首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The hormone glucagon-like peptide-1(7-36)amide (GLP-1) is released in response to ingested nutrients and acts to promote glucose-dependent insulin secretion ensuring efficient postprandial glucose homeostasis. Unfortunately, the beneficial actions of GLP-1 which give this hormone many of the desirable properties of an antidiabetic drug are short lived due to degradation by dipeptidyl-peptidase IV (DPP IV) and rapid clearance by renal filtration. In this study we have attempted to extend GLP-1 action through the attachment of palmitoyl moieties to the epsilon-amino group in the side chain of the Lys26 residue and to combine this modification with substitutions of the Ala8 residue, namely Val or amino-butyric acid (Abu). In contrast to native GLP-1, which was rapidly degraded, [Lys(pal)26]GLP-1, [Abu8, Lys(pal)26]GLP-1 and [Val8 Lys(pal)26]GLP-1 all exhibited profound stability during 12 h incubations with DPP IV and human plasma. Receptor binding affinity and the ability to increase cyclic AMP in the clonal beta-cell line BRIN-BD11 were decreased by 86- to 167-fold and 15- to 62-fold, respectively compared with native GLP-1. However, insulin secretory potency tested using BRIN-BD11 cells was similar, or in the case of [Val8,Lys(pal)26]GLP-1 enhanced. Furthermore, when administered in vivo together with glucose to diabetic (ob/ob) mice, [Lys(pal)26]GLP-1, [Abu8,Lys(pal)26]GLP-1 and [Val8,Lys(pal)26]GLP-1 did not demonstrate acute glucose-lowering or insulinotropic activity as observed with native GLP-1. These studies support the potential usefulness of fatty acid linked analogues of GLP-1 but indicate the importance of chain length for peptide kinetics and bioavailability.  相似文献   

2.
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are the two key incretin hormones released from the gastrointestinal tract that regulate blood glucose homeostasis through potent insulin secretion. The rapid degradation of GIP and GLP-1 by the ubiquitous enzyme dipeptidyl peptidase IV (DPP IV) renders both peptides noninsulinotropic. However, DPP IV stable agonists, such as N-AcGIP and (Val8)GLP-1, have now been developed. The present study has examined and compared the metabolic effects of subchronic administration of daily i.p. injections of N-AcGIP, (Val8) GLP-1 and a combination of both peptides (all at 25 nmol/kg bw) in obese diabetic (ob/ob) mice. Initial in vitro experiments confirmed the potent insulinotropic properties of N-AcGIP and (Val8)GLP-1 in the clonal pancreatic BRIN BD11 cell line. Subchronic administration of N-AcGIP, (Val8)GLP-1 or combined peptide administration had no significant effects on the body weight, food intake and plasma insulin concentrations. However, all treatment groups had significantly (p < 0.05) decreased plasma glucose levels and improved glucose tolerance by day 14. The effectiveness of the peptide groups was similar, and glucose concentrations were substantially reduced following injection of insulin to assess insulin sensitivity compared to control. These results provide evidence for an improvement of glucose homeostasis following treatment with enzyme-resistant GIP and GLP-1 analogues.  相似文献   

3.
Glucagon-like peptide-1(7-36)amide (GLP-1) is an incretin hormone with therapeutic potential for type 2 diabetes. Rapid removal of the N-terminal dipeptide, His7-Ala8, by the ubiquitous enzyme dipeptidyl peptidase IV (DPP IV) curtails the biological activity of GLP-1. Chemical modifications or substitutions of GLP-1 at His7 or Ala8 improve resistance to DPP-IV action, but this often reduces potency. Little attention has focused on the metabolic stability and functional activity of GLP-1 analogues with amino acid substitution at Glu9, adjacent to the DPP IV cleavage site. We generated three novel Glu9-substituted GLP-1 analogues, (Pro9)GLP-1, (Phe9)GLP-1 and (Tyr9)GLP-1 and show for the first time that Glu9 of GLP-1 is important in DPP IV degradation, since replacing this amino acid, particularly with proline, substantially reduced susceptibility to degradation. All three novel GLP-1 analogues showed similar or slightly enhanced insulinotropic activity compared with native GLP-1 despite a moderate 4-10-fold reduction in receptor binding and cAMP generation. In addition, (Pro9)GLP-1 showed significant ability to moderate the plasma glucose excursion and increase circulating insulin concentrations in severely insulin resistant obese diabetic (ob/ob) mice. These observations indicate the importance of Glu9 for the biological activity of GLP-1 and susceptibility to DPP IV-mediated degradation.  相似文献   

