首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two molecular species of Ca2+-dependent neutral protease (calpains I and II) and its endogenous inhibitor (calpastatin) in cytosol fraction of bovine adrenal medulla were separated by hydrophobic interaction chromatography. Both calpains I and II, having low and high Ca2+ requirements for casein hydrolysis, respectively, were found to activate tyrosine hydroxylase(TH) that had been purified from cytosol fraction of bovine adrenal medulla. This activation of TH by calpain was inhibited by leupeptin and the endogenous inhibitor, calpastatin. The activated TH with calpain II, characterized by high-performance gel permeation chromatography, had a reduced Mr of 120,000 from the Mr of 230,000 of native enzyme.  相似文献   

2.
A rapid and reliable method for quantitating tissue calpains (Ca2+-activated, neutral, thiol proteases) was developed using hydrophobic chromatography with phenyl-Sepharose. Calpains I and II isolated by this method are free of endogenous inhibitor(s) (calpastatin), activator(s), and nonspecific proteases. These calpains expose hydrophobic regions in the presence of Ca2+ and bind tightly to phenyl-Sepharose. Inactivation of bound calpain is prevented by the addition of leupeptin (20 microM). Calpains I and II bound initially by phenyl-Sepharose in a Ca2+-dependent manner are then eluted successively on the basis of their Ca2+-independent binding to phenyl-Sepharose. Because calpastatin may prevent binding of calpain to phenyl-Sepharose by forming a protease-inhibitor complex in the presence of Ca2+, preadsorbing the protease to a suspension of phenyl-Sepharose beads initially in the absence of Ca2+ separates most of the calpain present in tissue extracts from calpastatin. The isolated calpains obtained are assayed by casein digestion. This quantitation procedure is suitable for measuring calpain activity in various tissues and cells including erythrocytes.  相似文献   

3.
Calpain (Ca2+-dependent cysteine proteinase) was purified to apparent homogeneity from carp muscle by the method of DEAE-cellulose, hydroxylapatite and Ultrogel AcA 34 column chromatographies. The purified enzyme is classified as calpain II (high-Ca2+-requiring form of calpain) from the effects of Ca2+ concentration, pH and the antibiotics on the activity. Carp muscle calpain II was inhibited by rat liver calpastatin, the specific inhibitor for calpain. It is probable that the calpain-calpastatin system may play a biologically fundamental and common role in various cells, since the inhibitory effect of calpastatin on calpain from different tissues of different species is well conserved.  相似文献   

4.
In order to examine the existence of calpain I, a low (micromolar)-Ca2+-requiring form of calpain, in fish tissues, carp erythrocytes were chosen as the experimental material, since only calpain I is known to exist in mammalian erythrocytes. By DEAE-cellulose chromatography, calpain and calpastatin (specific inhibitor for calpain) were separated from carp erythrocyte hemolysate. Carp erythrocyte calpain is classified as calpain II, a high (millimolar)-Ca2+-requiring form of calpain, from the result of Ca2+-requirement for the activity.  相似文献   

5.
The mechanism for binding of human erythrocyte calpain I to human erythrocyte inside-out vesicles was studied by immunoelectrophoretic blot analysis. Binding of calpain I to inside-out vesicles was observed both in the absence and presence of Ca2+. Moreover, in the absence of Ca2+, acidic proteins like casein, ovalbumin and calpastatin suppressed while basic proteins like arginase and lysozyme did not affect the binding of calpain I to inside-out vesicles. Here, we propose a model for the binding of calpain to the membrane.  相似文献   

6.
Calpain是钙依赖性中性蛋白酶 ,根据其对钙敏感性的不同 ,可分为m 和 μ calpain两型 .分别用不同浓度CaCl2 溶液孵育Wistar大鼠脑皮质匀浆液 ,并用蛋白质印迹和定量图像分析技术检测不同亚型calpain对tau蛋白的降解作用 .研究发现 :在 3 7℃用 1mmol/LCa2 孵育底物 15min ,可见tau蛋白明显降解 ,并在分子质量为 2 9ku处出现tau蛋白降解片段 ;当Ca2 浓度为 5mmol/L时 ,tau蛋白几乎全部被降解 ;这种tau蛋白降解可被calpain特异性抑制剂完全逆转 .进一步的研究发现 ,分别用 μ calpain抑制剂 (0 0 5μmol/Lcalpastatin) ,m calpain抑制剂 (10 0 μmol/LcalpaininhibitorⅣ )或总calpain抑制剂 (552 μmol/Lcalpeptin)与 1mmol/LCa2 共同孵育Wistar大鼠脑皮质匀浆液 ,Ca2 激活的tau蛋白降解分别被抑制8 6% ,92 5%和 97 8% .结果表明一定浓度的Ca2 可同时激活 μ calpain和m calpain ,这两种亚型calpain均参与降解tau蛋白 ,但m calpain的作用比 μ calpain更强  相似文献   

