首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding sites of 8-[3H]hydroxy-2-(di-n-propylamino)tetralin ([3H]DPAT) were characterized in the retina of goldfish in order to evaluate the selectivity of the ligand for serotonin1A (5HT1A) receptors. Specificity of the binding was performed in the presence of serotonergic and dopaminergic agonists and antagonists. Buspirone, spriroxatrine and 5-methoxy-N,N-dimethyltryptamine were potent inhibitors, followed by propranolol, citalopram, imipramine and desipramine. Serotonin was not a potent inhibitor, and its interaction with the binding sites of [3H]DPAT was complex. Nomifensine displayed an important inhibition, however, other dopamine uptake blockers, such as bupropion and GBR-12909, were less potent. Haloperidol was also a good inhibitor, but the D1 receptor agonist, SKF-38393, the D2 receptor antagonist, sulpiride, and dopamine did not inhibit the binding. GppNHp inhibited the binding in the micromolar range. The analysis of saturation experiments by isotopic dilution, using buspirone to determine nonspecific binding, revealed two sites. The number of binding sites defined by buspirone were higher than the ones defined by nomifesine. The specific binding, using buspirone for definition, was reduced by the intraocular injection of 6-hydroxydopamine. This investigation demonstrates that [3H]DPAT labels 5HT1A receptors in goldfish retina, but also interacts with a non-5HT receptor site. These receptors seem to be localized in dopaminergic neurons.  相似文献   

2.
In the present study, the 5‐HT2A and 5‐HT1A receptors functional activity and 5‐HT2A receptor gene expression were examined in the brain of ASC/Icg and congenic AKR.CBAD13Mit76C mouse strains (genetically predisposed to catalepsy) in comparison with the parental catalepsy‐resistant AKR/J and catalepsy‐prone CBA/Lac mouse strains. The significantly reduced 5‐HT2A receptor functional activity along with decreased 5‐HT2A receptor gene expression in the frontal cortex was found in all mice predisposed to catalepsy compared with catalepsy‐resistant AKR/J. 5‐HT2A agonist DOI (0.5 and 1 mg/kg, i.p.) significantly reduced catalepsy in ASC/Icg and CBA/Lac, but not in AKR.CBAD13Mit76C mice. Essential increase in 5‐HT1A receptor functional activity was shown in catalepsy‐prone mouse strains in comparison with catalepsy‐resistant AKR/J mice. However, in AKR.CBAD13Mit76C mice it was lower than in ASC/Icg and CBA/Lac mice. The inter‐relation between 5‐HT2A and 5‐HT1A receptors in the regulation of catalepsy was suggested. This suggestion was confirmed by prevention of DOI anticataleptic effect in ASC/Icg and CBA/Lac mice by pretreatment with 5‐HT1A receptor antagonist p‐MPPI (3 mg/kg, i.p.). At the same time, the activation of 5‐HT2A receptor led to the essential suppression of 5‐HT1A receptor functional activity, indicating the opposite effect of 5‐HT2A receptor on pre‐ and postsynaptic 5‐HT1A receptors. Thus, 5‐HT2A/5‐HT1A receptor interaction in the mechanism of catalepsy suppression in mice was shown.  相似文献   

3.
Mice deficient in the neural cell adhesion molecule (NCAM) show behavioral abnormalities as adults, including altered exploratory behavior, deficits in spatial learning, and increased intermale aggression. Here, we report increased anxiety‐like behavior of homozygous (NCAM−/−) and heterozygous (NCAM+/−) mutant mice in a light/dark avoidance test, independent of genetic background and gender. Anxiety‐like behavior was reduced in both NCAM+/+ and NCAM−/− mice by systemic administration of the benzodiazepine agonist diazepam and the 5‐HT1A receptor agonists buspirone and 8‐OH‐DPAT. However, NCAM−/− mice showed anxiolytic‐like effects at lower doses of buspirone and 8‐OH‐DPAT than NCAM+/+ mice. Such increased response to 5‐HT1A receptor stimulation suggests a functional change in the serotonergic system of NCAM−/− mice, likely involved in the control of anxiety and aggression. However, 5‐HT1A receptor binding and tissue content of serotonin and its metabolite 5‐hydroxyindolacetic acid were found unaltered in every brain area of NCAM−/− mice investigated, indicating that expression of 5‐HT1A receptors as well as synthesis and release of serotonin are largely unchanged in NCAM−/− mice. We hypothesize a critical involvement of endogenous NCAM in serotonergic transmission via 5‐HT1A receptors and inwardly rectifying K+ channels as the respective effector systems. © 1999 John Wiley & Sons, Inc. J Neurobiol 40: 343–355, 1999  相似文献   