4.
Circulation and degradation of GIP and GLP-1.   总被引:8,自引:0,他引:8  
The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are secreted from the intestinal K- and L-cells, respectively, but are immediately subject to rapid degradation. GLP-1 is found in two active forms, amidated GLP-1 (7-36) amide and glycine-extended GLP-1 (7-37), while GIP exists as a single 42 amino acid peptide. The aminopeptidase, dipeptidyl peptidase IV (DPP IV), which is found in the endothelium of the local capillary bed within the intestinal wall, is important for the initial inactivation of both peptides, with GLP-1 being particularly readily degraded. DPP IV cleavage generates N-terminally truncated metabolites (GLP-1 (9-36) amide / (9-37) and GIP (3-42)), which are the major circulating forms. Subsequently, the peptides may be degraded by other enzymes and extracted in an organ-specific manner. However, other endogenous metabolites have not yet been identified, possibly because existing assays are unable either to recognize them or to differentiate them from the primary metabolites. Neutral endopeptidase 24.11 has been demonstrated to be able to degrade GLP-1 in vivo, but its relevance in GIP metabolism has not yet been established. Intact GLP-1 and GIP are inactivated during passage across the hepatic bed by DPP IV associated with the hepatocytes, and further degraded by the peripheral tissues, while the kidney is important for the final elimination of the metabolites.  相似文献   

5.
Insulinotropic gut-derived hormones (incretins) play a significant role in the regulation of glucose homeostasis in healthy subjects and are responsible for 50-70% of insulin response to a meal. The main mediators of the incretin effect are glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1). However, in patients with type 2 diabetes the effect of incretins action is to a large extent impaired, which seems to explain disturbed secretional activity of beta cells in pancreatic islets. Detailed analysis of incretin defect proved that GIP secretion remains within physiological limits, whereas GLP-1 secretion is significantly decreased. Nevertheless, GLP-1 insulinotropic effect is preserved and GIP effect is significantly impaired. In consequence, substitutional GLP-1 administration aiming at the reduction of its deficiency, seems to be logical therapeutic management, because despite a physiologically retained quantity response from GIP, resistance to this peptide is frequently found. Therefore, particularly promising are the results of clinical studies with the use of GLP-1 analogues , GLP-1 receptors activation, as well as the inhibitors of dipeptidyl peptidase-IV (DPP IV), the enzyme responsible for incretin proteolysis, which restores the proper function of the intestinal-pancreatic axis in subjects with type 2 diabetes and creates new possibilities of a glycaemia reducing therapy and improvement in quality of life in this group of patients.  相似文献   

