were induced by formaldehyde treatment in yeast cells. This damage can be repaired by post-treatment incubation of cells or protoplasts in nutrient medium. This repair was observed for wild-type cells as well as for a UV-sensitive, excision-deficient mutant (rad1–3), also sensitive to the lethal effect of formaldehyde.  相似文献   

3.
3 wild-type strains of E. coli, namely K12 AB2497, B/r WP2 and 15 555-7v proficient in excision and post-replication repair, differ markedly in their UV resistance. To elucidate this difference, the influence was investigated of induction by application of inducing fluence (IF) before lethal fluence (LF) on repair processes after LF. In cells distinguished by low UV resistance (E. coli 15 555-7; E. coli B/r WP2), dimer excision was less complete in cultures irradiated with IF + LF than in cultures irradiated with LF only. The highly resistant E. coli K12 AB2497 performed complete excision both after IF + LF or after LF alone. All 3 types of cell survived better after IF + LF than after LF only. Because, in most strains so far investigated, the application of IF reduced dimer excision and increased survival, dimer excision per se does not appear important for survival.We conclude that the rate and completeness of dimer excision can serve as a measure of efficiency of the excision system whose action is necessary for repair of another lesion. Cells of all investigated strains could not resume DNA replication and died progressively when irradiated with LF and post-incubated with chloramphenicol (LF CAP+). Thus, it appears that inducible proteins are necessary for repair in all wild-type E. coli cells give with potentially lethal doses of UV irradiation.  相似文献   

4.
Following the observation that the nucleoside pre-treatment reduced the radiation-induced dominant lethality in the post-meiotic germ cells, similar experiments were conducted using the same treatment conditions to study the influence of the nucleoside(s) pre-treatment on the radiation-induced (1.2 kR) incidence of sex-linked recessive lethals and translocation events in the post-meiotic male germ cells of 1-day-old D. melanogaster. The nucleoside pre-treatment reduced the translocation frequency (not statistically significant) and the lethal mutation frequency (statistically significant) in the post-meiotic cells (pre-injection DNA synthesis cells) especially in the mature sperms sampled in brood a (br a). The radio-protective effect of the nucleosides on the mature sperms was confirmed using 7-day-old virgin males and different radiation doses (2.4 kR and 3.6 kR).The frequency of lethal mutation was lowest when irradiation was preceded by the injection of an equimolar solution of thymidine (TdR), deoxyadenosine (AdR), deoxycytidine (CdR) and deoxyguanosine (GdR). However, when the nucleosides were injected after irradiation (within 10–30 min) there was no change in the yield of radiation-induced lethals.The possible mechanisms for the radioprotective action of the nucleosides in the post-meiotic germ cells such as (a) “protection” by a radiochemical action of nucleosides competing for short-lived radicals that might otherwise cause damage to DNA and (b) biochemical-physiological mechanisms such as metabolic events increasing the radioresistance of the cells, providing excess energy for repair or favoring and partaking in the DNA repair synthesis were discussed. Further studies were felt necessary to elucidate this phenomenon.  相似文献   

5.
Recent studies suggest that PARP1 inhibitors, several of which are currently in clinical trial, may selectively kill BRCA1/2 mutant cancers cells. It is thought that the success of this therapy is based on immitigable lethal DNA damage in the cancer cells resultant from the concurrent loss or inhibition of two DNA damage repair pathways: single-strand break (SSB) repair and homologous recombination repair (HRR). Presumably, inhibition of PARP1 activity obstructs the repair of SSBs and during DNA replication, these lesions cause replication fork collapse and are transformed into substrates for HRR. In fact, several previous studies have indicated a hyper-recombinogenic phenotype in the absence of active PARP1 in vitro or in response to DNA damaging agents. In this study, we demonstrate an increased frequency of spontaneous HRR in vivo in the absence of PARP1 using the pun assay. Furthermore, we found that the HRR events that occur in Parp1 nullizygous mice are associated with a significant increase in large, clonal events, as opposed to the usually more frequent single cell events, suggesting an effect in replicating cells. In conclusion, our data demonstrates that PARP1 inhibits spontaneous HRR events, and supports the model of DNA replication transformation of SSBs into HRR substrates.  相似文献   

