首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 1 毫秒
1.
BACKGROUND: Many signals are transduced from the cell surface to the nucleus through mitogen-activated protein (MAP) kinase cascades. Activation of MAP kinase requires phosphorylation by MEK, which in turn is controlled by Raf, Mos or a group of structurally related kinases termed MEKKs. It is not understood how MEKKs are regulated by extracellular signals. In yeast, the MEKK Ste11p functions in multiple MAP kinase cascades activated in response to pheromones, high osmolarity and nutrient starvation. Genetic evidence suggests that the p21-activated protein kinase (PAK) Ste20p functions upstream of Ste11p, and Ste20p has been shown to phosphorylate Ste11p in vitro. RESULTS: Ste20p phosphorylated Ste11p on Ser302 and/or Ser306 and Thr307 in yeast, residues that are conserved in MEKKs of other organisms. Mutating these sites to non-phosphorylatable residues abolished Ste11p function, whereas changing them to aspartic acid to mimic the phosphorylated form constitutively activated Ste11p in vivo in a Ste20p-independent manner. The amino-terminal regulatory domain of Ste11p interacted with its catalytic domain, and overexpression of a small amino-terminal fragment of Ste11p was able to inhibit signaling in response to pheromones. Mutational analysis suggested that this interaction was regulated by phosphorylation and dependent on Thr596, which is located in the substrate cleft of the catalytic domain. CONCLUSIONS: Our results suggest that, in response to multiple extracellular signals, phosphorylation of Ste11p by Ste20p removes an amino-terminal inhibitory domain, leading to activation of the Ste11 protein kinase. This mechanism may serve as a paradigm for the activation of mammalian MEKKs.  相似文献   

2.
Ste20p from Saccharomyces cerevisiae belongs to the Ste20p/p65PAK family of protein kinases which are highly conserved from yeast to man and regulate conserved mitogen-activated protein kinase pathways. Ste20p fulfills multiple roles in pheromone signaling, morphological switching and vegetative growth and binds Cdc42p, a Rho-like small GTP binding protein required for polarized morphogenesis. We have analyzed the functional consequences of mutations that prevent binding of Cdc42p to Ste20p. The complete amino-terminal, non-catalytic half of Ste20p, including the conserved Cdc42p binding domain, was dispensable for heterotrimeric G-protein-mediated pheromone signaling. However, the Cdc42p binding domain was necessary for filamentous growth in response to nitrogen starvation and for an essential function that Ste20p shares with its isoform Cla4p during vegetative growth. Moreover, the Cdc42p binding domain was required for cell-cell adhesion during conjugation. Subcellular localization of wild-type and mutant Ste20p fused to green fluorescent protein showed that the Cdc42p binding domain is needed to direct localization of Ste20p to regions of polarized growth. These results suggest that Ste20p is regulated in different developmental pathways by different mechanisms which involve heterotrimeric and small GTP binding proteins.  相似文献   

3.
The alpha-factor receptor of the yeast Saccharomyces cerevisiae encoded by the STE2 gene is a member of the large family of G protein-coupled receptors (GPCRs) that mediate multiple signal transduction pathways. The third intracellular loop of GPCRs has been identified as a likely site of interaction with G proteins. To determine the extent of allowed substitutions within this loop, we subjected a stretch of 21 amino acids (Leu228-Leu248) to intensive random mutagenesis and screened multiply substituted alleles for receptor function. The 91 partially functional mutant alleles that were recovered contained 96 unique amino acid substitutions. Every position in this region can be replaced with at least two other types of amino acids without a significant effect on function. The tolerance for nonconservative substitutions indicates that activation of the G protein by ligand-bound receptors involves multiple intramolecular interactions that do not strongly depend on particular sequence elements. Many of the functional mutant alleles exhibit greater than normal levels of signaling, consistent with an inhibitory role for the third intracellular loop. Removal of increasing numbers of positively charged residues from the loop by site-directed mutagenesis causes a progressive loss of signaling function, indicating that the overall net charge of the loop is important for receptor function. Introduction of negatively charged residues also leads to a reduced level of signaling. The defects in signaling caused by substitution of charged amino acids are not caused by changes in the abundance of receptors at the cell surface.  相似文献   