6.
Green BD  Irwin N  Flatt PR 《Peptides》2006,27(6):1349-1358
Pituitary adenylate cyclase-activating peptide (PACAP) is a member of the glucagon family of peptides. Like other members, most notably glucagon-like peptide-1 (GLP-1), PACAP is rapidly degraded by dipeptidylpeptidase IV (DPP IV). This study investigated how degradation by DPP IV affected the insulinotropic activity of PACAP, and whether PACAP exerted acute antihyperglycemic properties in normal or ob/ob mice. DPP IV degradation of PACAP(1-27) over 18 h led to the formation of PACAP(3-27), PACAP(5-27) and ultimately PACAP(6-27). In contrast to 1.4-1.8-fold concentration-dependent stimulation of insulin secretion by PACAP(1-27), these peptide fragments lacked insulinotropic activity. While PACAP(1-27) and PACAP(1-38) generated significant insulin responses when given alone or together with glucose in ob/ob and normal mice, they also elevated plasma glucose. These actions were eliminated following degradation of the peptide by incubation with DPP IV. The hyperglycemic effects may be explained at least partly by a potent glucagon-releasing action in ob/ob and normal mice. In conclusion, PACAP is inactivated by DPP IV and despite insulin-releasing effects, its actions on glucagon secretion and glucose homeostasis do not make it a good therapeutic tool for the treatment of type 2 diabetes.  相似文献   

7.
Structure-function studies suggest that preservation of the N-terminus and secondary structure of glucose-dependent insulinotropic polypeptide (GIP) is important for biological activity. Therefore, a novel di-substituted analogue of GIP, (Ser(2)-Asp(13))GIP, containing a negatively charged Asp residue in place of an Ala in position 13, was synthesised and evaluated for in vitro biological activity. Incubation with dipeptidyl peptidase IV (DPP IV) showed the half-lives of GIP and (Ser(2)-Asp(13))GIP to be 2.3 and >4h, respectively. Insulin releasing studies in clonal pancreatic BRIN-BD11 cells demonstrated that (Ser(2)-Asp(13))GIP (10(-12)to 10(-7)mol/l) was significantly less potent (60-90%; P<0.05 to P<0.001) than native GIP. The peptide failed to display antagonistic properties as it did not significantly alter insulin secretion when incubated in the presence of GIP (10(-7)mol/l). These results demonstrate that despite increased resistance to DPP IV, substituting Ala in position 13 with a negatively charged Asp, thus producing the di-substituted analogue (Ser(2)-Asp(13))GIP, significantly reduces biological activity, most likely due to modifications within the secondary structure.  相似文献   

8.
Glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and glucagon bind to related members of the same receptor superfamily and exert important effects on glucose homeostasis, insulin secretion, and energy regulation. The present study assessed the biological actions and therapeutic utility of novel GIP/glucagon/GLP-1 hybrid peptides. Nine novel peptides were synthesized and exhibited complete DPP-IV resistance and enhanced in vitro insulin secretion. The most promising peptide, [dA2]GLP-1/GcG, stimulated cAMP production in GIP, GLP-1, and glucagon receptor-transfected cells. Acute administration of [dA2]GLP-1/GcG in combination with glucose significantly lowered plasma glucose and increased plasma insulin in normal and obese diabetic (ob/ob) mice. Furthermore, [dA2]GLP-1/GcG elicited a protracted glucose-lowering and insulinotropic effect in high fat-fed mice. Twice daily administration of [dA2]GLP-1/GcG for 21 days decreased body weight and nonfasting plasma glucose and increased circulating plasma insulin concentrations in high fat-fed mice. Furthermore, [dA2]GLP-1/GcG significantly improved glucose tolerance and insulin sensitivity by day 21. Interestingly, locomotor activity was increased in [dA2]GLP-1/GcG mice, without appreciable changes in aspects of metabolic rate. Studies in knock-out mice confirmed the biological action of [dA2]GLP-1/GcG via multiple targets including GIP, GLP-1, and glucagon receptors. The data suggest significant promise for novel triple-acting hybrid peptides as therapeutic options for obesity and diabetes.  相似文献   