6.
Replicative bypass repair of UV damage to DNA was studied in wide variety of human, mouse and hamster cells in culture. Survival curve analysis revealed that in established cell lines (mouse L, Chinese hamster V79, HeLa S3 and SV40-transformed xeroderma pigmentosum (XP)), post-UV caffeine treatment potentiated cell killing by reducing the extrapolation number and mean lethal UV fluence (Do). In the Do reduction as the result of random inactivation by caffeine of sensitive repair there were marked clonal differences among such cell lines, V79 being most sensitive to caffeine potentiation. However, other diploid cell lines (normal human, excision-defective XP and Syrian hamster) exhibited no obvious reduction in Do by caffeine. In parallel, alkaline sucrose sedimentation results showed that the conversion of initially smaller segments of DNA synthetized after irradiation with 10 J/m2 to high-molecular-weight DNA was inhibited by caffeine in transformed XP cells, but not in the diploid human cell lines. Exceptionall, diploid XP variants had a retarded ability of bypass repair which was drastically prevented by caffeine, so that caffeine enhanced the lethal effect of UV. Neutral CsCl study on the bypass repair mechanism by use of bromodeoxyuridine for DNA synthesis on damaged template suggests that the pyrimidine dimer acts as a block to replication and subsequently it is circumvented presumably by a new process involving replicative bypassing following strand displacement, rather than by gap-filling de novo. This mechanism worked similarly in normal and XP cells, whether or not caffeine was present, indicating that excision of dimer is not always necessary. However, replicative became defective in XP variant and transformed XP cells when caffeine was present. It appears, therefore, that the replicative bypass repair process is either caffeine resistant or sensitive, depending on the cell type used, but not necessarily on the excision repair capability.  相似文献   

7.
8.
MutS inhibits RecA-mediated strand transfer with methylated DNA substrates   总被引:1,自引:0,他引:1  
DNA mismatch repair (MMR) sensitizes human and Escherichia coli dam cells to the cytotoxic action of N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) while abrogation of such repair results in drug resistance. In DNA methylated by MNNG, MMR action is the result of MutS recognition of O6-methylguanine base pairs. MutS and Ada methyltransferase compete for the MNNG-induced O6-methylguanine residues, and MMR-induced cytotoxicity is abrogated when Ada is present at higher concentrations than normal. To test the hypothesis that MMR sensitization is due to decreased recombinational repair, we used a RecA-mediated strand exchange assay between homologous phiX174 substrate molecules, one of which was methylated with MNNG. MutS inhibited strand transfer on such substrates in a concentration-dependent manner and its inhibitory effect was enhanced by MutL. There was no effect of these proteins on RecA activity with unmethylated substrates. We quantified the number of O6-methylguanine residues in methylated DNA by HPLC-MS/MS and 5–10 of these residues in phiX174 DNA (5386 bp) were sufficient to block the RecA reaction in the presence of MutS and MutL. These results are consistent with a model in which methylated DNA is perceived by the cell as homeologous and prevented from recombining with homologous DNA by the MMR system.  相似文献   

9.
A method was devised for extracting, from cells of Escherichia coli K12, DNA molecules which sedimented on neutral sucrose gradients as would be expected for free DNA molecules approaching the genome in size. Gamma ray irradiation of oxygenated cells produced 0.20 DNA double-strand breaks per kilorad per 109 daltons. Incubation after irradiation of cells grown in K medium, with four to five genomes per cell, showed repair of the double-strand breaks. No repair of double-strand breaks was found in cells grown in aspartate medium, with only 1.3 genomes per cell, although DNA single-strand breaks were still efficiently repaired. Cells which were recA? or recA?recB? also did not repair double-strand breaks. These results suggest that repair of DNA double-strand breaks may occur by a recombinational event involving another DNA double helix with the same base sequence.  相似文献   