4.
Mammalian AMP-activated protein kinase is a serine/threonine protein kinase that acts as a sensor of cellular energy status. AMP-activated protein kinase is a heterotrimer of three different subunits, i.e. alpha, beta, and gamma, with alpha being the catalytic subunit and beta and gamma having regulatory roles. Although several studies have defined different domains in alpha and beta involved in the interaction with the other subunits of the complex, little is known about the regions of the gamma subunits involved in these interactions. To study this, we have made sequential deletions from the N termini of the gamma subunit isoforms and studied the interactions with alpha and beta subunits, both by two-hybrid analysis and by co-immunoprecipitation. Our results suggest that a conserved region of 20-25 amino acids in gamma1, gamma2, and gamma3, immediately N-terminal to the Bateman domains, is required for the formation of a functional, active alphabetagamma complex. This region is required for the interaction with the beta subunits. The interaction between the alpha and gamma subunits does not require this region and occurs instead within the Bateman domains of the gamma subunit, although the alpha-gamma interaction does appear to stabilize the beta-gamma interaction. In addition, sequential deletions from the C termini of the gamma subunits indicate that deletion of any of the CBS (cystathionine beta-synthase) motifs prevents the formation of a functional complex with the alpha and beta subunits.  相似文献   

5.
The Saccharomyces cerevisiae a-factor receptor (Ste3p) requires its C-terminal cytoplasmic tail for endocytosis. Wild-type receptor is delivered to the cell surface via the secretory pathway but remains there only briefly before being internalized and delivered to the vacuole for degradation. Receptors lacking all or part of the cytoplasmic tail are not subject to this constitutive endocytosis. We used the cytoplasmic tail of Ste3p as bait in the two-hybrid system in an effort to identify other proteins involved in endocytosis. One protein identified was Akr1p, an ankyrin repeat-containing protein. We applied three criteria to demonstrate that Akr1p is involved in the constitutive endocytosis of Ste3p. First, when receptor synthesis is shut off, akr1 delta cells retain the ability to mate longer than do AKR1 cells. Second, Ste3p half-life is increased by greater than 5-fold in akr1 delta cells compared with AKR1 cells. Third, after a pulse of synthesis, newly synthesized receptor remains at the cell surface in akr1 delta mutants, whereas it is rapidly internalized in AKR1 cells. Specifically, in akr1 delta mutants, newly synthesized receptor is accessible to exogenous protease, and by indirect immunofluorescence, the receptor is located at the cell surface. akr1 delta cells are also defective for endocytosis of the alpha-factor receptor (Ste2p). Despite the block to constitutive endocytosis exhibited by akr1 delta cells, they are competent to carry out ligand-mediated endocytosis of Ste3p. In contrast, akr1 delta cells cannot carry out ligand-mediated endocytosis of Ste2p. We discuss the implications for Akr1p function in endocytosis and suggest a link to the regulation of ADP-ribosylation proteins (Arf proteins).  相似文献   

6.
The yeast GPA1, STE4, and STE18 genes encode proteins homologous to the respective alpha, beta and gamma subunits of the mammalian G protein complex which appears to mediate the response to mating pheromones. Overexpression of the STE4 protein by the galactose-inducible GAL1 promoter caused activation of the pheromone response pathway which resulted in cell-cycle arrest in late G1 phase and induction of the FUS1 gene expression, thereby suppressing the sterility of the receptor-less mutant delta ste2. Disruption of STE18, in turn, suppressed activation of the pheromone response induced by overexpression of STE4, suggesting that the STE18 product is required for the STE4 action. However, overexpression of both the STE4 and STE18 proteins did not generate a stronger pheromone response than overexpression of STE4 in the presence of wild-type levels of STE18. These results suggest that the beta subunit is the limiting component for the pheromone response and support the idea that beta and gamma subunits act as a positive regulator. Furthermore, overexpression of GPA1 prevented cell-cycle arrest but not FUS1 induction mediated by overexpression of STE4. This implies that the alpha subunit acts as a negative regulator presumably through interacting with beta and gamma subunits in the mating pheromone signaling pathway.  相似文献   