9.
What do we know about the secretion and degradation of incretin hormones?   总被引:9,自引:0,他引:9  
The incretin hormones, glucose-dependent insulinotropic peptide (GIP) and glucagon-like peptide-1 (GLP-1) are secreted from endocrine cells located in the intestinal mucosa, and act to enhance meal-induced insulin secretion. GIP and GLP-1 concentrations in the plasma rise rapidly after food ingestion, and the presence of unabsorbed nutrients in the intestinal lumen is a strong stimulus for their secretion. Nutrients can stimulate release of both hormones by direct contact with the K-cell (GIP) and L-cell (GLP-1), and this may be the most important signal. However, nutrients also stimulate GLP-1 and GIP secretion indirectly via other mechanisms. Incretin hormone secretion can be modulated neurally, with cholinergic muscarinic, beta-adrenergic and peptidergic (gastrin-releasing peptide, GRP) fibres generally having positive effects, while secretion is restrained by alpha-adrenergic and somatostatinergic fibres. Hormonal factors may also influence incretin hormone secretion. Somatostatin exerts a local inhibitory effect on the activity of both K- and L-cells via a paracrine mechanism, while, in rodents at least, GIP from the proximal intestine has a stimulatory effect on GLP-1 secretion, possibly mediated via a neural loop involving GRP. Once they have been released, both GLP-1 and GIP are subject to rapid degradation. The ubiquitous enzyme, dipeptidyl peptidase IV (DPP IV) cleaves N-terminally, removing a dipeptide and thereby inactivating both peptides, because the N-terminus is crucial for receptor binding. Subsequently, the peptides may be degraded by other enzymes and extracted in an organ-specific manner. The intact peptides are inactivated during passage across the hepatic bed and further metabolised by the peripheral tissues, while the kidney is important for the final elimination of the metabolites.  相似文献   

10.
Type 2 diabetes mellitus (T2DM) is associated with reduced suppression of glucagon during oral glucose tolerance test (OGTT), whereas isoglycemic intravenous glucose infusion (IIGI) results in normal glucagon suppression in these patients. We examined the role of the intestinal hormones glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), and glucagon-like peptide-2 (GLP-2) in this discrepancy. Glucagon responses were measured during a 3-h 50-g OGTT (day A) and an IIGI (day B) in 10 patients with T2DM [age (mean ± SE), 51 ± 3 yr; body mass index, 33 ± 2 kg/m(2); HbA(1c), 6.5 ± 0.2%]. During four additional IIGIs, GIP (day C), GLP-1 (day D), GLP-2 (day E) and a combination of the three (day F) were infused intravenously. Isoglycemia during all six study days was obtained. As expected, no suppression of glucagon occurred during the initial phase of the OGTT, whereas significantly (P < 0.05) lower plasma levels of glucagon during the first 30 min of the IIGI (day B) were observed. The glucagon response during the IIGI + GIP + GLP-1 + GLP-2 infusion (day F) equaled the inappropriate glucagon response to OGTT (P = not significant). The separate GIP infusion (day C) elicited significant hypersecretion of glucagon, whereas GLP-1 infusion (day D) resulted in enhancement of glucagon suppression during IIGI. IIGI + GLP-2 infusion (day E) resulted in a glucagon response in the midrange between the glucagon responses to OGTT and IIGI. Our results indicate that the intestinal hormones, GIP, GLP-1, and GLP-2, may play a role in the inappropriate glucagon response to orally ingested glucose in T2DM with, especially, GIP, acting to increase glucagon secretion.  相似文献   

11.
In the pathogenesis of diabetes type 2, increasing insulin resistance is accompanied by dysfunction of pancreatic islet b cells. It is hypothesized that at the basis of this pathology lies an incretin defect of insulinotropic gut-derived hormones, relying on decreased secretion of GLP-1 (glucagon-like peptide 1), with preserved insulinotropic effect, whereas GIP (glucose-dependent insulinotropic polypeptide) secretion remains within physiological limits, but its action is mostly impaired due to total loss of possibility for stimulation of the second phase insulin secretion. Possibilities for pharmacological correction of incretin defect create an opportunity of causative treatment of diabetes and provide basis for development of research on a new group of drugs which promote hypoglycemia. In the presence of these findings there are many ongoing clinical studies with the use of GLP-1 analogues or GLP-1 receptors activators (GLP-1 agonists), as well as the inhibitors of dipeptidyl peptidase IV (DPP-IV), the enzyme responsible for incretin proteolysis, in the treatment of type 2 diabetes. Multidirectional, glucoregulative mechanism of action of these drugs, aiming at the pathogenesis of the disease, restores the proper function of the intestinal-pancreatic axis in subjects with type 2 diabetes and ensures good metabolic control and improvement in quality of life in this group of patients.  相似文献   