10.
The cytotoxicity of three structurally-related direct-acting carcinogens, N-acetoxy-2-acetylaminofluorene, N-acetoxy-2-acetylaminophenanthrene and N-acetoxy-4-acetylaminobiphenyl, was compared in normal cells and in excision repair deficient xeroderma pigmentosum cells (XP12BE). All three proved significantly more cytotoxic to the XP cells than to the normal cells. At equicytoxic levels, substantially more residues were initially bound to the DNA of the normal cells than to the XP cells, suggesting that the former are able to remove a large percentage of the DNA bound residues before these can result in cell death. The ability of these cell strains to remove bound residues from DNA, to incorporate thymidine into parental strands of DNA during repair replication, and to recover from potentially lethal damage if held in the non-replicating, density-inhibited Go state was compared as a function of dose and time. The XP12BE cells proved virtually incapable of excision repair of DNA damage induced by these carcinogens and of recovery. In contrast, normal cells recovered from the potentially lethal effects of these three compounds and did so at a rate comparable to their rate of removal of bound residues and of repair synthesis. In the excision-deficient XP12BE cells, DNA adducts induced by N-acetoxy-2-acetylaminophenanthrene proved 3- to 6-fold more cytotoxic than adducts induced by the other two carcinogens.  相似文献   

11.
Caffeine has been found to potentiate the lethal effects of sulphur mustard (SM) and N-methyl-N-nitrosourea (MNU) in a line of Chinese hamster cells but not in a line of HeLa cells. The sensitization of SM-treated cells by caffeine was S phase specific, and persisted for up to 24 h after alkylation of asynchronous cell cultures. The sensitization of MNU-treated cells, however, was not S phase specific but persisted for up to 50 h after the initial alkylation. Possible explanations for this difference between these two types of alkylating agent were discussed. Previously, evidence was presented which suggested that the alkylation-induced delay in the time of the peak rate of DNA synthesis in Chinese hamster cells was associated with the operation of post-DNA replication repair mechanism in these cells. Caffeine has now been found to reverse this alkylation-induced delay of DNA synthesis in both SM- and MNU-alkylated Chinese hamster cells. It is therefore proposed that caffeine sensitizes alkylated cells by inhibition of a post-replication DNA repair mechanism. No support was obtained for the alternative possibility that caffeine inhibits alkylation-induced excision repair of damaged DNA. The role of DNA repair in the production of the lethal mutagenic and cytological effects of alkylating agents is discussed.  相似文献   

12.
Some chemical aspects of dose-response relationships in alkylation mutagenesis   总被引:18,自引:0,他引:18  
Alkylation of DNA can lead to induction of potentially miscoding groups (promutagenic) or potentially template-inactivating groups (lethal). The proportions of these are found to vary with the chemical nature of the alkylating agent. Agents of low Swain and Scott s factor (or those tending to Ingold's SNi type) react relatively more extensively at O-atom sites in DNA, and yield relatively more of the miscoding O6-alkylguanine residues. Phosphotriester formation is also relatively more extensive with SNi agents.Inactivation of DNA can result from depurinations, strand breakage, and cross-linkage.Both promutagenic and lethal lesions are subject to repair; 3 principal enzymatic systems appear to exist; one for excision and repair of cross-links or aralkyl groups resembles the uvr system; others for repair of single-strand breaks parallel repair of X-ray-induced breaks (exr, rec systems); another, less well defined at present, recognizes certain methylated bases, and depurinated sites (probably Goldthwait's endonuclease II).These factors can be shown to influence dose-response in alkylation mutagenesis. This, broadly, can be classified as linear with the promutagenic group-inducing or directly miscoding agents, and is independent of cytotoxicity; whereas with other agents non-linear response parallels the occurrence of “shouldered” survival curves, and reflects mutation induction by “repairs errors”.Additionally, alkylation of cellular constituents other than DNA, e.g. repair enzymes, may influence dose response, and will again depend on chemical reactivity of the agent.  相似文献   

