首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The formation of binary Ni(II) complexes with 2'-deoxyguanosine 5'-triphosphate (dGTP, L) as well as ternary complexes thereof with L-histidine (His, A) was studied with the use of potentiometry and electronic absorption spectroscopy. In the binary and ternary systems, the complexes with stoichiometries NiH2L-, NiHL2-, NiL3- and NiH2LA2-, NiHLA3-, NiLA4- respectively, were detected. The ternary complexes are very stable at pH 7.4 and thus may constitute biologically relevant Ni(II) carriers in the cell. In the presence of hydrogen peroxide, the binary and ternary systems both generate hydroxyl radical-like species and undergo dGTP degradation with the formation of the 8-oxo-dGTP intermediate. The latter, along with dGTP complexation and degradation, may lead to mutagenesis and carcinogenesis due to base-mispairing properties of 8-oxoguanine and the disturbance in the physiological balance among the four canonical triphosphodeoxynucleotide substrates for DNA synthesis.  相似文献   

2.
Escherichia coli MutT hydrolyzes 8-oxo-dGTP to 8-oxo-dGMP, an event that can prevent the misincorporation of 8-oxoguanine opposite adenine in DNA. Of the several enzymes that recognize 8-oxoguanine, MutT exhibits high substrate specificity for 8-oxoguanine nucleotides; however, the structural basis for this specificity is unknown. The crystal structures of MutT in the apo and holo forms and in the binary and ternary forms complexed with the product 8-oxo-dGMP and 8-oxo-dGMP plus Mn2+, respectively, were determined. MutT strictly recognizes the overall conformation of 8-oxo-dGMP through a number of hydrogen bonds. This recognition mode revealed that 8-oxoguanine nucleotides are discriminated from guanine nucleotides by not only the hydrogen bond between the N7-H and Oδ (N119) atoms but also by the syn glycosidic conformation that 8-oxoguanine nucleotides prefer. Nevertheless, these discrimination factors cannot by themselves explain the roughly 34,000-fold difference between the affinity of MutT for 8-oxo-dGMP and dGMP. When the binary complex of MutT with 8-oxo-dGMP is compared with the ligand-free form, ordering and considerable movement of the flexible loops surrounding 8-oxo-dGMP in the binary complex are observed. These results indicate that MutT specifically recognizes 8-oxoguanine nucleotides by the ligand-induced conformational change.  相似文献   

3.
Four ternary metal--ortho-iodohippurate (I-hip)--acyclovir (ACV) complexes, [M(I-hip)(2)(ACV)(H(2)O)(3)] where M is Co(II) (1), Ni(II) (2), Cu (3) and Zn(II) have been obtained by reaction between the corresponding binary complexes M(II)(I-hip)(2)xnH(2)O and ACV. Three ternary complexes (M=Co, Ni and Zn) and the corresponding Zn(II)--ortho-iodohippurate binary derivative have been structurally characterized by X-ray diffraction: The studies show these three ternary complexes are isostructural and present, in solid state, an interesting stacking between the nucleobase and the aryl ring of the hippurate moiety, which probably promotes the formation of ternary complexes. Moreover, the two different ligands interact between them by means of ancillary hydrogen bonds with water molecules coordinated to the metal ion. It must be mentioned that these two recognition factors, hydrogen bonds plus stacking, could explain the reason for the isostructurality of these ternary derivatives with so different three metal ions, with diverses trends in coordination numbers and geometries. In solid state, there are two enantiomeric molecules that are related by an inversion center as the crystal-building unit (as a translational motif) for the ternary complexes.  相似文献   

4.
The solution structure of the ternary MutT enzyme-Mg(2+)-8-oxo-dGMP complex showed the proximity of Asn119 and Arg78 and the modified purine ring of 8-oxo-dGMP, suggesting specific roles for these residues in the tight and selective binding of this nucleotide product [Massiah, M. A., Saraswat, V., Azurmendi, H. F., and Mildvan, A. S. (2003) Biochemistry 42, 10140-10154]. These roles are here tested by mutagenesis. The N119A, N119D, R78K, and R78A single mutations and the R78K/N119A double mutant showed very small effects on k(cat) (相似文献   