12.
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP; also known as gastric inhibitory polypeptide) are incretin hormones that reduce postprandial glycemic excursions via enhancing insulin release but are rapidly inactivated by enzymatic N-terminal truncation. As such, efforts have been made to improve their plasma stability by synthetic modification or by inhibition of the responsible protease, dipeptidyl peptidase (DP) IV. Here we report a parallel comparison of synthetic GIP and GLP-1 with their Ser2- and Ser(P)2-substituted analogs, examining receptor binding and activation, metabolic stability, and biological effects in vivo. Both incretins and their Ser2-substituted analogs showed similar EC50s (0.16-0.52 nm) and IC50s (4.3-8.1 nm) at their respective cloned receptors. Although both phosphoserine 2-modified (Ser(PO3H2); Ser(P)) peptides were able to stimulate maximal cAMP production and fully displace receptor-bound tracer, they showed significantly right-shifted concentration-response curves and binding affinities. Ser2-substituted analogs were moderately resistant to DP IV cleavage, whereas [Ser(P)2]GIP and [Ser(P)2] GLP-1 showed complete resistance to purified DP IV. It was shown that the Ser(P) forms were dephosphorylated in serum and thus in vivo act as precursor forms of Ser2-substituted analogs. When injected subcutaneously into conscious Wistar rats, all peptides reduced glycemic excursions (rank potency: [Ser(P)2]incretins > or = [Ser2] incretins > native hormones). Insulin determinations indicated that the reductions in postprandial glycemia were at least in part insulin-mediated. Thus it has been shown that despite having low in vitro bioactivity using receptor-transfected cells, in vivo potency of [Ser(P)2] incretins was comparable with or greater than that of native or [Ser2]peptides. Hence, Ser(P)2-modified incretins present as novel glucose-lowering agents.  相似文献   

13.
Glucagon-like peptide-1(7-36)amide (GLP-1) is a key insulinotropic hormone with the reported potential to differentiate non-insulin secreting cells into insulin-secreting cells. The short biological half-life of GLP-1 after cleavage by dipeptidylpeptidase IV (DPP IV) to GLP-1(9-36)amide is a major therapeutic drawback. Several GLP-1 analogues have been developed with improved stability and insulinotropic action. In this study, the N-terminally modified GLP-1 analogue, N-acetyl-GLP-1, was shown to be completely resistant to DPP IV, unlike native GLP-1, which was rapidly degraded. Furthermore, culture of pancreatic ductal ARIP cells for 72 h with N-acetyl-GLP-1 indicated a greater ability to induce pancreatic beta-cell-associated gene expression, including insulin and glucokinase. Further investigation of the effects of stable GLP-1 analogues on beta-cell differentiation is required to assess their potential in diabetic therapy.  相似文献   