13.
14.
Defects in DNA single‐strand break repair (SSBR) are linked with neurological dysfunction but the underlying mechanisms remain poorly understood. Here, we show that hyperactivity of the DNA strand break sensor protein Parp1 in mice in which the central SSBR protein Xrcc1 is conditionally deleted (Xrcc1Nes‐Cre) results in lethal seizures and shortened lifespan. Using electrophysiological recording and synaptic imaging approaches, we demonstrate that aberrant Parp1 activation triggers seizure‐like activity in Xrcc1‐defective hippocampus ex vivo and deregulated presynaptic calcium signalling in isolated hippocampal neurons in vitro. Moreover, we show that these defects are prevented by Parp1 inhibition or deletion and, in the case of Parp1 deletion, that the lifespan of Xrcc1Nes‐Cre mice is greatly extended. This is the first demonstration that lethal seizures can be triggered by aberrant Parp1 activity at unrepaired SSBs, highlighting PARP inhibition as a possible therapeutic approach in hereditary neurological disease.  相似文献   

15.
The Cut homeobox 1 (CUX1) gene is a target of loss-of-heterozygosity in many cancers, yet elevated CUX1 expression is frequently observed and is associated with shorter disease-free survival. The dual role of CUX1 in cancer is illustrated by the fact that most cell lines with CUX1 LOH display amplification of the remaining allele, suggesting that decreased CUX1 expression facilitates tumor development while increased CUX1 expression is needed in tumorigenic cells. Indeed, CUX1 was found in a genome-wide RNAi screen to identify synthetic lethal interactions with oncogenic RAS. Here we show that CUX1 functions in base excision repair as an ancillary factor for the 8-oxoG-DNA glycosylase, OGG1. Single cell gel electrophoresis (comet assay) reveals that Cux1+/− MEFs are haploinsufficient for the repair of oxidative DNA damage, whereas elevated CUX1 levels accelerate DNA repair. In vitro base excision repair assays with purified components demonstrate that CUX1 directly stimulates OGG1''s enzymatic activity. Elevated reactive oxygen species (ROS) levels in cells with sustained RAS pathway activation can cause cellular senescence. We show that elevated expression of either CUX1 or OGG1 prevents RAS-induced senescence in primary cells, and that CUX1 knockdown is synthetic lethal with oncogenic RAS in human cancer cells. Elevated CUX1 expression in a transgenic mouse model enables the emergence of mammary tumors with spontaneous activating Kras mutations. We confirmed cooperation between KrasG12V and CUX1 in a lung tumor model. Cancer cells can overcome the antiproliferative effects of excessive DNA damage by inactivating a DNA damage response pathway such as ATM or p53 signaling. Our findings reveal an alternate mechanism to allow sustained proliferation in RAS-transformed cells through increased DNA base excision repair capability. The heightened dependency of RAS-transformed cells on base excision repair may provide a therapeutic window that could be exploited with drugs that specifically target this pathway.  相似文献   

16.
Cisplatin is currently used in tumor chemotherapy to induce the death of malignant cells through blockage of DNA replication. It is a commonly used chemotherapeutic agent binding mono- or bifunctionally to guanines in DNA. Escherichia coli K12 mutant strains deficient in nucleotide excision repair (NER) were submitted to increasing concentrations of cisplatin, and the results revealed that uvrA and uvrB mutants are sensitive to this agent, while uvrC and cho mutants remain as the wild type strain. The time required for both gene expression turn-off and return to normal weight DNA in wild-type E. coli was not accomplished even after 4 h post-treatment with cisplatin, while the same process takes place within 1.5 h after ultraviolet radiation (UV). Besides, a heavily damaging action of cisplatin can be seen not only by persistent nicks on genomic DNA, but also by NER gene expression exceeding manifold that seen after equivalent lethal doses of UV. Moreover, cisplatin caused an increase in uvrB gene expression from its putative upstream promoter P3 in an SOS-independent manner.  相似文献   

