首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Opiate receptor-ligand binding was investigated in brains of young and aged female F344 rats. A significant reduction in the density of binding sites for 3H-dihydromorphine was observed in the thalamus and midbrain of aged rats. Evidence of two binding sites was observed in the anterior cortex of young rats, whereas aged rats exhibited only a single site. The occurrence of pituitary tumors in the old female rats did not affect 3H-dihydromorphine binding. The highest density of dihydromorphine binding sites was found in the diencephalon, and the lowest density in the hippocampus. Receptor densities in the anterior cortex, striatum, amygdala, frontal poles and midbrain were intermediate, and few, if any, high affinity binding sites for dihydromorphine were found in the pons-medulla or posterior cortex.  相似文献   

2.
The endogenous opioid neuropeptide system seems to be involved in the neural processes which underlie drug addiction. Several studies have reported that the administration of morphine induces changes in the levels and/or activity of endogenous opioid peptides (enkephalin, dynorphin) and their precursors in specific brain regions of the adult CNS. The aim of this work was to study the effects of chronic morphine exposure and its withdrawal on certain aminopeptidases capable of degrading opioid peptides in brain areas including the amygdala, hypothalamus, hippocampus, striatum and brain cortices. In animals treated with morphine, aminopeptidase N presented higher enzyme activity levels in the striatum, the hypothalamus and the amygdala compared to control animals, although statistically significant differences were observed only in the case of the striatum. In addition, the activity of soluble puromycin-sensitive aminopeptidase (PSA) was found to be higher in the frontal cortex of these rats. In contrast, rats experiencing withdrawal symptoms presented decreased levels of aminopeptidase activity in certain brain areas. Thus, the activity of aminopeptidase N in the hippocampus and soluble puromycin-sensitive aminopeptidase in the frontal cortex were found to be lower in rats experiencing naloxone precipitated withdrawal symptoms, compared to the corresponding controls. Finally, the activity of the three studied aminopeptidases in vitro was unaltered by incubation with morphine, suggesting that the observed effects are not due to a direct action of this opioid upon the aminopeptidases. The results of the present report indicate that aminopeptidases may play an important role in the processes of tolerance and withdrawal associated with morphine administration.  相似文献   

3.
The effect of castration on the levels of brain monoamines and their metabolites has been investigated in rats which became or did not become muricidal following long-term isolation. Fourteen brain areas were explored: olfactory bulbs (OB), olfactory tubercles (OT), septum (Se), striatum (Sr), amygdala (A), thalamus (Th), hypothalamus (Hy), hippocampus (Hi), superior colliculus (SC), inferior colliculus (IC), raphe (Ra), pons-medulla (PM), frontal cortex (FC), temporal cortex (TC) and parietal cortex (PC). Except in the raphe of non muricidal rats and in the striatum of muricidal animals, all other areas examined demonstrate some changes of monoamines neurotransmitter or their metabolites after castration. The strongest changes, always increases, were found in the thalamus. In several brain areas, the changes occurring after castration, differ quantitatively and qualitatively in muricidal and non-muricidal rats.Special issue dedicated to Dr. Claude Baxter.Prof. P. Mandel passed away on October 6th, 1992.  相似文献   