14.
The role of the gaseous messengers NO and CO for β-cell function and survival is controversial. We examined this issue in the hyperglycemic-hyperinsulinemic ob/ob mouse, an animal model of type 2 obese diabetes, by studying islets from obese vs lean mice regarding glucose-stimulated insulin release in relation to islet NO and CO production and the influence of modulating peptide hormones. Glucose-stimulated increase in ncNOS-activity in incubated lean islets was converted to a decrease in ob/ob islets associated with markedly increased insulin release. Both types of islets displayed iNOS activity appearing after ~60 min in high-glucose. In ob/ob islets the insulinotropic peptides glucagon, GLP-1 and GIP suppressed NOS activities and amplified glucose-stimulated insulin release. The insulinostatic peptide leptin induced the opposite effects. Suppression of islet CO production inhibited, while stimulation amplified glucose-stimulated insulin release. Nonincubated isolated islets from young and adult obese mice displayed very low ncNOS and negligible iNOS activity. In contrast, production of CO, a NOS inhibitor, was impressively raised. Glucose injections induced strong activities of islet NOS isoforms in lean but not in obese mice and confocal microscopy revealed iNOS expression only in lean islets. Islets from ob/ob mice existing in a hyperglycemic in vivo milieu maintain elevated insulin secretion and protection from glucotoxicity through a general suppression of islet NOS activities achieved by leptin deficiency, high CO production and insulinotropic cyclic-AMP-generating hormones. Such a beneficial effect on islet function and survival might have its clinical counterpart in human leptin-resistant type 2 obese diabetes with hyperinsulinemia.  相似文献   

15.
Type 2 diabetes occurs when the β-cells do not secrete enough insulin to counter balance insulin resistance. GLP-1 and GIP are insulinotropic peptides which are thought to benefit to β-cell physiology. On one hand sustained pharmacological levels of GLP-1 are achieved by subcutaneous administration of GLP-1 analogs while transient and lower physiological levels of GLP-1 are attained following DPP4 inhibitor (DPP4i) treatment. On the other hand, DPP4i increase GLP-1 concentration into the portal vein to recruit the gut-to brain-to pancreas axis which is not the case with injected analogs. Hence, these differences between GLP-1 analogs and DPP4i indicate that both strategies could differentially impact β-cell behavior. Here, we summarize the effects of GLP-1 analogs and DPP4i on β-cell physiology. We discuss the possibility that production of signaling molecules, such as cAMP, generated into the β-cells by native GLP-1 or pharmacological GLP-1 analogs may vary and engage different downstream signaling networks. Hence, deciphering which signaling networks are engaged following GLP-1 analogs or DPP4i administration appears to be critical to unveil the contribution of each treatment/strategy to engage β-cell cellular processes.  相似文献   

16.
Gastric inhibitory polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are the two primary incretin hormones secreted from the intestine upon ingestion of glucose or nutrients to stimulate insulin secretion from pancreatic β cells. GIP and GLP-1 exert their effects by binding to their specific receptors, the GIP receptor (GIPR) and the GLP-1 receptor (GLP-1R), which belong to the G-protein coupled receptor family. Receptor binding activates and increases the level of intracellular cAMP in pancreatic β cells, thereby stimulating insulin secretion glucose-dependently. In addition to their insulinotropic effects, GIP and GLP-1 have been shown to preserve pancreatic β cell mass by inhibiting apoptosis of β cells and enhancing their proliferation. Due to such characteristics, incretin hormones have been gaining mush attention as attractive targets for treatment of type 2 diabetes, and indeed incretin-based therapeutics have been rapidly disseminated worldwide. However, despites of plethora of rigorous studies, molecular mechanisms underlying how GIPR and GLP-1R activation leads to enhancement of glucose-dependent insulin secretion are still largely unknown. Here, we summarize the similarities and differences of these two incretin hormones in secretion and metabolism, their insulinotropic actions and their effects on pancreatic β cell preservation. We then try to discuss potential of GLP-1 and GIP in treatment of type 2 diabetes.  相似文献   