17.
Isolation of an amber mutant lig-321 (or dnaL321) if Escherichia coli K12 with a defect in DNA ligase activity was previously reported (Nagata & Horiuchi, 1974). This was the first demonstration that, in E. coli, conditionally lethal nonsense mutants can be isolated selectively. Unlike the hitherto available E. coli K12 DNA ligase-deficient (lig) mutants, the DNA of this mutant is degraded under lethal conditions. This paper describes its further characterization. The DNA degradation was found to be an energy-requiring process, in which endonuclease I did not seem to participate. Kinetic analyses of prelabeled DNA indicated that the parental strands were degraded. The sedimentation profile of prelabeled DNA in an alkaline sucrose gradient showed that the extensive degradation was preceded by a step in which the parental strands were broken into relatively large pieces. At least in the early phase of degradation, which we examined by alkaline sucrose gradient centrifugation of pulse-labeled DNA, synthesis of discontinuous daughter chains (Okazaki fragments, Okazaki et al., 1968) was confirmed. Joining of the nascent chains, however, was completely inhibited. Genetic analyses revealed that the mutant allele is recessive to the wild type. This agrees with in vitro studies in which the mutant crude extract was found not to inhibit DNA ligase activity of the wild type extract. These and other properties of the lig-321 mutant were compared with the other DNA ligase-deficient mutants of E. coli. The role of this enzyme in DNA replication, repair and recombination is discussed.  相似文献   

18.
Infliction of DNA damage initiates a complex cellular reaction – the DNA damage response – that involves both signaling and DNA repair networks with many redundancies and parallel pathways. Here, we reveal the three strategies that the simple multicellular eukaryote, C. elegans, uses to deal with DNA damage induced by light. Separately inactivating repair or replicative bypass of photo-lesions results in cellular hypersensitivity towards UV-light, but impeding repair of replication associated DNA breaks does not. Yet, we observe an unprecedented synergistic relationship when these pathways are inactivated in combination. C. elegans mutants that lack nucleotide excision repair (NER), translesion synthesis (TLS) and alternative end joining (altEJ) grow undisturbed in the dark, but become sterile when grown in light. Even exposure to very low levels of normal daylight impedes animal growth. We show that NER and TLS operate to suppress the formation of lethal DNA breaks that require polymerase theta-mediated end joining (TMEJ) for their repair. Our data testifies to the enormous genotoxicity of light and to the demand of multiple layers of protection against an environmental threat that is so common.  相似文献   

19.
20.
Telomeric repeats preserve genome integrity by stabilizing chromosomes, a function that appears to be important for both cancer and aging. In view of this critical role in genomic integrity, the telomere''s own integrity should be of paramount importance to the cell. Ultraviolet light (UV), the preeminent risk factor in skin cancer development, induces mainly cyclobutane pyrimidine dimers (CPD) which are both mutagenic and lethal. The human telomeric repeat unit (5′TTAGGG/CCCTAA3′) is nearly optimal for acquiring UV-induced CPD, which form at dipyrimidine sites. We developed a ChIP–based technique, immunoprecipitation of DNA damage (IPoD), to simultaneously study DNA damage and repair in the telomere and in the coding regions of p53, 28S rDNA, and mitochondrial DNA. We find that human telomeres in vivo are 7-fold hypersensitive to UV-induced DNA damage. In double-stranded oligonucleotides, this hypersensitivity is a property of both telomeric and non-telomeric repeats; in a series of telomeric repeat oligonucleotides, a phase change conferring UV-sensitivity occurs above 4 repeats. Furthermore, CPD removal in the telomere is almost absent, matching the rate in mitochondria known to lack nucleotide excision repair. Cells containing persistent high levels of telomeric CPDs nevertheless proliferate, and chronic UV irradiation of cells does not accelerate telomere shortening. Telomeres are therefore unique in at least three respects: their biophysical UV sensitivity, their prevention of excision repair, and their tolerance of unrepaired lesions. Utilizing a lesion-tolerance strategy rather than repair would prevent double-strand breaks at closely-opposed excision repair sites on opposite strands of a damage-hypersensitive repeat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号