7.
A pheromone-mediated signaling pathway that couples seven-transmembrane-domain (7-TMD) receptors to a mitogen-activated protein kinase module controls Candida albicans mating. 7-TMD receptors are typically connected to heterotrimeric G proteins whose activation regulates downstream effectors. Two Galpha subunits in C. albicans have been identified previously, both of which have been implicated in aspects of pheromone response. Cag1p was found to complement the mating pathway function of the pheromone receptor-coupled Galpha subunit in Saccharomyces cerevisiae, and Gpa2p was shown to have a role in the regulation of cyclic AMP signaling in C. albicans and to repress pheromone-mediated arrest. Here, we show that the disruption of CAG1 prevented mating, inactivated pheromone-mediated arrest and morphological changes, and blocked pheromone-mediated gene expression changes in opaque cells of C. albicans and that the overproduction of CAG1 suppressed the hyperactive cell cycle arrest exhibited by sst2 mutant cells. Because the disruption of the STE4 homolog constituting the only C. albicans gene for a heterotrimeric Gbeta subunit also blocked mating and pheromone response, it appears that in this fungal pathogen the Galpha and Gbeta subunits do not act antagonistically but, instead, are both required for the transmission of the mating signal.  相似文献   

8.
The guanine nucleotide-binding proteins (G proteins), which transduce hormonal and light signals across the plasma membrane, are heterotrimers composed of alpha, beta, and gamma subunits. Activation of G proteins by guanine nucleotides is accompanied by dissociation of the heterotrimer: G + alpha.beta.gamma in equilibrium alpha G + beta.gamma. Brain contains several G proteins of which the most abundant are alpha 39.beta.gamma and alpha 41.beta.gamma. We have used proteolysis by trypsin to study the functional domains of the alpha subunits. In the presence of guanosine 5'-(3-O-thio)triphosphate, trypsin removes a 2-kDa peptide from the amino terminus of these proteins (Hurley, J. B., Simon, M. I., Teplow, D. B., Robishaw, J. D., and Gilman, A. G. (1984) Science 226, 860-862; Winslow, J. W., Van Amsterdam, J. R., and Neer, E. J. (1986) J. Biol. Chem. 261, 7571-7579). Tryptic cleavage does not affect the GTPase activity of the truncated molecule nor the apparent Km for GTP. However, removal of the 2-kDa amino-terminal peptide prevents association of the alpha subunits with beta.gamma. Since the apparent substrate for pertussis toxin-catalyzed ADP-ribosylation is the alpha.beta.gamma heterotrimer, the trypsin-cleaved alpha subunit is not a substrate for the toxin. Digestion of the carboxyl terminus of alpha 39 with carboxypeptidase A prevents ADP-ribosylation by pertussis toxin but does not interfere with the formation of alpha 39.beta.gamma heterotrimers. We do not yet know whether the amino-terminal region of alpha 39 interacts with beta gamma directly or whether it is necessary to maintain a conformation of alpha 39 which is required for heterotrimer formation. Further studies are needed to define the nature of the contracts between alpha and beta gamma subunits since understanding the structural basis for their reversible interaction is fundamental to understanding their function.  相似文献   

9.
10.
The STE4 gene, which encodes the beta subunit of the mating response G-protein in the yeast Saccharomyces cerevisiae, was subjected to a saturation mutagenesis using 'doped' oligodeoxynucleotides. We employed a genetic screen to select dominant-negative STE4 mutants, which when overexpressed from the GAL1 promoter, interfered with the signalling function of the wild type protein. The identified inhibitory amino acid alterations define two small regions that are crucially involved in transmitting the mating signal from G beta to downstream components of the signalling pathway. These results underline the positive signalling role of yeast G beta and assign for the first time the positive signalling function of a G-protein beta subunit to specific structural features.  相似文献   