17.
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) regulate islet function after carbohydrate ingestion. Whether incretin hormones are of importance for islet function after ingestion of noncarbohydrate macronutrients is not known. This study therefore examined integrated incretin and islet hormone responses to ingestion of pure fat (oleic acid; 0.88 g/kg) or protein (milk and egg protein; 2 g/kg) over 5 h in healthy men, aged 20-25 yr (n=12); plain water ingestion served as control. Both intact (active) and total GLP-1 and GIP levels were determined as was plasma activity of dipeptidyl peptidase-4 (DPP-4). Following water ingestion, glucose, insulin, glucagon, GLP-1, and GIP levels and DPP-4 activity were stable during the 5-h study period. Both fat and protein ingestion increased insulin, glucagon, GIP, and GLP-1 levels without affecting glucose levels or DPP-4 activity. The GLP-1 responses were similar after protein and fat, whereas the early (30 min) GIP response was higher after protein than after fat ingestion (P<0.001). This was associated with sevenfold higher insulin and glucagon responses compared with fat ingestion (both P<0.001). After protein, the early GIP, but not GLP-1, responses correlated to insulin (r(2)=0.86; P=0.0001) but not glucagon responses. In contrast, after fat ingestion, GLP-1 and GIP did not correlate to islet hormones. We conclude that, whereas protein and fat release both incretin and islet hormones, the early GIP secretion after protein ingestion may be of primary importance to islet hormone secretion.  相似文献   

18.
Glucose-dependent insulinotropic polypeptide (GIP) is a key incretin hormone, released postprandially into the circulation in response to feeding, producing a glucose-dependent stimulation of insulin secretion. It is this glucose-dependency that has attracted attention towards GIP as a potential therapeutic agent for the treatment of type 2 diabetes. A major drawback to achieving this goal has been the rapid degradation of circulating GIP by the ubiquitous enzyme, dipeptidylpeptidase IV (DPP IV). However, recent studies have described a number of novel structurally modified analogues of GIP with enhanced plasma stability, insulinotropic and antihyperglycaemic activity. The purpose of this article was to provide an overview of the biological effects of several GIP modifications and to highlight the potential of such analogues in the treatment of type 2 diabetes and obesity.  相似文献   

19.
Dipeptidyl-peptidase IV (DPP IV/CD26) has a dual function as a regulatory protease and as a binding protein. Its role in the inactivation of bioactive peptides was recognized 20 years ago due to its unique ability to liberate Xaa-Pro or Xaa-Ala dipeptides from the N-terminus of regulatory peptides, but further examples are now emerging from in vitro and vivo experiments. Despite the minimal N-terminal truncation by DPP IV, many mammalian regulatory peptides are inactivated--either totally or only differentially--for certain receptor subtypes. Important DPP IV substrates include neuropeptides like neuropeptide Y or endomorphin, circulating peptide hormones like peptide YY, growth hormone-releasing hormone, glucagon-like peptides(GLP)-1 and -2, gastric inhibitory polypeptide as well as paracrine chemokines like RANTES (regulated on activation normal T cell expressed and secreted), stromal cell-derived factor, eotaxin and macrophage-derived chemokine. Based on these findings the potential clinical uses of selective DPP IV inhibitors or DPP IV-resistant analogues, especially for the insulinotropic hormone GLP-1, have been tested to enhance insulin secretion and to improve glucose tolerance in diabetic animals. Thus, DPP IV appears to be a major physiological regulator for some regulatory peptides, neuropeptides, circulating hormones and chemokines.  相似文献   

20.
A number of new approaches to diabetes therapy are currently undergoing clinical trials, including those involving stimulation of the pancreatic beta-cell with the gut-derived insulinotropic hormones (incretins), GIP and GLP-1. The current review focuses on an approach based on the inhibition of dipeptidyl peptidase IV (DP IV), the major enzyme responsible for degrading the incretins in vivo. The rationale for this approach was that blockade of incretin degradation would increase their physiological actions, including the stimulation of insulin secretion and inhibition of gastric emptying. It is now clear that both GIP and GLP-1 also have powerful effects on beta-cell differentation, mitogenesis and survival. By potentiating these pleiotropic actions of the incretins, DP IV inhibition can therefore preserve beta-cell mass and improve secretory function in diabetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号