4.
Serotonin (5-HT) is an indirect modulator of the electric organ discharge (EOD) in the weakly electric gymnotiform fish, Brachyhypopomus pinnicaudatus. Injections of 5-HT enhance EOD waveform "masculinity", increasing both waveform amplitude and the duration of the second phase. This study investigated the pharmacological identity of 5-HT receptors that regulate the electric waveform and their effects on EOD amplitude and duration. We present evidence that two sets of serotonin receptors modulate the EOD in opposite directions. We found that the 5HT1AR agonist 8-OH-DPAT diminishes EOD duration and amplitude while the 5HT1AR antagonist WAY100635 increases these parameters. In contrast, the 5HT2R agonist alpha-Me-5-HT increases EOD amplitude but not duration, yet 5-HT-induced increases in EOD duration can be inhibited by blocking 5HT2A/2C-like receptors with ketanserin. These results show that 5-HT exerts bi-directional control of EOD modulations in B. pinnicaudatus via action at receptors similar to mammalian 5HT1A and 5HT2 receptors. The discordant amplitude and duration response suggests separate mechanisms for modulating these waveform parameters.  相似文献   

5.
Brown ghost knife fish, Apteronotus leptorhynchus, produce sexually dimorphic, androgen-sensitive electrocommunication signals termed chirps. The androgen regulation of chirping has been studied previously by administering exogenous androgens to females and measuring the chirping response to artificial electrical signals. The present study examined the production of chirps during dyadic interactions of fish and correlated chirp rate with endogenous levels of one particular androgen, 11-ketotestosterone (11KT). Eight males and four females were exposed to short-term (5-min) interactions in both same-sex and opposite-sex dyads. Twenty-four hours after all behavioral tests, fish were bled for determination of plasma 11KT levels. Males and females differed in both their production of chirps and their ability to elicit chirps from other fish: males chirped about 20-30 times more often than females and elicited 2-4 times as many chirps as females. Among males, chirp rate was correlated positively with plasma 11KT, electric organ discharge frequency, and body size. Combined with results from experimental manipulation of androgen levels, these results support the hypothesis that endogenous 11KT levels influence electrocommunication behavior during interactions between two male fish.  相似文献   

6.
1. Serotonin is an intrinsically fluorescent biogenic amine that acts as a neurotransmitter and is found in a wide variety of sites in the central and peripheral nervous system. Serotonergic signaling appears to play a key role in the generation and modulation of various cognitive and behavioral functions.2. Serotonin exerts its diverse actions by binding to distinct cell surface receptors which have been classified into many groups. The serotonin1A (5-HT1A) receptor is the most extensively studied of the serotonin receptors and belongs to the large family of seven transmembrane domain G-protein coupled receptors.3. The tissue and sub-cellular distribution, structural characteristics, signaling of the serotonin1A receptor and its interaction with G-proteins are discussed.4. The pharmacology of serotonin1A receptors is reviewed in terms of binding of agonists and antagonists and sensitivity of their binding to guanine nucleotides.5. Membrane biology of 5-HT1A receptors is presented using the bovine hippocampal serotonin1A receptor as a model system. The ligand binding activity and G-protein coupling of the receptor is modulated by membrane cholesterol thereby indicating the requirement of cholesterol in maintaining the receptor organization and function. This, along with the reported detergent resistance characteristics of the receptor, raises important questions on the role of membrane lipids and domains in the function of this receptor.  相似文献   