5.
Saraswat V  Massiah MA  Lopez G  Amzel LM  Mildvan AS 《Biochemistry》2002,41(52):15566-15577
The MutT enzyme from E. coli, in the presence of a divalent cation, catalyzes the hydrolysis of nucleoside- and deoxynucleoside-triphosphate (NTP) substrates by nucleophilic substitution at Pbeta, to yield a nucleotide (NMP) and PPi. The best substrate of MutT is believed to be the mutagenic nucleotide 8-oxo-dGTP, on the basis of its 10(3.4)-fold lower K(m) than that of dGTP (Maki, H., and Sekiguchi, M. (1992) Nature 355, 273-275). To determine the true affinity of MutT for an 8-oxo-nucleotide and to elucidate the kinetic scheme, product inhibition by 8-oxo-dGMP and dGMP and direct binding of these nucleotides to MutT were studied. With Mg(2+)-activated dGTP hydrolysis, 8-oxo-dGMP is a noncompetitive inhibitor with K(I)(sl)(o)(pe) = 49 nM, which is 10(4.6)-fold lower than the K(I)(sl)(o)(pe)of dGMP (1.7 mM). Similarly, the K(I)(intercept) of 8-oxo-dGMP is 10(4.0)-fold lower than that of dGMP. PPi is a linear uncompetitive inhibitor, suggesting that it dissociates first from the product complex, followed by the nucleotide. Noncompetitive inhibition by dGMP and 8-oxo-dGMP indicates an "iso" mechanism in which the nucleotide product leaves an altered form of the enzyme which slowly reverts to the form which binds substrate. Consistent with this kinetic scheme, (1)H-(15)N HSQC titration of MutT with dGMP reveals weak binding and fast exchange from one site with a K(D) = 1.8 mM, in agreement with its K(I)(sl)(o)(pe). With 8-oxo-dGMP, tight binding and slow exchange (n = 1.0 +/- 0.1, K(D) < 0.25 mM) are found. Isothermal calorimetric titration of MutT with 8-oxo-dGMP yields a K(D) of 52 nM, in agreement with its K(I)(sl)(o)(pe). Changing the metal activator from Mg(2+) to Mn(2+) had little effect on the K(I)(sl)(o)(pe) of dGMP or of 8-oxo-dGMP, consistent with the second-sphere enzyme-M(2+)-H(2)O-NTP-M(2+) complex found by NMR (Lin, J., Abeygunawardana, C., Frick, D. N., Bessman, M. J., and Mildvan, A. S. (1997) Biochemistry 36, 1199-1211), but it decreased the K(I) of PPi 12-fold, suggesting direct coordination of the PPi product by the enzyme-bound divalent cation. The tight binding of 8-oxo-dGMP to MutT (DeltaG degrees = -9.8 kcal/mol) is driven by a highly favorable enthalpy ( = -32 +/- 7 kcal/mol), with an unfavorable entropy (<-TDeltaS(o)(binding)> = +22 +/- 7 kcal/mol), as determined by van't Hoff analysis of the effect of temperature on the K(I)(sl)(o)(pe) and by isothermal titration calorimetry in two buffer systems. The binding of 8-oxo-dGMP to MutT induces changes in backbone (15)N and NH chemical shifts of 62 residues widely distributed throughout the protein, while dGMP binding induces smaller changes in only 22 residues surrounding the nucleotide binding site, suggesting that the unusually high affinity of MutT for 8-oxo-nucleotides is due not only to interactions with the altered 8-oxo or 7-NH positions on guanine, but results primarily from diffuse structural changes which tighten the protein structure around the 8-oxo-nucleotide.  相似文献   

