首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Ribosomes are trapped at the 3′ ends of mRNAs that lack a natural stop codon. In bacteria, a reaction called trans-translation recycles ribosomes entrapped at such ‘non-stop’ mRNAs. The main player in trans-translation is tmRNA (SsrA-RNA), a bi-functional RNA that acts as both a tRNA and an mRNA. In the trans-translation reaction, alanine-charged tmRNA loads at the ribosomal A-site and translation shifts to the resume codon in tmRNA. Translation of tmRNA stops at a natural stop codon at the end of the small reading frame of tmRNA. In this way, the reaction simultaneously adds a peptide tag to the end of the nascent, incomplete polypeptide and recycles the stalled ribosomes. The peptide tag is recognized by cellular proteases that rapidly degrade the incomplete, potentially harmful polypeptides. The trans-translation reaction is not essential in most bacteria, raising the possibility that ribosomes stalled at non-stop mRNAs can be rescued by alternative routes. In this issue of Molecular Microbiology, Chadani et al. show that a novel translation factor, ArfA, can recycle a ribosome trapped at the 3′ end of a non-stop mRNA in the absence of trans-translation. AfrA is essential in the absence of tmRNA, showing that the two systems work in parallel to resolve stalled ribosomes.  相似文献   

4.
Ribosomes stalled on problematic mRNAs in bacterial cells can be rescued by transfer-messenger RNA (tmRNA), its helper protein (small protein B, SmpB), and elongation factor Tu (EF-Tu) through a mechanism called trans-translation. In this work we used lead(II) footprinting to probe the interactions of tmRNA with SmpB and other components of the translation machinery at different steps of the trans-translation cycle. Ribosomes with a short nascent peptide stalled on a truncated mRNA were reacted with Ala-tmRNA*EF-Tu*GTP, SmpB, and other translation components to initiate and execute trans-translation. Free tmRNA was probed with lead(II) acetate with and without SmpB, and ribosome bound tmRNA was probed in one of four different trans-translation states stabilized by antibiotic addition or selective exclusion of translation components. For comparison, we also analyzed lead(II) cleavage patterns of tmRNA in vivo in a wild-type as well as in an SmpB-deficient Escherichia coli strain. We observed some specific cleavages/protections in tmRNA for the individual steps of trans-translation, but the overall tmRNA conformation appeared to be similar in the stages analyzed. Our findings suggest that, in vivo, a dominant fraction of tmRNA is in complex with SmpB and that, in vitro, SmpB remains tmRNA bound at the initial steps of trans-translation.  相似文献   

5.
Abo T  Inada T  Ogawa K  Aiba H 《The EMBO journal》2000,19(14):3762-3769
SsrA RNA of Escherichia coli, also known as 10Sa RNA or tmRNA, acts both as tRNA and mRNA when ribosomes are paused at the 3' end of an mRNA lacking a stop codon. This process, referred to as trans-translation, leads to the addition of a short peptide tag to the C-terminus of the incomplete nascent polypeptide. The tagged polypeptide is then degraded by C-terminal-specific proteases. Here, we focused on endogenous targets for the SsrA system and on a potential regulatory role of SsrA RNA. First, we show that trans-translation events occur frequently in normally growing E. COLI: cells. More specifically, we report that the lacI mRNA encoding Lac repressor (LacI) is a specific natural target for trans-translation. The binding of LacI to the lac operators results in truncated lacI mRNAs that are, in turn, recognized by the SsrA system. The SsrA-mediated tagging and proteolysis of LacI appears to play a role in cellular adaptation to lactose availability by supporting a rapid induction of lac operon expression.  相似文献   