7.
1. Central serotonergic dysfunction and genetic factors are associated with suicidal behavior in psychiatric patients. The goal of this study was to examine the association between the 5-HT2A gene polymorphism (102T/C) and suicide in a sample of Brazilian psychiatric inpatients.2. We studied 225 subjects. Genotypic frequencies were obtained after DNA extraction and the region of 5-HT2A/T102C containing the polymorphic site amplified by the polymerase chain reaction and digested with the restriction enzyme HpaII.3. No differences were found between patients with and without suicide attempt history. Patients with a history of severe suicide attempts also did not exhibit different genotypic frequencies when compared with patients without a suicide attempt history.4. These results suggest that the 5HT2A gene polymorphism (102T/C) may not be involved in the genetic susceptibility to suicidal behavior.  相似文献   

8.
9.
5-Hydroxytryptamine2A (5-HT2A) receptor kinetics was studied in cerebral cortex and brain stem of streptozotocin (STZ) induced diabetic rats. Scatchard analysis with [3H] (±) 2,3dimethoxyphenyl-1-[2-(4-piperidine)-methanol] ([3H]MDL100907) in cerebral cortex showed no significant change in maximal binding (Bmax) in diabetic rats compared to controls. Dissociation constant (Kd) of diabetic rats showed a significant decrease (p < 0.05) in cerebral cortex, which was reversed to normal by insulin treatment. Competition studies of [3H]MDL100907 binding in cerebral cortex with ketanserin showed the appearance of an additional low affinity site for 5-HT2A receptors in diabetic state, which was reversed to control pattern by insulin treatment. In brain stem, scatchard analysis showed a significant increase (p < 0.05) in Bmax accompanied by a significant increase (p < 0.05) in Kd. Competition analysis in brain stem also showed a shift in affinity towards a low affinity State for 5-HT2A receptors. All these parameters were reversed to control level by insulin treatment. These results show that in cerebral cortex there is an increase in affinity of 5-HT2A receptors without any change in its number and in the case of brain stem there is an increase in number of 5HT2A receptors accompanied by a decrease in its affinity during diabetes. Thus, from the results we suggest that the increase in affinity of 5-HT2A receptors in cerebral cortex and upregulation of 5-HT2A receptors in brain stem may lead to altered neuronal function in diabetes.  相似文献   

10.
Abstract

Homology modeling was performed on the N‐terminal extracellular regions of human, mouse, and guinea pig 5‐hydroxytryptamine type 3A receptors (5‐HT3R) based on the 24% sequence homology with and on the crystal structure of the snail acetylcholine binding protein (AChBP). Docking of 5‐HT3 antagonists granisetron, tropisetron, ondansetron, dolasetron ('setrons), and (+)‐tubocurarine suggests an aromatic binding cleft behind a hydrophilic vestibule. Several intra‐ and interface interactions, H‐bonds, and salt bridges stabilize the pentameric structure and the binding cleft. The planar rings of antagonists are intercalated between aromatic side‐chains (W183‐Y234, Y143‐Y153). S227 donates H‐bonds to the carbonyl groups of 'setrons. The tertiary ammonium ions interact with E236, N128 or E129, and/or W90 (cation‐π interaction). This offers a molecular explanation of the pharmacophore models of 5‐HT3R antagonists. Docking artifacts suggest some ambiguities in the binding loops A and C of the 5‐HT3AR models. Lower potencies of (+)‐tubocurarine for human, and those of tropisetron for guinea pig 5‐HT3ARs can be attributed to steric differences of I/S230 in the binding cleft and to distinct binding interactions with E229 and S227, respectively. Ligand binding interferes with crucial intra‐ and interface interactions along the binding cleft.  相似文献   