6.
Cu in blood has been believed to transport into cell via albumin and some amino acids. To shed light on the Cu transport process we studied the reaction of the Cu(II)-peptide with the amino acid by absorption and CD spectra. Albumin mimic peptides GlyGly-L-HisGly (GGHG) and penta-Gly(G5) formed stable 4N coordinated Cu(II) complexes, but in the reaction with histidine (His) and penicillamine (Pes) the ternary Cu(II) complex formations were observed different by the kinetic study. Cu(II)-G5 complexes reacted with Pes to form the ternary complex Cu(H(-1)G5)(Pes(-)) which was subsequently transformed to the binary complex Cu(Pes(-))(2). In the system with GGHG the Cu(II) was also transported from GGHG to Pes, but the ternary Cu(H(-1)GGHG)(Pes(-)) complex as the intermediate was detected a trace. The ternary complex would be spontaneously transformed to Cu(Pes(-))(2) upon forming, because the rate constant of the ternary complex formation k(1+)= approximately 2M(-1)s(-1) was less than k(2+)= approximately 5 x 10(2)M(-1)s(-1) for the Cu(Pes(-))(2) formation at physiological pH. In the Cu(II)-GGHG-His system the ternary Cu(H(-1)GGHG)(His) complex was also hardly identified because the formation constant K(1) and k(1+) were very small and the equilibrium existed between Cu(H(-2)GGHG) and Cu(His)(2) and its overall equilibrium constant beta(2) for Cu(His)(2) was very small to be 1.00+/-0.05 M(-1) at pH 9.0. These results indicated that the ternary complex is formed in the Cu transport process from the albumin to the amino acid, but His imidazole nitrogen in the fourth-binding site of Cu(II) strongly resists the replacement by the incoming ligand.  相似文献   

7.
Abstract

A computer assisted pH-metric investigation has been carried out on the speciation of complexes of Co(II), Ni(II) and Cu(II) with L-dopa and 1,10-phenanthroline. The titrations were performed in the presence of different relative concentrations (M:L:X = 1.0:2.5:2.5; 1.0:2.5:5.0; 1.0:5.0:2.5) of metal (M) to L-dopa (L) and 1,10-phenanthroline (X) with sodium hydroxide in varying concentrations (0-60% v/v) of 1,2-propanediol-water mixtures at an ionic strength of 0.16 mol L-1 and at a temperature of 303.0 K. Stability constants of the ternary complexes were refined using MINIQUAD75. The species MLXH, MLX, ML2X and MLX2H for Co(II) and Cu(II) and MLXH, MLX and MLX2H for Ni(II) were detected. The extra stability of ternary complexes compared to their binary complexes was believed to be due to electrostatic interactions of the side chains of ligands, charge neutralisation, chelate effect, stacking interactions and hydrogen bonding. The species distribution with pH at different compositions of 1, 2-propanediol-water mixtures and plausible equilibria for the formation of species were also presented. The bioavailability of the metal ions is explained based on the speciation.  相似文献   

8.
To learn the structural basis for the unusually tight binding of 8-oxo-nucleotides to the MutT pyrophosphohydrolase of Escherichia coli (129 residues), the solution structure of the MutT-Mg(2+)-8-oxo-dGMP product complex (K(D) = 52 nM) was determined by standard 3-D heteronuclear NMR methods. Using 1746 NOEs (13.5 NOEs/residue) and 186 phi and psi values derived from backbone (15)N, Calpha, Halpha, and Cbeta chemical shifts, 20 converged structures were computed with NOE violations 相似文献   

9.
Potentiometric studies have shown that Ni(II) forms three pH-dependent complexes with famotidine (L), namely: [NiHL](3+), [NiL](2+) and [NiH(-2)L]. Two of them have been isolated from solution with a Ni/famotidine ratio of 1:1. At pH 6.0, a paramagnetic complex [NiL](2+) with octahedral geometry is formed in which, most likely thiazole N(9) and guanidine N(3) nitrogens are involved in the metal binding. Additionally, two water molecules and two perchlorate anions, ClO(4)(-), fulfil the coordination sphere. The second complex, [NiH(-2)L], that precipitates at pH 8 is diamagnetic and takes square-planar geometry in which four nitrogen donors: N(3), N(9), N(16) and N(20) coordinate to Ni(II). Potentiometric studies, mass spectrometry, FT-IR and Raman spectroscopy are employed to determine and discuss the structure of both complexes. Additionally, 1H, 13C and 15N NMR spectroscopy is used to confirm the binding site in a square-planar complex. The assignment of vibrational bands are made using ab initio HF/CEP-31G method.  相似文献   