4.
The turnover rates and steady-state levels of gamma-aminobutyric acid (GABA) have been determined in 15 brain areas of three sublines of inbred mice differing in their susceptibility to audiogenic seizures: Rb3, which is seizure resistant; Rb2, which develops clonic seizures; and Rb1, which develops tonic-clonic seizures. In the Rb1 subline, GABA steady-state levels are lower than in the Rb3 subline in three of the 15 areas examined (cerebellum, anterior colliculus, and amygdala), whereas in the Rb2 subline, steady-state levels are either higher (posterior colliculus and hippocampus) or lower (amygdala) than in the Rb3 subline. GABA turnover rates differ in three brain areas in Rb1 (amygdala, raphe, and hypothalamus) and in a single area (amygdala) in Rb2 when compared with Rb3. Only one area has similar variations of GABA turnover rate and steady-state levels in the two susceptible sublines: the amygdala. After 2 weeks of repeated auditory stimulations (two times a day, 8,000 Hz, 100 dB), additional alterations in GABA metabolism are observed: mainly large increases in GABA turnover rates (from 40% to three- to fourfold). The Rb2 subline displays a greater number of alterations (increases of turnover rates in pons, cerebellum, anterior and posterior colliculus, amygdala, olfactory bulbs and tubercles, striatum, and frontal cortex) than the Rb1 subline (increases of turnover rates in cerebellum, posterior colliculus, olfactory tubercles, raphe, and frontal cortex and a decrease in hypothalamus). In the Rb3 subline, increases of the turnover rate in amygdala and olfactory tubercles and decreases in olfactory bulbs and hippocampus are observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Das A  Dikshit M  Nath C 《Life sciences》2001,68(13):1545-1555
Inhibition of acetylcholinesterase (AChE)-metabolizing enzyme of acetylcholine, is presently the most important therapeutic target for development of cognitive enhancers. However, AChE activity in brain has not been properly evaluated on the basis of age and sex. In the present study, AChE activity was investigated in different brain areas in male and female Sprague-Dawley rats of adult (3 months) and old (18-22 months) age. AChE was assayed spectrophotometrically by modified Ellman's method. Specific activity (micromoles/min/mg of protein) of AChE was assayed in salt soluble (SS) and detergent soluble (DS) fractions of various brain areas, which consists of predominantly G1 and G4 molecular isoforms of AChE respectively. The old male rats showed a decrease (40-55%) in AChE activity in frontal cortex, striatum, hypothalamus and pons in DS fraction and there was no change in SS fraction in comparison to adult rats. In the old female rats the activity was decreased (25-40%) in frontal cortex, cerebral cortex, striatum, thalamus, cerebellum and medulla in DS fraction whereas in SS fraction the activity was decreased only in hypothalamus as compared to adult. On comparing with old male rats, old female rats showed increase in AChE activity in cerebral cortex, hippocampus and hypothalamus of DS fraction and decrease in hypothalamus of SS fraction. There was a significant increase in AChE activity in DS fraction of cerebral cortex, hippocampus, hypothalamus, thalamus and cerebellum in female as compared to male adult rats. However, no significant change in AChE activity was found in the SS fraction, except hypothalamus between these groups. Thus it appears that age alters AChE activity in different brain regions predominantly in DS fraction (G4 isoform) that may vary in male and female. These observations have significant relevance to age related cognitive deficits and its pharmacotherapy.  相似文献   

6.
CRF-like immunoreactivity was measured by radioimmunoassay in the brains of normal adult rats and found to be widely distributed in extrahypothalamic areas (e.g., thalamus, amygdala, hippocampus, frontal cerbral cortex, striatum, midbrain, pons-medulla and cerebellum) at levels approximately 10% of the hypothalamus. Sephadex G-50 gel filtration reveals that CRF-like immunoreactivity in the hypothalamus coelutes with synthetic ovine CRF and is also present in the void volume. However, in the extrahypothalamic areas of the rat brain, only CRF-like immunoreactivity that coelutes with synthetic ovine CRF was detected. High performance liquid chromatography revealed equal amounts of immunoreactivity coeluting with CRF and methionine sulfoxide CRF in hypothalamic extracts.  相似文献   

7.
The binding of 3H-naltrexone, an opiate receptor antagonist, to membranes of discrete brain regions and spinal cord of 10 week old spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats was determined. The brain regions examined were hypothalamus, amygdala, hippocampus, corpus striatum, pons and medulla, midbrain and cortex. 3H-Naltrexone bound to membranes of brain regions and spinal cord at a single high affinity site with an apparent dissociation constant value of 3 nM. The highest density of 3H-naltrexone binding sites were in hippocampus and lowest in the cerebral cortex. The receptor density (Bmax value) and apparent dissociation constant (Kd value) values of 3H-naltrexone to bind to opiate receptors on the membranes of amygdala, hippocampus, corpus striatum, pons and medulla, midbrain, cortex and spinal cord of WKY and SHR rats did not differ. The Bmax value of 3H-naltrexone binding to membranes of hypothalamus of SHR rats was 518% higher than WKY rats but the Kd values in the two strains did not differ. It is concluded that SHR rats have higher density of opiate receptors labeled with 3H-naltrexone in the hypothalamus only, in comparison with WKY rats, and that such a difference in the density of opiate receptors may be related to the elevated blood pressure in SHR rats.  相似文献   

8.
Repeated audiogenic seizures (4 times a day for 14 days), in genetically selected sensitive mice, induce a significant decrease in GABA level in the following brain areas: nucleus caudatus, posterior colliculus, occipital and frontal cortex, cerebellum, substantia nigra, hippocampus, amygdala, and temporal cortex. No variations were observed in olfactory bulbs, pons medulla, hypothalamus, thalamus, or cochlear area.  相似文献   