7.
Two forms of Ca(++)-activated protease (calpain I and calpain II) associated with an endogenous inhibitor (calpastatin) were detected in a cytosolic fraction of the olfactory tissue of vertebrates (pig, rat). Using ion exchange chromatography on DEAE-cellulose column, calpain I is divided into 2 peaks (eluting by 0.07-0.15 and 0.22-0.25 M NaCl), and calpain II is eluted by 0.35-0.40 M NaCl. The calpain activity was detected in fractions eluted by 0.1-0.17 M NaCl. The Ca(++)-activated protease was demonstrated also in a fraction of cytoskeleton of olfactory tissue insoluble in a 1% solution of Triton X-100. The activity can be detected by Ca(++)-dependent destruction of exogenous substrate (casein), and by Ca(++)-dependent degradation of cytoskeletal endogenous proteins (16, 18 and 20 kDa), of which one may be calmodulin.  相似文献   

8.
Low and high Ca2+-requiring forms of Ca2+-dependent cysteine proteinase are known as calpain I and calpain II, respectively. We have obtained, for the first time, monospecific antibodies for calpain I and for calpain II. Using these antibodies and an electrophoretic blotting method, we have found that a small, but reproducible, amount of calpain I was associated with human erythrocyte membranes while the bulk of the protease was contained in the cytosol. Most of membrane-associated calpain I was extractable with 1% Triton X-100, but not with 0.1% detergent. In the presence of 0.1 mM Ca2+ and 5 mM cysteine, membrane-associated calpain I degraded the membrane protein band 4.1 preferentially and band 3 protein only slowly. The Ca2+-induced autodigestion of the membrane preparation was inhibited by leupeptin but not by a cytosolic calpain inhibitor, calpastatin, added to the incubation medium. No calpain II was detected in either erythrocyte cytosol or membranes when anti-calpain II antibody was used under the same conditions as those for the detection of calpain I.  相似文献   

9.
Homogenously purified porcine calpain I (Mr 112000), a low-Ca2+-requiring form of Ca2+-dependent cysteine proteinase [EC 3.4.22.17], was coupled to Sepharose 4B gel as an active form. It was used as a ligand to calpastatin (Mr 70000), calpain-specific inhibitor protein, for an affinity chromatography. Only in the presence of Ca2+, calpastatin bound to calpain-Sepharose, but the interaction resulted in rather extensive fragmentation of a calpastatin molecule into several peptides of Mr 14000 to 70000, which still retain inhibitory activities against calpain. Fragmentation was demonstrated both by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and by high-performance liquid chromatography in the presence of 6 M guanidine-HCl.  相似文献   

10.
Calpains are neutral Ca2+-dependent cysteine proteases. In this study, we utilized casein zymography to detect such a proteolytic activity in Drosophila melanogaster extracts throughout the life of this organism. One calpain-like activity that was sensitive to the general cysteine protease inhibitors, E64 and calpain inhibitor I, but insensitive to the human calpain-specific inhibitor, calpastatin, is demonstrated. The relevance of this finding is discussed with respect to the absence of a corresponding Drosophila gene, homologous to the vertebrate calpastatin genes, as concluded from our unsuccessful attempts to clone such a gene and our Blast searches using the FlyBase. The mechanisms of Drosophila calpain regulation require further investigation. However, we suggest that single chain, non-heterodimeric calpains may be insensitive to calpastatin and that Drosophila cystatin-like molecules may play a role in negatively regulating Drosophila calpain.  相似文献   