11.
12.
Cardio-respiratory reflex effects of an exogenous serotonin challenge are suggested to be modulated by activation of the peripheral 5HT2 and 5HT3 receptors. In the present experiments the blocking effects of serotoninergic active drugs: ketanserin and tropanserin (MDL 72222) were studied in six pentobarbitone-chloralose anaesthetized cats. Bolus injection of serotonin (0.05 mg.kg(-1)) into the right femoral vein evoked prompt apnea, hypotension followed by tachypnoeic breathing. Pre-treatment with ketanserin (0.1 mg.kg(-1)), 5HT2 receptor antagonist, shortened the duration of post-serotonin apnea (P < 0.05), but had no effect on the pattern of post-apnoeic breathing. 5HT3 receptor blockade with the selective antagonist MDL 72222 (0.2 mg.kg(-1)) totally eliminated respiratory response to serotonin. In breaths that followed post-serotonin apnea, peak amplitude of the integrated phrenic signal was reduced (P < 0.001), unbiased by ketanserin blockade, and remained at the baseline level in MDL treated rats. Serotonin-induced hypotension was unaffected by the blockade of 5HT2 receptors. Inactivation of 5HT3 receptors with MDL attenuated the fall in blood pressure (P < 0.05). This data suggests that the squeal of serotonin-induced pulmonary chemoreflex, i.e. respiratory arrest, post-apnoeic pattern of breathing, bradycardia, and partially hypotension are mediated by 5HT3 receptors.  相似文献   

13.
The 5‐hydroxytryptamine 1A receptor (serotonin 1A receptor; 5‐HT1AR) is involved in a large series of brain functions, and roles in anxiety, depression, and cognition have been reported. So far, published information on mass spectrometrical characterization of 5‐HT1AR is limited to the presence of two 5‐HT1AR peptides in rat's whole brain as observed by in‐solution digestion followed by LC‐MS/MS. Knowledge about the protein sequence and PTMs, however, would have implications for generation of specific antibodies and designing studies on the 5‐HT1AR at the protein level. A rat recombinant 5‐HT1AR was extracted from the tsA201 cell line, run using several gel‐based principles with subsequent in‐gel digestion with several proteases, chymotrypsin, trypsin, AspN, proteinase K, and pepsin followed by nano‐LC‐ESI‐MS/MS analysis on a high capacity ion trap and an LTQ Orbitrap Velos. Using two search engines, Mascot and Modiro?, the recombinant 5‐HT1AR was identified showing 94.55% sequence coverage. A single phosphorylation at S301 was identified and verified by phosphatase treatment and a series of amino acid substitutions were detected. Characterization of 5‐HT1AR, a key player of brain functions and neurotransmission, was shown and may enable generation of specific antibodies, design of future, and interpretation of previous studies in the rat at the protein level.  相似文献   

14.
BDNF is thought to provide critical trophic support for serotonin neurons. In order to determine postnatal effects of BDNF on the serotonin system, we examined a line of conditional mutant mice that have normal brain content of BDNF during prenatal development but later depletion of this neurotrophin in the postnatal period. These mice show a behavioral phenotype that suggests serotonin dysregulation. However, as shown here, the presynaptic serotonin system in the adult conditional mutant mice appeared surprisingly normal from histological, biochemical, and electrophysiological perspectives. By contrast, a dramatic and unexpected postsynaptic 5‐HT2A deficit in the mutant mice was found. Electrophysiologically, serotonin neurons appeared near normal except, most notably, for an almost complete absence of expected 5‐HT2A‐mediated glutamate and GABA postsynaptic potentials normally displayed by these neurons. Further analysis showed that BDNF mutants had much reduced 5‐HT2A receptor protein in dorsal raphe nucleus and a similar deficit in prefrontal cortex, a region that normally shows a high level of 5‐HT2A receptor expression. Recordings in prefrontal slice showed a marked deficit in 5‐HT2A‐mediated excitatory postsynaptic currents, similar to that seen in the dorsal raphe. These findings suggest that postnatal levels of BDNF play a relatively limited role in maintaining presynaptic aspects of the serotonin system and a much greater role in maintaining postsynaptic 5‐HT2A and possibly other receptors than previously suspected. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