9.
The binding of [3H] DAMGO, a highly selective ligand for mu-opiate receptors, to membranes of discrete brain regions and spinal cord of 10 week old spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats was determined. The brain regions examined were hypothalamus, amygdala, hippocampus, corpus striatum, pons and medulla, midbrain and cortex. [3H] DAMGO bound to membranes of brain regions and spinal cord at a single high affinity site. The receptor density (Bmax value) and apparent dissociation constant (Kd value) of [3H] DAMGO to bind to membranes of hippocampus, corpus striatum, pons and medulla, cortex and spinal cord of WKY and SHR rats did not differ. The Bmax value of [3H] DAMGO in membranes of hypothalamus and midbrain of SHR rats was significantly higher than in WKY rats but the Kd values in the two strains did not differ. On the other hand, the Bmax value of [3H] DAMGO in membranes of amygdala of SHR rats was lower than that of WKY rats but the Kd values in the two strains were similar. It is concluded that SHR rats have higher density of mu-opiate receptors in hypothalamus and midbrain but lower density in amygdala in comparison with WKY rats, and that such differences in the distribution of mu-opiate receptors may be related to the elevated blood pressure in SHR rats.  相似文献   

10.
Normal rats rotate (turn in circles) at night and in response to drugs (e.g. d-amphetamine) during the day. Rats with known circling biases were injected with [1,2-3H]-deoxy-d-glucose, decapitated and glucose utilization was assessed in several brain structures. Most structures showed evidence of functional brain asymmetry. Asymmetries were of three different kinds: (1) a difference in activity between sides of the brain contralateral and ipsilateral to the direction of rotation (midbrain, striatum); (2) a difference in activity between left and right sides (frontal cortex, hippocampus); and (3) an absolute difference in activity between sides that was correlated to the rate of either rotation (thalamus, hypothalamus) or random movement (cerebellum). Amphetamine, administered 15 minutes before a deoxyglucose injection in other rats, altered some asymmetries (striatum, frontal cortex, hippocampus) but not others (midbrain, thalamus, hypothalamus, cerebellum). Different asymmetries appear to be organized along different dimensions in both the rat and human brains.  相似文献   

11.
Equilibrium binding of [3H]dihydromorphine was assayed in brain regions of young and aged male F344 rats. Young rats had significantly higher receptor densities than old rats in the frontal poles, anterior cortex, and striatum. In the frontal poles, the decline in receptor concentration with age was accompanied by a significant increase in the apparent affinity of dihydromorphine for receptors, which may be compensatory for the decrease in Bmax. This pattern of receptor alterations is different than that previously observed in aged female rats. Therefore, processes which underlie synaptic alterations with age may be different in males and females.  相似文献   

12.
Receptors for thyrotropin-releasing hormone (TRH) in the rat brain and the pituitary are heterogenous. The receptors were classified into four types according to the dissociation constant (KD). High-affinity receptors (KD less than 3 nM) are present in the pituitary, hypothalamus, amygdala, and limbic forebrain which contains the nucleus accumbens and the septum. Intermediate-affinity receptors (KD, 5-16 nM) are evidently present in the frontal cortex, hippocampus, striatum, thalamus, and the brainstem, but may also be present in other regions. Low-affinity TRH receptors (KD, 50-80 nM) are seen in the limbic forebrain, amygdala, and the hypothalamus. Very-low-affinity receptors (KD, 215 nM) exist in the pituitary. Experiments using DN-1417 (gamma-butyrolactone-gamma-carbonyl-histidyl-prolinamide citrate), a synthetic TRH analogue with a more potent central activity, indicated the presence of TRH receptors having a high affinity to DN-1417 at least in the limbic forebrain but not in the pituitary. This type of receptor is not labeled by [3H](3-methyl-histidine2)-TRH. Density of the TRH receptor is the highest in the pituitary and next highest in the amygdala.  相似文献   

13.
The effect of immobilization stress (IM-stress) on the concentration and the receptor binding of substance P (SP), methionine-enkephalin (ME) and thyrotropin-releasing hormone (TRH) was determined in eight brain regions and the spinal cord. The concentration of SP was decreased in the septum, striatum and hippocampus, and SP receptor binding was decreased in the septum, amygdala + pyriform cortex and hypothalamus. Scatchard analysis indicated that the decrease in the SP binding is mainly due to the decrease in the number of receptors. The concentration of ME was not changed, but ME receptor binding was decreased in the septum. The concentration of TRH was decreased in the frontal cortex, septum, amygdala + pyriform cortex and pons + medulla oblongata, but increased in the spinal cord. TRH receptor binding was decreased in the septum, amygdala + pyriform cortex and hypothalamus. Scatchard analysis indicated that the decrease in TRH binding is due to the decrease in the number of receptors. These results show that IM-stress affects the neuropeptide receptor as well as neuropeptide concentration, and that the septum is a very important region under IM-stress.  相似文献   

