首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Testosterone has been shown to increase the volume of steroid-sensitive brain nuclei in adulthood in several vertebrate species. In male Japanese quail the volume of the male-biased sexually dimorphic medial preoptic nucleus (POM), a key brain area for the control of male sexual behavior, is markedly increased by testosterone. Previous studies assessed this effect after a period of 8–14 days but the exact time course of these effects is unknown. We asked here whether testosterone-dependent POM plasticity could be observed at shorter latencies. Brains from castrated male quail were collected after 1, 2, 7 and 14 days of T treatment (CX+T) and compared to brains of untreated castrates (CX) collected after 1 or 14 days. POM volumes defined either by Nissl staining or by aromatase immunohistochemistry increased in a time-dependent fashion in CX+T subjects and almost doubled after 14 days of treatment with testosterone while no change was observed in CX birds. A significant increase in the average POM volume was detected after only one day of testosterone treatment. The optical density of Nissl and aromatase staining was also increased after one or two days of testosterone treatment. Activation of male copulatory behavior followed these morphological changes with a latency of approximately one day. This rapid neurochemical and neuroanatomical plasticity observed in the quail POM thus seems to limit the activation of male sexual behavior and offers an excellent model to analyze features of steroid-regulated brain structure and function that determine behavior expression.  相似文献   

2.
The medial preoptic area (MPOA) is an important integrative site for male sexual behavior. Dopamine (DA) is released in the MPOA of male rats shortly before and during copulation. In a previous study, we identified 17beta-estradiol (E(2)) as the metabolite of testosterone (T) that maintains MPOA basal extracellular DA levels. However, the presence of dihydrotestosterone (DHT), an androgenic metabolite of T, is required for the female-induced increase in MPOA DA observed during copulation. Recently, we reported that assays of MPOA tissue DA content showed that castrates actually had more stored DA than did gonadally intact males. Therefore, the reduction in extracellular levels in castrates was not due to decreased availability of DA; most likely it was due to decreased release. Furthermore, T upregulates neuronal nitric oxide synthase (nNOS) in the MPOA. NO has been implicated in the regulation of DA release in the MPOA. It is not known, however, which metabolite(s) of T regulate(s) tissue stores of DA and/or nNOS in the MPOA of male rats. The present experiments were designed to test the following: (1) whether E(2), DHT, or the combination of the two influences MPOA DA tissue levels, an indication of stored DA, in male rat castrates; and (2) whether E(2), DHT, or the combination of the two influences NOS-ir in the MPOA of castrated male rats. The results indicate that E(2) up-regulates nNOS-ir in the MPOA and maintains tissue content of DA at levels similar to those in T-treated rats. DHT did not influence nNOS-ir, while attenuating the effect of castration on tissue DA content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号