15.
Both microdialysis and electrophysiology were used to investigate whether another serotonin (5‐HT) receptor subtype next to the 5‐HT1A autoreceptor is involved in the acute effects of a selective serotonin reuptake inhibitor on 5‐HT neuronal activity. On the basis of a previous study, we decided to investigate the involvement of the 5‐HT7 receptors. Experiments were performed with the specific 5‐HT7 antagonist SB 258741 and the putative 5‐HT7 agonist AS19. In this study WAY 100.635 was used to block 5‐HT1A receptors. Systemic administration of SB 258741 significantly reduced the effect of combined selective serotonin reuptake inhibitor and WAY 100.635 administration on extracellular 5‐HT in the ventral hippocampus as well as 5‐HT neuronal firing in the dorsal raphe nucleus. In the microdialysis study, co‐administration of AS19 and WAY 100.635 showed a biphasic effect on extracellular 5‐HT in ventral hippocampus, hinting at opposed 5‐HT7 receptor mediated effects. In the electrophysiological experiments, systemic administration of AS19 alone displayed a bell‐shaped dose–effect curve: moderately increasing 5‐HT neuronal firing at lower doses while decreasing it at higher doses. SB 258741 was capable of blocking the effect of AS19 at a low dose. This is consistent with the pharmacological profile of AS19, displaying high affinity for 5‐HT7 receptors and moderate affinity for 5‐HT1A receptors. The data are in support of an excitatory effect of selective serotonin reuptake inhibitors on 5‐HT neuronal activity mediated by 5‐HT7 receptors. It can be speculated, that the restoration of 5‐HT neuronal firing upon chronic antidepressant treatment, which is generally attributed to desensitization of 5‐HT1A receptors alone, in fact results from a shift in balance between 5‐HT1A and 5‐HT7 receptor function.  相似文献   

16.
We found that Tyr-Leu (YL) dose-dependently exhibits potent anxiolytic-like activity (0.1-1 mg/kg, i.p.) comparable to diazepam in the elevated plus-maze test in mice. YL was orally active (0.3-3 mg/kg). A retro-sequence peptide or a mixture of Tyr and Leu was inactive. The anxiolytic-like activity of YL was inhibited by antagonists for serotonin 5-HT1A, dopamine D1 and GABAA receptors; however, YL had no affinity for them. We also determined the order of their activation is 5-HT1A, D1 and GABAA receptors using selective agonists and antagonists. Taken together, YL may exhibit anxiolytic-like activity via activation of 5-HT1A, D1 and GABAA receptors.  相似文献   

17.
The nucleus accumbens (NAc) is a crucial forebrain nucleus implicated in reward‐based decision‐making. While NAc neurons are richly innervated by serotonergic fibers, information on the functional role of serotonin 5‐hydroxytryptamine (5‐HT) in the NAc is still sparse. Here, we demonstrate that brief application of 5‐HT or 5‐HT1B receptor agonist CP 93129 induced a long‐term depression (LTD) of glutamatergic transmission in NAc neurons. This LTD was presynaptically mediated and inducible by endogenous 5‐HT. Remarkably, a single cocaine exposure impaired the induction of LTD by 5‐HT or CP 93129. The inhibition was blocked when a selective dopamine D1 receptor antagonist SCH23390 was coadministered with cocaine. Cocaine treatment resulted in increased phosphorylation of presynaptic proteins, rabphilin 3A and synapsin 1, and significantly attenuated CP 93129‐induced decrease in rabphilin 3A and synapsin 1 phosphorylation. Application of cAMP‐dependent protein kinase inhibitor KT5720 caused a prominent synaptic depression in NAc neurons of mice with a history of cocaine exposure. Our results reveal a novel 5‐HT1B receptor‐mediated LTD in the NAc and suggest that cocaine exposure may result in elevated phosphorylation of presynaptic proteins involved in regulating glutamate release, which counteracts the presynaptic depressant effects of 5‐HT1B receptors and thereby impairs the induction of LTD by 5‐HT.  相似文献   

18.
Serotonin regulates aggressive behavior. The production or release of serotonin is sexually dimorphic and related to social rank in many species. We examined serotonin expression in the central posterior/prepacemaker nucleus (CP/PPn) of the electric fish Apteronotus leptorhynchus. The CP/PPn is a thalamic nucleus that controls agonistic and reproductive electrocommunication signals known as chirps and gradual frequency rises. In parts of the CP/PPn that control chirping, females had more than twice as many serotonergic fibers and terminals as did males. Serotonin immunoreactivity in chirp-controlling areas of the CP/PPn was also negatively correlated with two indicators of dominance: electric organ discharge (EOD) frequency and body mass. Within sexes, the negative correlation between EOD frequency and serotonergic innervation of the PPn was significant in females, but not in males. Females with higher EOD frequencies had less serotonin in the CP/PPn than did females with lower EOD frequencies. Thus, the CP/PPn contained more serotonin in females than in males, and in particular, more serotonin in females with EOD frequencies typical of social subordinates than in females with EOD frequencies typical of social dominants. These results, combined with previous findings that serotonin inhibits chirping and that females chirp much less than males, suggest that serotonin may link sex, social rank, and the production of agonistic communication signals. The relative simplicity of the neural circuits that control the EOD and chirping make the electromotor system well-suited for studying the cellular, physiological, and behavioral mechanisms by which serotonin modulates agonistic communication.  相似文献   