14.
Cocaine   总被引:1,自引:0,他引:1  
Cocaine HCl (0, 10, or 50 mg/kg) was injected into adult male ICR mice ip. Thirty minutes later, the brains were removed, and nine regions were isolated: olfactory bulbs, olfactory tubercles, prefrontal cortex, septum, striatum, amygdala, hypothalamus, hippocampus, and thalamus. Using high-performance liquid chromatography, concentrations of norepinephrine, dopamine, serotonin, and their major metabolites and the metabolite/neurotransmitter ratios were determined as an indicator of utilization. Serotonergic systems responded most dramatically. 5HIAA/5-HT decreases were seen in all the brain regions, except the septum, hippocampus, and olfactory bulbs. In most instances, the alterations were dose-dependent. The most profound changes were seen in the amygdala, prefrontal cortex, hypothalamus, and thalamus. For noradrenergic systems, significant responses were seen only in the amygdala, prefrontal cortex, and hypothalamus, but then only at the lower dose. The dopaminergic responses were more complex and not always dose-dependent. The DOPAC/DA ratio was decreased only in the amygdala and striatum at the lower dose, and the olfactory tubercles at the higher dose. It was increased in the septum. The HVA/DA ratios were decreased in the amygdala, prefrontal cortex, and hypothalamus, but only at the lower dose (like MHPG/NE). The 3MT/DA ratio was decreased in the thalamus at the lower dose and in the olfactory tubercles at the higher dose, whereas it was increased in the prefrontal cortex at the lower dose. The HVA and DOPAC routes of degradation were both utilized only by the amygdala. Thus, cocaine produced its most comprehensive effects in this nucleus, as well as the greatest absolute percentage changes for all three of the monoamine systems studied.  相似文献   

15.
The effect of age on phosphate incorporation into phosphatidylinositol 4-phosphate (PIP), phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidic acid (PA) was studied. Lysed crude synaptosomal fractions of different brain regions of 3-month-old and 32-month-old Brown Norway rats were used. The brain regions tested were the hippocampus, frontal cortex, occipital/parietal cortex, entorhinal/pyriformal cortex, striatum/septum, thalamus and hypothalamus. The individual specific phosphorylating activities were unevenly distributed within the brain of Brown Norway rats. Strikingly, the distribution of phosphate incorporation into PIP2 was opposite from that of phosphate incorporation into PA. Phosphate incorporation into PA decreased (-15%) with age in almost all brain regions tested, whereas phosphate incorporation into PIP2 decreased with age only in the frontal cortex (-20%) and in the hypothalamus (-8%). The effects of age may reflect a deterioration of phosphoinositide metabolism, with its function in signal transduction coupled to receptors via G-proteins, in the brain regions involved. In addition, there was an age related decrease in protein content and total phospholipid phosphorus content of lysed crude synaptosomal preparations of all brain regions. The high correlation between the changes in these parameters may be indicative of a decrease in the number or size of synaptosomes with age in the brain regions involved.  相似文献   

16.
Recent evidence has indicated an association between the rewarding effects of ethanol intake and endogenous opioid activity. The present studies examine the presence of differences in opioid peptide mRNA content and mu and kappa opioid receptor densities, between ethanol naive AA and ANA rats bred selectively for their high and low alcohol consumption, respectively. In situ hybridization was used to compare the content of proopiomelanocortin, proenkephalin and prodynorphin mRNA in distinct brain regions known to be involved in the reinforcing properties of addictive drugs, between rats from each line. Results indicated that AA rats had a significantly greater content of proopiomelanocortin mRNA in the arcuate nucleus of the hypothalamus, of proenkephalin mRNA in the prefrontal cortex and of prodynorphin mRNA in the mediodorsal nucleus of the thalamus (p < or = .05). Receptor autoradiography was performed using 3H-labeled ligands specific for mu and kappa opioid receptors. AA rats were found to have a greater density of mu opioid receptors in the shell region of the nucleus accumbens and prefrontal cortex, but a lower density of kappa opioid receptors in the ventromedial hypothalamus, compared to ANA rats. The present data demonstrate the presence of inherited differences in the activity of distinct components of the endogenous opioid system in some brain regions associated with the processes of reward and reinforcement; and as such, may play a role in determining differences in ethanol drinking between AA and ANA rats.  相似文献   