10.
The tetradecapeptide containing the 10 aminoacid repeated sequence on the C-terminus of the Ni(II)-induced Cap43 protein, was analyzed for Ni(II) and Cu(II) binding. A combined pH-metric and spectroscopic UV-VIS, EPR, CD and NMR study of Ni(II) and Cu(II) binding to the blocked CH3CO-Thr-Arg-Ser-Arg-Ser-His-Thr-Ser-Glu-Gly-Thr-Arg-Ser-Arg-NH2 (Ac-TRSRSHTSEGTRSR-Am) peptide, modeling a part of the C-terminal sequence of the Cap43 protein, revealed the formation of octahedral complexes involving imidazole nitrogen of histidine, at pH 5.5 and pH 7 for Cu(II) and Ni(II), respectively; a major square planar 4N-Ni(II) complex (about 100% at pH 9, log K* = -28.16) involving imidazole nitrogen of histidine and three deprotonated amide nitrogens of the backbone of the peptide was revealed; a 3N-Cu(II) complex (maximum about 70% at pH 7, log K*=-13.91) and a series of 4N-Cu(II) complexes starting at pH 5.5 (maximum about 90% at pH 8.7, log K* = -21.39 for CuH(-3)L), were revealed. This work supports the existence of a metal binding site at the COOH-terminal part of the Cap43 peptide.  相似文献   

11.
The formation of binary as well as ternary metal complexes of type MLL′ (where M(II) = Cu(II), Ni(II), Co(II), and Zn(II); L = 8-hydroxyquinoline, and L′ = 2-furoic acid) has been studied. The complexes were synthesized and characterized by elemental analyses, molecular weight determination, the IR and electronic spectra, conductivity, and magnetic measurements. The presence of coordinated water molecules was demonstrated by thermogravimetric analysis. The microbial activity of these ligands and their metal complexes was determined on gram positive (Staphylococcus aureus) and gram negative (Escherichia coli) bacteria, the antifungal activity on some common fungi, viz. Aspergillus niger, Aspergillus nidulense, and Penicillium citrinum.  相似文献   

12.
The binary and ternary systems 2,2'-bipyridine (bpy)-M(II)-NO2psglyH2 (M(II) = Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Pb(II); NO2psglyH2 = N-(2-nitrophenylsulfonyl)glycine) were investigated in aqueous solution by means of potentiometry and electron spectroscopy in order to identify the type, number and stability of the complex species as a function of pH and metal-to-ligand molar ratio. The aim is to evaluate the effect of a substituent on the phenyl ring of the N-sulfonyl amino acids on their coordination properties. The prevailing species in the binary systems is the [ML] (M = Co(II), Ni(II), Cu(II), Cd(II), Pb(II)) where the amino acid molecule is in the dianionic form and coordinates the metal ion through both carboxylic oxygen and deprotonated sulfonamidic nitrogen, while in the Mn(II)- and Zn(II)-containing binary system the only complex species found are those with the amino acid in the monoanionic form. In the ternary 2,2'-bipyridine-containing systems the chelating coordination mode of the dianionic amino acid is maintained with M(II) = Co(II), Ni(II), Cu(II), Cd(II), Pb(II) and the addition of the aromatic base also enables the Zn(II) ion to substitute for the sulfonamide nitrogen-bound hydrogen of NO2psglyH2.  相似文献   

13.
High field 1H NMR spectroscopy demonstrated that the equilibration of added Al(III) ions in osteoarthritic (OA) knee-joint synovial fluid (SF) resulted in its complexation by citrate and, to a much lesser extent, tyrosine and histidine. The ability of these ligands, together with inorganic phosphate, to compete for the available Al(III) in terms of (1) thermodynamic equilibrium constants for the formation of their complexes and (2) their SF concentrations was probed through the use of computer speciation calculations, which considered low-molecular-mass binary and ternary Al(III) species, the predominant Al(III) plasma transport protein transferrin, and also relevant hydrolysis and precipitation processes. It was found that, at relatively low added Al(III) concentrations, citrate species were more favoured, whilst phosphate species became dominant at higher levels. The significance of these findings with regard to the in vivo corrosion of aluminium-containing metal alloy joint prostheses (e.g., TiAlV alloys) is discussed.  相似文献   