11.
Ca2+-dependent proteolytic activity was detected at pH 7.5 in head extracts of the fruit fly Drosophila melanogaster. This activity was abolished by iodoacetate, but was unaffected by phenylmethanesulphonyl fluoride. These properties resemble those of the Ca2+-dependent thiol-proteinase calpain. The activity appeared at Mr 280,000 on Sepharose CL-6B gel chromatography. DEAE-cellulose chromatography revealed two activity peaks, with elution positions corresponding to vertebrate calpains I and II. The fly head enzymes were inhibited by a heat-stable and trypsin-sensitive component of the fly head extract, which also inhibited calpains from rat kidney. The inhibitor emerged from Sepharose CL-6B columns at Mr 310,000 and from DEAE-cellulose at a position corresponding to the protein inhibitor calpastatin from other sources. It is concluded that Drosophila heads comprise the Ca2+-dependent calpain-calpastatin proteolytic system.  相似文献   

12.
Calpains I and II isolated from diverse tissues possess both Ca2+-independent, and Ca2+-dependent accessible hydrophobic regions. Possible subcellular organelle association of calpains involving these hydrophobic regions was studied. By homogenizing rat tissues directly in Ca2+ (50 microM), about 30-60% of the cytosolic calpain I and II activity reversibly associated with isolated subcellular fractions (microsomal greater than plasma membrane greater than nuclear). After binding to the particulate fraction, calpain II converted to a calpain I-like form exhibiting stronger Ca2+-independent binding to phenyl-Sepharose and a lower Ca2+ requirement for optimal activity. However, it retained its DEAE-cellulose chromatographic pattern, and precipitated with monospecific anti-calpain II antibodies. Although purified calpastatin (endogenous inhibitor) is known to form a Ca2+-dependent complex with calpains, it was not able to reverse the binding of calpains to the particulate fraction upon short incubation. It was, however, effective in blocking calpain binding when the isolated cytosolic fraction or a mixture of purified calpain and calpastatin was preincubated in the presence of Ca2+, and then added to the particulate fraction. Extraction of tissues under controlled conditions revealed that in fact calpains are already loosely associated with subcellular organelles even in the absence of Ca2+. This is the reason why in the crude homogenates with the addition of Ca2+, calpains strongly bind to the particulate fraction without interference by cytosolic calpastatin. Although calpastatin by complexing initially to calpain can prevent the association of this protease with subcellular organelles, it cannot dissociate calpains already bound to these subcellular fractions. By prior Ca2+-independent association with the hydrophobic proteins present in the subcellular fractions, calpains overcome the 3- to 30-fold inhibitory excess of calpastatin in tissues.  相似文献   

13.
Calpastatin is a widely distributed endogenous inhibitor protein specifically acting on calpain (Ca2+-dependent cysteine endopeptidase). The inhibitor consists of four inhibitory domains (Domains 1-4) with mutually homologous sequences. NH2-terminal Domain L is non-homologous, and all domains have 120-140 residues each. A human calpastatin genomic DNA clone was isolated using a previously obtained human calpastatin cDNA probe. Sequence analysis has revealed that the clone contains Domain 1 and segments of neighboring domains (Domains L and 2). Each of three highly conserved, restricted regions within Domain 1 was located on separate exons, 1A, 1B, and 1C. Exon 2A, corresponding to the first exon of Domain 2, is homologous to Exon 1A and follows Exon 1D of Domain 1. A 27-residue peptide encoded by Exon 1B, including a 12-residue middle conserved sequence, was chemically synthesized and tested for protease inhibitory activities. The synthetic peptide showed strong inhibition against calpain I (low Ca2+-requiring form), and calpain II (high Ca2+-requiring form), but no inhibition against papain or trypsin. These results indicated that Exon 1B forms a self-sufficient functional subdomain of the calpastatin inhibitory domain.  相似文献   