11.
The mTOR (mammalian target of rapamycin) signalling pathway is a key regulator of cell growth and is controlled by growth factors and nutrients such as amino acids. Although signalling pathways from growth factor receptors to mTOR have been elucidated, the pathways mediating signalling by nutrients are poorly characterized. Through a screen for protein kinases active in the mTOR signalling pathway in Drosophila we have identified a Ste20 family member (MAP4K3) that is required for maximal S6K (S6 kinase)/4E-BP1 [eIF4E (eukaryotic initiation factor 4E)-binding protein 1] phosphorylation and regulates cell growth. Importantly, MAP4K3 activity is regulated by amino acids, but not the growth factor insulin and is not regulated by the mTORC1 inhibitor rapamycin. Our results therefore suggest a model whereby nutrients signal to mTORC1 via activation of MAP4K3.  相似文献   

12.
13.
The Saccharomyces cerevisiae kinase Ste20 is a member of the p21-activated kinase (PAK) family with several functions, including pheromone-responsive signal transduction. While PAKs are usually activated by small G proteins and Ste20 binds Cdc42, the role of Cdc42-Ste20 binding has been controversial, largely because Ste20 lacking its entire Cdc42-binding (CRIB) domain retains kinase activity and pheromone response. Here we show that, unlike CRIB deletion, point mutations in the Ste20 CRIB domain that disrupt Cdc42 binding also disrupt pheromone signaling. We also found that Ste20 kinase activity is stimulated by GTP-bound Cdc42 in vivo and this effect is blocked by the CRIB point mutations. Moreover, the Ste20 CRIB and kinase domains bind each other, and mutations that disrupt this interaction cause hyperactive kinase activity and bypass the requirement for Cdc42 binding. These observations demonstrate that the Ste20 CRIB domain is autoinhibitory and that this negative effect is antagonized by Cdc42 to promote Ste20 kinase activity and signaling. Parallel results were observed for filamentation pathway signaling, suggesting that the requirement for Cdc42-Ste20 interaction is not qualitatively different between the mating and filamentation pathways. While necessary for pheromone signaling, the role of the Cdc42-Ste20 interaction does not require regulation by pheromone or the pheromone-activated G beta gamma complex, because the CRIB point mutations also disrupt signaling by activated forms of the kinase cascade scaffold protein Ste5. In total, our observations indicate that Cdc42 converts Ste20 to an active form, while pathway stimuli regulate the ability of this active Ste20 to trigger signaling through a particular pathway.  相似文献   

14.
The protein kinase KSR-1 is a recently identified participant in the Ras signaling pathway. The subcellular localization of KSR-1 is variable. In serum-deprived cultured cells, KSR-1 is primarily found in the cytoplasm; in serum-stimulated cells, a significant portion of KSR-1 is found at the plasma membrane. To identify the mechanism that mediates KSR-1 translocation, we performed a yeast two-hybrid screen. Three clones that interacted with KSR-1 were found to encode the full-length gamma10 subunit of heterotrimeric G-proteins. KSR-1 also interacted with gamma2 and gamma3 in a two-hybrid assay. Deletion analysis demonstrated that the isolated CA3 domain of KSR-1, which contains a cysteine-rich zinc finger-like domain, interacted with gamma subunits. Coimmunoprecipitation experiments demonstrated that KSR-1 bound to beta1 gamma3 subunits when all three were transfected into cultured cells. Lysophosphatidic acid treatment of cells induced KSR-1 translocation to the plasma membrane from the cytoplasm that was blocked by administration of pertussis toxin but not by dominant-negative Ras. Finally, transfection of wild-type KSR-1 inhibited beta1 gamma3-induced mitogen-activated protein kinase activation in cultured cells. These results demonstrate that KSR-1 translocation to the plasma membrane is mediated, at least in part, by an interaction with beta gamma and that this interaction may modulate mitogen-activated protein kinase signaling.  相似文献   