14.
The metal ions Cu(II), Fe(II), and Cr(III) were allowed to react with H(2)O(2) in the presence of either the mononucleoside 2'-deoxyguanosine (dG) or the mononucleotide 2'-deoxyguanosine-5'-monophosphate (dGMP). The percentage of reacted dG or dGMP that formed the oxidative damage marker 8-hydroxy-2'-deoxyguanosine (8-OH-dG) was monitored. Oxidative damage from reactions involving Cu(II) appear dependent on an interaction between copper and N7 on the guanine base. Any interactions involving the phosphate group have little additional effect on overall oxidative damage or 8-OH-dG production. Reactions involving Fe(II) seem very dependent on an interaction that may involve both N7 on the guanine base and the phosphate group. This interaction may slow oxidation of Fe(II) to Fe(III) in solution, keeping iron in a readily available form to undergo the Fenton reaction. Chromium(III) appears to interact with the phosphate group of dGMP, resulting in significant overall oxidative damage. However, production of 8-OH-dG appears to be very dependent on the ability of Cr(III) to interact with N7 on the guanine base, an interaction that seems to be weak for both the mononucleoside and mononucleotide.  相似文献   

15.
The interactions of adenosine 5'-diphosphate (ADP) with some polyamines (PA) (1,3-diaminopropane (tn), 1,4-diaminobutane (Put), 1,7-diamino-4-azaheptane (3,3-tri) and 1,8-diamino-4-azaoctane (Spd)) both in presence and in the absence of metal ions (Cu(II), Cd(II) and Hg(II)) have been studied. In the metal-free systems the formation of adducts (ADP)Hx(PA) has been observed, in which the main reaction centres are the endocyclic nitrogen atoms of the purine ring, the phosphate group of the nucleotide and the protonated nitrogen atoms of the polyamine. The effectiveness of the phosphate group in formation of adducts has been found to decrease in the series Put > Spd > Spm and to be lower than in the reactions with shorter homologues of biogenic amines. In the ternary systems with metal ions the formation of molecular complexes (ML L' type) has been evidenced in which the protonated polyamine interacts with the nitrogen atoms N(1) or N(7) of the purine ring of the nucleotide. In the ternary systems Cu(II)/ADP/polyamine the coordination dichotomy observed in the binary system Cu(II)/ADP disappears. In the systems with Hg(II) ions the pH range of the dichotomy is extended, while for the systems Cd(II)/ADP/polyamine no changes of the range relative to the binary system Cd(II)/ADP have been noted.  相似文献   

16.
Design and synthesis of new biomimetic materials   总被引:1,自引:0,他引:1  
In this paper, it is reported that the histidine-silane derivative Boc-His(Boc)-CONH-(CH2)3Si(OEt)3 can be polymerized via the sol-gel method or can be grafted on a silica surface. The obtained organosilicas bear histidine molecules covalently bonded on the inorganic matrix. Their Cu(II) complexes have been evaluated as oxidation catalysts for the conversion of 3,5-di-tert-butylcatechol (DTBC) to 3,5-di-tert-butylquinone (DTBQ) in the presence of dioxygen.  相似文献   

17.
Thermodynamic characteristics pertinent to the formation equilibria of two ternary systems: 1) Copper(II), 4,9-diazadodecane-1,12-diamine (spermine, Spe), and adenosine 5'-triphosphate (ATP) and 2) Copper(II), Spe, and tripolyphosphate (TPP) have been determined by means of potentiometric and calorimetric techniques, together with the parent binary complex characteristics. Ternary complexes involving ATP can give information useful in the interpretation of bioenergetic reactions and of biological interactions between nucleic acids and polyamines. As a model system, the TPP-containing ternary complexes have been studied, together with the parent binary complexes. The thermodynamic study of these systems is very important because it can give information about the structural environment of the complexes; moreover, it can help in outlining different noncovalent interactions such as coulombic forces and hydrogen bonds.  相似文献   