17.
The aim of the study was to measure beta-adrenergic (beta-AR) and serotonergic (5-HTR) receptor concentrations in different brain areas (frontal cortex, hippocampus, hypothalamus and thalamus) of normal and aggressive dogs. Eight adult male dogs, 4.2+/-0.6 years old, showing no clinical signs but aggression, were used for the study. Eight healthy male dogs, 4.4+/-0.8 years old, with no history of neurological and/or behavioural disorders and accidental death, were used as controls. The whole frontal cortex, hippocampus, thalamus and hypothalamus were collected after euthanasia and plasma membrane fractions obtained by ultracentrifugation. beta-AR and 5-HTR were measured by binding assays using specific radioligand [(-)[3H]CGP 12177 and 5-hydroxy[3H]-tryptamine trifluoroacetate, respectively]. A significant decrease in beta-AR levels was observed in the frontal cortex (P=0.001), hippocampus (P<0.0001), and thalamus (P<0.0001) of aggressive dogs compared to controls. As far as 5-HTR are concerned, two receptor subtypes were detected. The two subtypes were classified as low-affinity (5-HTR LA) and high-affinity (5-HTR HA) serotonergic receptors for [3H]-hydroxytryptamine, on the basis of their affinity for [3H]-hydroxytryptamine. 5-HTR LA significantly increased in the whole central nervous system (CNS) area of aggressive dogs (frontal cortex P=0.071; hippocampus P=0.0013; thalamus P<0.0001; hypothalamus P=0.0004); 5-HTR HA significantly increased only in the thalamus (P=0.0005) and hypothalamus (P=0.0002). Results suggest the possible role played by the catecholaminergic and serotonergic systems in canine aggressive behaviour. The understanding of the biological basis of canine aggression may enable the development of pharmacological treatments that would target specific neurotransmitter systems.  相似文献   

18.
Endogenous noradrenaline levels are elevated in medulla oblongata, mesencephalon, pons and thalamus of adult rats which had been treated with 6-hydroxydopamine on days 1, 2, 8 and 15 after birth. Levels in spinal cord, cerebellum, hippocampus/amygdala and cortex are depressed, whereas no significant changes are observed in striatum, hypothalamus and medulla spinalis. The rate at which medulla oblongata synthesizes tritiated noradrenaline and dopamine from tritiated tyrosine invitro is markedly enhanced. No effect was apparent on catecholamine synthesis in hypothalamus. Tritiated noradrenaline synthesis, but not tritiated dopamine synthesis, in the cortex is depressed. These results support the view that neonatal 6-hydroxydopamine treatment causes a degeneration of noradrenaline nerve terminals in the cortex and induces an increase in noradrenaline terminals in the medulla oblongata.  相似文献   

19.
Typological behavioral features of Wistar rats were tested in the open field and in Porsolt test. Rats were assigned to groups with high (HAct), medium (MAct), and low (LAct) behavioral activities. The same rats were assigned to high (HDep), medium (MDep) and low depressive (LDep) groups. The release of norepinephrine, dopamine, serotonin and their metabolites in homogenates obtained from the hypothalamus, hippocampus, frontal cortex and amygdala was assessed by microdialysis and HPLC. In these groups, the monoamine concentrations were different: the level of serotonin was higher in the hypothalamus and norepinephrine and 5-HIAA levels were lower in the hippocampus of MAct - MDep rats as compared to LAct - HDep. Chronic neurotization caused changes in monoamine concentrations in the hypothalamus and amygdala in rats of all groups, whereas in the hippocampus and frontal cortex monoamine changes were observed in HAct - LDep and LAct -HDep rats. The most prominent changes in monoamines levels in neurotized rats with different types of behavior were found in the frontal cortex, amygdala and hippocampus. The results show a correlation between the typological of behavioral characteristics and the reaction to stress of monoaminergic systems of the hypothalamus, hippocampus, frontal cortex and amygdala.  相似文献   

20.
A procedure for labeling rat CNS proteins in vivo which is useful for behavioral and pharmacological studies has been developed. Intraventricular administration of35S-methionine through bilateral indwelling cannulae provided reproducible and highly specific radiolabeling of proteins from frontal cortex (FC), parietal cortex (PC), occipital cortex (OC), striatum (ST), septal nuclei (SN), amygdala (AM), hippocampus (HIP), thalamus (TH), brain stem (BS) and cerebellum (CB). Relative rates of synthesis of over 200 individual proteins were subsequently analyzed by 2DGE. Regional analysis demonstrated increased labeling of a protein of MW 28 kD and pI 6.4 in the hippocampus that was barely detectable in striatum of control rats. In heat-shocked animals, there was increased relative synthesis of the 74 kD Heat Shock Protein in both the septal nuclei and hippocampus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号