15.
16.
We have previously shown that the Ste20-like kinase SLK is a microtubule-associated protein that can regulate actin reorganization during cell adhesion and spreading (Wagner, S., Flood, T. A., O'Reilly, P., Hume, K., and Sabourin, L. A. (2002) J. Biol. Chem. 277, 37685-37692). Because of its association with the microtubule network, we investigated whether SLK plays a role in cell cycle progression, a process that requires microtubule dynamics during mitosis. Consistent with microtubule association in exponentially growing cells, our results showed that SLK co-localizes with the mitotic spindle in cells undergoing mitosis. Expression of a kinase-inactive mutant or SLK small interfering RNAs inhibited cell proliferation and resulted in an accumulation of quiescent cells stimulated to re-enter the cell cycle in the G2 phase. Cultures expressing the mutant SLK displayed a normal pattern of cyclin D, E, and B expression but failed to down-regulate cyclin A levels, suggesting that they cannot proceed through M phase. In addition, these cultures displayed low levels of both phospho-H3 and active p34/cdc2 kinase. Overexpression of active SLK resulted in ectopic spindle assembly and the induction of cell cycle re-entry of Xenopus oocytes, suggesting that SLK is required for progression through G2 upstream of H1 kinase activation.  相似文献   

17.
I have isolated a new type of sterile mutant of Saccharomyces cerevisiae, carrying a single mutant allele, designated dac1, which was mapped near the centromere on chromosome VIII. The dac1 mutation caused specific defects in the pheromone responsiveness of both a and alpha cells and did not seem to be associated with any pleiotropic phenotypes. Thus, in contrast to the ste4, ste5, ste7, ste11, and ste12 mutations, the dac1 mutation had no significant effect on such constitutive functions of haploid cells as pheromone production and alpha-factor destruction. The characteristics of this phenotype suggest that the DAC1 gene encodes a component of the pheromone response pathway common to both a and alpha cells. Introduction of the GPA1 gene encoding an S. cerevisiae homolog of the alpha subunit of mammalian guanine nucleotide-binding regulatory proteins (G proteins) into sterile dac1 mutants resulted in restoration of pheromone responsiveness and mating competence to both a and alpha cells. These results suggest that the dac1 mutation is an allele of the GPA1 gene and thus provide genetic evidence that the yeast G protein homolog is directly involved in the mating pheromone signal transduction pathway.  相似文献   

18.
19.
Regulators of G-protein signalling (RGS) are a family of proteins that interact with G-proteins to regulate negatively G-protein coupled receptor (GPCR) signalling. In addition to a conserved core domain that is necessary and sufficient for their GTPase activating protein (GAP) like activity, RGSs possess N- and C-terminal motifs that confer distinct functional differences. In order to identify the role of the non-RGS region of human RGS1, we have characterized a series of fusions between RGS1 and GFP in a yeast mutant lacking the RGS containing SST2 gene. Using both halo assays as well as a GPCR responsive FUS1-LacZ reporter gene, we demonstrate that a RGS1-GFP fusion inhibits GPCR signalling in yeast while GFP fusions containing either the N-terminus non RGS sequence of RGS1(1-68) or the sequence containing the RGS box of RGS1(68-197) produce proteins that retain RGS1 activity. These results suggest that both the N-terminal and the RGS box of RGS1 function to inhibit signalling. Analysis of a series of mutants spanning the entire N-terminal non-RGS region of RGS1 produced by conservative segment exchange (CSE) mutagenesis showed little loss of function in yeast. This suggests that the overall structure of the N-terminal region of RGS1 rather than specific motifs or residues is required for its function.  相似文献   

20.
Phosducin (PD) is a regulatory protein involved in the phototransduction cascade of vertebrate photoreceptor cells. We have previously demonstrated that there are rod- and cone-specific PDs (OlPD-R and OlPD-C) in the retina of the teleost fish, medaka (Oryzias latipes) [FEBS Lett. 502 (2001) 117]. A 6x His affinity precipitation assay revealed that phosphorylation by either protein kinase A (PKA) or Ca(2+)/calmodulin-dependent kinase II (CaMKII) reduced the affinity of recombinant medaka PDs to endogenous medaka G-protein beta gamma subunits (Gbetagamma). These results suggest that the affinity of medaka PDs to Gbetagamma is regulated by cAMP and Ca(2+) concentrations as also found for mammalian PDs. However, we found a specific difference in the phosphorylation patterns between recombinant OlPD-R and OlPD-C, which resulted in different affinities to Gbetagamma. These differences may affect the light/dark-adaptation between medaka rods and cones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号