18.
Complexes of the uranyl cation [UO(2)(2+)] with histidine (His), N-acetyl-histidine (NAH), tyrosine (Tyr), and N-acetyl-tyrosine (NAT) were studied by UV-visible and NMR spectroscopy, and by potentiometric titration. Protonation constants for each ligand are reported, as are cumulative formation constants for uranyl-amino acid complexes. Coupling constant data (J(CH)) for uranyl-histidine complexes indicate that inner-sphere solution interactions between histidine and uranyl cation are solely at the carboxylate site. At 25 degrees C the major uranyl-histidine complex has a cumulative formation constant of logbeta(110)=8.53, and a proposed formula of [UO(2)HisH(2)(OH)(2)](+); the stepwise formation constant, logK(UL), is estimated to be 5.6 ( approximately 8.53-(-6.1)-(-6.1)-15.15). Outer-sphere interactions, H-bonding or electrostatic interactions, are proposed as contributing a significant portion of the stability to the ternary uranyl-hydroxo-amino acid complexes. The temperature dependent protonation constants of histidine and formation constants between uranyl cation and histidine are reported from 10 to 35 degrees C; at 25 degrees C, DeltaG=-43.3 kJ/mol.  相似文献   

19.
T Noguchi  Y Inoue  X S Tang 《Biochemistry》1999,38(31):10187-10195
Fourier transform infrared (FTIR) signals of a histidine side chain were identified in flash-induced S(2)/S(1) difference spectra of the oxygen-evolving complex (OEC) of photosystem II (PS II) using PS II membranes from globally (15)N-labeled spinach and PS II core complexes from Synechocystis cells in which both the imidazole nitrogens of histidine were selectively labeled with (15)N. A negative band at 1113-1114 cm(-1) was downshifted by 7 cm(-1) upon both global (15)N-labeling and selective [(15)N]His labeling, and assigned to the C-N stretching mode of the imidazole ring. This band was unaffected by H-D exchange in the PS II preparations. In addition, several peaks observed at 2500-2850 cm(-1) all downshifted upon global and selective (15)N-labeling. These were ascribed to Fermi resonance peaks on a hydrogen-bonding N-H stretching band of the histidine side chain. FTIR measurements of model compounds of the histidine side chain showed that the C-N stretching band around 1100 cm(-)(1) can be a useful IR marker of the protonation form of the imidazole ring. The band appeared with frequencies in the following order: Npi-protonated (>1100 cm(-1)) > imidazolate > imidazolium > Ntau-protonated (<1095 cm(-1)). The frequency shift upon N-deuteration was occurred in the following order: imidazolium (15-20 cm(-1)) > Ntau-protonated (5-10 cm(-1)) > Npi-protonated approximately imidazolate ( approximately 0 cm(-1)). On the basis of these findings together with the Fermi resonance peaks at >2500 cm(-1) as a marker of N-H hydrogen-bonding, we concluded that the histidine residue in the S(2)/S(1) spectrum is protonated at the Npi site and that this Npi-H is hydrogen bonded. This histidine side chain probably ligated the redox-active Mn ion at the Ntau site, and thus, oxidation of the Mn cluster upon S(2) formation perturbed the histidine vibrations, causing this histidine to appear in the S(2)/S(1) difference spectrum.  相似文献   

20.
The speciations of some potent insulin-mimetic zinc(II) complexes of bidentate ligands: maltol and 1,2-dimethyl-3-hydroxypyridinone with (O,O) and picolinic acid with (N,O) coordination modes, were studied via solution equilibrium investigations of the ternary complex formation in the presence of small relevant bioligands of the blood serum such as cysteine, histidine and citric acid. Results show that formation of the ternary complexes, especially with cysteine, is favoured at physiological pH range in almost all systems studied. Besides these low molecular mass binders, serum proteins among others albumin and transferrin can bind zinc(II) or its complexes. Accordingly, the distribution of zinc(II) between the small and high molecular mass fractions of the serum was also studied by ultrafiltration. Modelling calculations relating to the distribution of zinc(II), using the stability constants of the ternary complexes studied and those of the serum proteins reported in the literature, confirmed the ultrafiltration results, namely, the primary role of albumin in zinc(II) binding among the low and high molecular mass components of the serum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号