6.
The ribosomes stalled at the end of non‐stop mRNAs must be rescued for productive cycles of cellular protein synthesis. Escherichia coli possesses at least three independent mechanisms that resolve non‐productive translation complexes (NTCs). While tmRNA (SsrA) mediates trans‐translation to terminate translation, ArfA (YhdL) and ArfB (YaeJ) induce hydrolysis of ribosome‐tethered peptidyl‐tRNAs. ArfB is a paralogue of the release factors (RFs) and directly catalyses the peptidyl‐tRNA hydrolysis within NTCs. In contrast, the mechanism of the ArfA action had remained obscure beyond its ability to bind to the ribosome. Here, we characterized the ArfA pathway of NTC resolution in vitro and identified RF2 as a factor that cooperates with ArfA to hydrolyse peptidyl‐tRNAs located in the P‐site of the stalled ribosome. This reaction required the GGQ (Gly–Gly–Gln) hydrolysis motif, but not the SPF (Ser–Pro–Phe) codon–recognition sequence, of RF2 and was stimulated by tRNAs. From these results we suggest that ArfA binds to the vacant A‐site of the stalled ribosome with possible aid from association with a tRNA, and then recruits RF2, which hydrolyses peptidyl‐tRNA in a GGQ motif‐dependent but codon‐independent manner. In support of this model, the ArfA‐RF2 pathway did not act on the SecM‐arrested ribosome, which contains an aminoacyl‐tRNA in the A‐site.  相似文献   

7.
An important unsolved question regarding the bacterial SsrA system is the fate of target mRNAs replaced by SsrA RNA during trans-translation. The aim of the present study is to address the potential role of SsrA system in mRNA quality control, focusing on truncated mRNAs that are expected to arise from 3'-to-5' exonucleolytic attack. We found that significant amounts of truncated mRNAs and polypeptides were produced from genes lacking a rho-independent terminator in SsrA-deficient cells. These truncated mRNAs, hence truncated polypeptides, were no longer observed in the presence of SsrA RNA. The data indicate that the SsrA system facilitates degradation of "nonstop" mRNAs by presumably removing the stalled ribosomes. Furthermore, analysis of affinity-purified proteins indicated that truncated polypeptides could be produced even from a gene with an intact rho-independent terminator, although less efficiently, implying that C-terminally truncated proteins and 3'-truncated mRNA may be produced from virtually all protein-coding genes. We conclude that the SsrA system not only promotes the degradation of incomplete polypeptides but also minimizes the synthesis of incomplete polypeptides by facilitating the degradation of truncated mRNAs that are produced in cells.  相似文献   

8.
Escherichia coli has multiple pathways to release nonproductive ribosome complexes stalled at the 3′ end of nonstop mRNA: tmRNA (SsrA RNA)-mediated trans-translation and stop codon-independent termination by ArfA/RF2 or ArfB (YaeJ). The arfA mRNA lacks a stop codon and its expression is repressed by trans-translation. Therefore, ArfA is considered to complement the ribosome rescue activity of trans-translation, but the physiological situations in which ArfA is expressed have not been elucidated. Here, we found that the excision of CP4-57 prophage adjacent to E. coli ssrA leads to the inactivation of tmRNA and switches the primary rescue pathway from trans-translation to ArfA/RF2. This “rescue-switching” rearranges not only the proteome landscape in E. coli but also the phenotype such as motility. Furthermore, among the proteins with significantly increased abundance in the ArfA+ cells, we found ZntR, whose mRNA is transcribed together as the upstream part of nonstop arfA mRNA. Repression of ZntR and reconstituted model genes depends on the translation of the downstream nonstop ORFs that trigger the trans-translation-coupled exonucleolytic degradation by polynucleotide phosphorylase (PNPase). Namely, our studies provide a novel example of trans-translation-dependent regulation and re-define the physiological roles of prophage excision.  相似文献   