14.
The antioxidant, butylated hydroxytoluene (BHT), causes lung toxicity in mice followed by regenerative repair, and can also modulate the development of carcinogen-induced lung adenomas. We are investigating changes in pulmonary biochemistry following BHT treatment in order to understand the mechanisms of BHT-induced pulmonary regenerative repair. BHT administration lowered cytosolic Ca2+-activated neutral protease (calpain) activity, increased the activity of the endogenous calpain inhibitor, calpastatin, increased the extent of photoincorporation of 8-N3-[32P]cAMP into a Mr 37,000 proteolytic product derived from cAMP-dependent protein kinase regulatory (R) subunits, and increased membrane-associated protease activity. All of these changes were dependent on the BHT dosage; the altered proteolytic activities occurred at a dose lower than that which caused observable lung toxicity as assessed by the lung weight/body weight ratio. Decreased cytosolic calpain activity was detectable within 1 day after BHT administration, was lowest at 4-7 days, and had not returned to control levels by Day 21, a time when normal lung morphology had been regained. The decrease in calpain activity cannot fully be accounted for by increased calpastatin activity; upon separation of these proteins by DEAE chromatography, the amount of calpain activity from BHT-treated mice remained lower than the corresponding peak from control mice. Increased photolabeling of the Mr 37,000 protein began at 1 day and continued to increase up to 4 days after BHT. All of the cytosolic changes preceded the increased particulate proteolytic activity by 1-2 days. R-subunits which have dissociated from their catalytic subunits are more susceptible to degradation by calpain, but BHT treatment did not enhance subunit dissociation as determined by the elution profile of 8-N3-[32P]cAMP-labeled R-subunits following DEAE chromatography. A large percentage of the particulate protease activity was inhibited by calpastatin, leupeptin, and E-64, all of which are known to inhibit calpain activity; this suggested that calpain accounted for most of this activity. Changes in the activities of proteases which catalyze limited proteolysis reactions may play an important role in the repair of acute lung injury.  相似文献   

15.
It is generally accepted that the Ca(2+)-dependent interaction of calpain with calpastatin is the most relevant mechanism involved in the regulation of Ca(2+)-induced proteolysis. We now report that a calpain-calpastatin association can occur also in the absence of Ca(2+) or at very low Ca(2+) concentrations, reflecting the physiological conditions under which calpain retains its inactive conformational state. The calpastatin binding region is localized in the non-inhibitory L-domain containing the amino acid sequences encoded by exons 4-7. This calpastatin region recognizes a calpain sequence located near the end of the DII-domain. Interaction of calpain with calpastatins lacking these sequences becomes strictly Ca(2+)-dependent because, under these conditions, the transition to an active state of the protease is an obligatory requirement. The occurrence of the molecular association between Ca(2+)-free calpain and various recombinant calpastatin forms has been demonstrated by the following experimental results. Addition of calpastatin protected calpain from trypsin digestion. Calpain was coprecipitated when calpastatin was immunoprecipitated. The calpastatin molecular size increased following exposure to calpain. The two proteins comigrated in zymogram analysis. Furthermore, calpain-calpastatin interaction was perturbed by protein kinase C phosphorylation occurring at sites located at the exons involved in the association. At a functional level, calpain-calpastatin interaction at a physiological concentration of Ca(2+) represents a novel mechanism for the control of the amount of the active form of the protease potentially generated in response to an intracellular Ca(2+) influx.  相似文献   

16.
Purified calpains are capable of proteolyzing several high Mr nuclear proteins and solubilizing a histone H1 kinase activity from rat liver nuclei upon exposure to 10(-6) - 10(-5) M Ca2+. Major nuclear substrates displayed apparent molecular masses of 200, 130, 120, and 60 kDa on Coomassie Blue-stained SDS-PAGE gels. The nuclear proteins and the H1 kinase were released from Triton-treated nuclei following incubation with buffer containing 0.5 M NaCl. They therefore appeared to be internal nuclear matrix proteins. The nuclear H1 kinase activity solubilized by incubation with m-calpain was eluted in the void volume of a Bio-Gel A-1.5m column, indicating an apparent mass greater than 1,500 kDa. Treatment of the calpain-solubilized kinase with 0.5 M NaCl dissociated it to a form having an apparent mass of 300 kDa (Stokes radius = 5.6 nm), suggesting that the 300-kDa (Stokes radius = 5.6 nm), nuclei by calpain treatment as a large complex containing other internal matrix proteins. Purified human erythrocyte mu-calpain was capable of proteolyzing the nuclear matrix proteins at 10(-6) M Ca2+. In contrast, human erythrocyte multicatalytic protease complex produced little cleavage of the nuclear proteins. Proteolysis of nuclear proteins by either mu-calpain or m-calpain was inhibited by calpastatin. These experiments suggest a physiologic role for the calpains in the turnover of nuclear proteins.  相似文献   