19.
The presence of serotonin 5-HT1A receptors and their physiological role were further characterized in the goldfish retina. The effects of the 5-HT6/7 receptor antagonists pimozide, fluphenazine and amoxapine, the 5-HT1A receptor antagonist WAY-100,135, and the alkylating agent N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline, on the 5-HT1A receptor agonist [3H]8-hydroxy-2-(di-n-propylamino)tetralin binding to retinal membranes, were evaluated. In addition, the effects of serotonin, 8-hydroxy-2-(di-n-propylamino)tetralin, WAY-100,135, the adenylate cyclase inhibitors SQ22536 and MDL12330A, and the cyclic AMP analog 8-bromoadenosine-3:5 cyclic monophosphate were also studied on neuritic outgrowth from retinal explants. WAY-100,135 but not 5-HT6/7receptor antagonists inhibited [3H]8-hydroxy-2-(di-n-propylamino)tetralin binding to retinal membranes N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline decreased [3H]8-hydroxy-2-(di-n-propylamino)tetralin binding sites up to 70%, while receptor turnover was similar to that reported in other tissues. Serotonin and 8-hydroxy-2-(di-n-propylamino)tetralin stimulated cyclic AMP production, both ex vivo and in vitro, and these increases were related to inhibition of neuritic outgrowth. The inhibitory effect was reduced by SQ22536 and by WAY-100,135, and was mimicked by 8-bromoadenosine-3:5cyclic monophosphate. This study supports previous findings about the role of serotonin as a regulator of axonal outgrowth during in vitro regeneration of the goldfish retina and demonstrates that this effect is mediated, at least in part, by 5-HT1A receptors through a mechanism which involves an increase of cyclic AMP levels.  相似文献   

20.
The noradrenaline (NA) and serotonin reuptake inhibitor, sibutramine, gives effective weight loss, but full efficacy cannot be attained at approved doses due to cardiovascular side effects. We assessed in rats the contributions of NA and serotonin transporters to sibutramine's hypophagic and cardiovascular effects, and whether selective 5‐hydroxytryptamine (5‐HT1A) receptor activation could counteract the latter without affecting the former. Food intake was assessed in freely feeding rats and cardiovascular parameters in conscious telemetered rats. Ex vivo radioligand binding was used to estimate brain monoamine transporter occupancy. Sibutramine (1–10 mg/kg p.o.) dose‐dependently reduced food intake; however, 10 mg/kg p.o. markedly elevated blood pressure and heart rate. Sibutramine gave greater occupancy of NA than serotonin reuptake sites. Coadministration of the selective 5‐HT1A agonist F‐11440 (2.5 mg/kg p.o.) attenuated sibutramine‐induced hypertension and tachycardia without altering its food intake effects. The selective NA reuptake inhibitors, nisoxetine or reboxetine, did not alter food intake alone, but each reduced food intake when combined with F‐11440. These results suggest that sibutramine‐induced hypophagic and cardiovascular effects are largely due to increased brain synaptic NA via NA reuptake inhibition, and that 5‐HT1A activation can counter the undesirable cardiovascular effects resulting from increased sympathetic activity. Selective NA reuptake inhibitors did not reduce food intake alone but did when combined with 5‐HT1A activation. Hence increased synaptic serotonin, via serotonin reuptake inhibition or 5‐HT1A activation, together with increased NA, would appear to produce hypophagia. Thus weight loss with minimal cardiovascular risk could be achieved by 5‐HT1A activation combined with NA transporter blockade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号