17.
Activation of erythrocyte membrane Ca2+-ATPase by calpain   总被引:1,自引:0,他引:1  
Ca2+-ATPase of erythrocyte membranes, prepared from erythrocytes substantially removed of contaminating leukocytes, was found to be activated by calpain isolated from the same source. Saponin or glycodeoxycholate treatment of membranes was essential for elicitation of the calpain response. Unlike the membrane bound ATPase, solubilized ATPase was inactivated by calpain. Digestion of membranes with the protease did not affect the Km (ATP) of Ca2+-ATPase though stimulation of the membrane ATPase by calmodulin could be partially substituted by calpain treatment. As compared with control, Ca2+-ATPase of calpain-digested membranes attained maximal activity at a lower free Ca2+ concentration.  相似文献   

18.
Two forms of Ca2+-dependent cysteine proteinase (calpain, EC 3.4.22.17) and their specific endogenous inhibitor (calpastatin) were partially purified from porcine retina: calpain I (low-Ca2+-requiring form) was half-maximally activated at 8 microM-Ca2+, and calpain II (high-Ca2+-requiring form) at 250 microM-Ca2+. Both calpain I and calpain II were inhibited by calpastatin. Calpain I from porcine retina was shown to be composed of 83 000- and 29 000-Mr subunits, and calpain II of 80 000- and 29 000-Mr subunits, by the use of monospecific antibodies. Calpains I and II were both found to hydrolyse microtubule-associated proteins 1 and 2 rapidly.  相似文献   

19.
Calcium-induced weakening of skeletal muscle Z-disks   总被引:1,自引:0,他引:1  
Structural changes in the Z disk were sensitively detected by measuring fragmentation indexes of myofibrils. The Ca2+-induced weakening of Z disks and the Z-disk removal by muscle calpain could be clearly distinguished by using muscle calpastatin, an endogenous inhibitor of muscle calpain. The Ca2+-induced weakening of Z disks occurred without concomitant release of alpha-actinin and had maxima at 10(-4) M Ca2+ and 45 degrees C and a minimum at pH 6.5, while the Z-disk removal by calpain had similar optima to the caseinolytic activity of calpain, at 10(-3) M Ca2+, 20 degrees C and pH 7.0. The Ca2+-induced weakening of Z disks is therefore not due to the proteolytic action of calpain. In postmortem muscle, moreover, the Ca2+-induced weakening of Z disks was inferred to be predominate over calpain proteolysis, and therefore to be the major factor in the characteristic weakening of Z disks.  相似文献   

20.
Two forms of calpastatin, differing in their specificity for the homologous calpain isozymes I and II, have been separated from rat skeletal muscle extracts and purified to homogeneity. Calpastatin I, the first form to elute in chromatography on DE32, is more effective against calpain I, while calpastatin II is more effective as an inhibitor of calpain II. Based on their molecular mass (approximately 105 kDa) both calpastatin forms belong to the high molecular mass class found in muscles of other animal species (Murachi, T., 1989, Biochem. Int. 18, 263-294). For calpain I, which is active with low (mu-M) concentrations of Ca2+, maximum inhibition with either calpastatin form was observed over a wide range of Ca2+ concentrations. With calpain II, which requires high (mM) concentrations of Ca2+ for activity, maximum inhibition required Ca2+ concentrations above 1 mM. Both calpastatin forms were found to be highly sensitive to degradation by calpain II, but almost completely resistant to degradation by calpain I. Degradation of calpastatin by calpain II is competitively inhibited by the addition of a calpain substrate. Isovaleryl carnitine (IVC), an intermediate product of L-leucine catabolism, previously demonstrated to be a potent and specific activator of rat skeletal muscle calpain II (Pontremoli, S., Melloni, E., Viotti, P. L., Michetti, M., Di Lisa, F., and Siliprandi, N., 1990. Biochem. Biophys. Res. Commun. 167, 373-380) greatly enhances the rate of degradation of calpastatins by calpain II. IVC, which decreases the Ca2+ requirement for maximal calpain II activity, also decreases the concentration of Ca2+ required for digestion of the inhibitor. For calpain II, regulation by either calpastatins may occur only in the presence of high [Ca2+].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号