9.
10.
Although trans-translation mediated by tmRNA-SmpB has long been known as the sole system to relieve bacterial stalled ribosomes, ArfA has recently been identified as an alternative factor for ribosome rescue in Escherichia coli. This process requires hydrolysis of nascent peptidyl-tRNA by RF2, which usually acts as a stop codon-specific peptide release factor. It poses a fascinating question of how ArfA and RF2 recognize and rescue the stalled ribosome. Here, we mapped the location of ArfA in the stalled ribosome by directed hydroxyl radical probing. It revealed an ArfA-binding site around the neck region of the 30S subunit in which the N- and C-terminal regions of ArfA are close to the decoding center and the mRNA entry channel, respectively. ArfA and RF2 sequentially enter the ribosome stalled in either the middle or 3′ end of mRNA, whereas RF2 induces a productive conformational change of ArfA only when ribosome is stalled at the 3′ end of mRNA. On the basis of these results, we propose that ArfA functions as the sensor to recognize the target ribosome after RF2 binding.  相似文献   

11.
During translation in Escherichia coli, the ribosome rescue factor YaeJ and the alternative ribosome rescue factor (ArfA, previously called YhdL) can release stalled ribosomes from mRNA. Here, I used a reconstituted cell-free protein synthesis system to examine YaeJ- and ArfA-dependent recycling of stalled ribosomes, in which mRNA lacks in-frame stop codons. It is shown that YaeJ alone could recycle the ribosome but that ArfA required the presence of release factor 2 (RF2). Furthermore, I show that RF2 binds to stalled ribosomes only in the presence of ArfA, demonstrating that ArfA recruits RF2 into the A site of the ribosome to facilitate peptidyl-tRNA hydrolysis. It is also demonstrated that the efficiency of the ArfA-dependent process decreases rapidly with an increase in mRNA length downstream of the A site of the ribosome whereas YaeJ function is maintained on mRNA with sufficient length. From the results, I discuss differences of in vivo roles of these two systems in addition to the well-known tmRNA-dependent trans-translation system.  相似文献   

12.
Emerging views on tmRNA-mediated protein tagging and ribosome rescue   总被引:9,自引:0,他引:9  
Transfer-messenger RNA (tmRNA), also known as SsrA or 10Sa RNA, is a bacterial ribonucleic acid that recycles 70S ribosomes stalled on problematic messenger RNAs (mRNAs) and also contributes to the degradation of incompletely synthesized peptides. tmRNA acts initially as transfer RNA (tRNA), being aminoacylated at its 3'-end by alanyl-tRNA synthetase, to add alanine to the stalled polypeptide chain. Resumption of translation ensues not on the mRNA on which the ribosomes were stalled but at an internal position in tmRNA. Termination soon occurs, tmRNA recruiting the appropriate termination factors allowing the release of the tagged protein that is subsequently recognized and degraded by specific cytoplasmic and periplasmic proteases, and permits ribosome recycling. Recent data suggest that tmRNA tags bacterial proteins in three other instances; when ribosomes stall at internal sites; during 'readthrough' of canonical termination codons; and when ribosomes are at the termination codon of intact messages. The importance of bacterial tmRNAs for survival, growth under stress, and pathogenesis is also discussed. Recent in vivo and in vitro studies have identified novel ligands of tmRNA. Based on the available experimental evidences, an updated model of tmRNA mediated protein tagging and ribosome rescue in bacteria is presented.  相似文献   

13.
14.
Escherichia coli tmRNA (transfer-messenger RNA) facilitates a trans-translation reaction in which a stalled ribosome on a terminatorless mRNA switches to an internal coding sequence in tmRNA, resulting in the addition of an 11 amino acid residue tag to the truncated protein that is a signal for degradation and in recycling of the stalled ribosome. A tmRNA secondary structure model with a partial tRNA-like structure and several pseudoknots was recently proposed. This report describes an extensive mutational analysis of one predicted pseudoknot (PK1) located upstream of the E. coli tmRNA tag-encoded sequence. Both the extent of aminoacylation and the alanine incorporation into the tag sequence, reflecting the two functions of tmRNA, were measured in vitro for all the engineered RNA variants. To characterize structure-function relationships for the tmRNA mutants, their solution conformations were investigated by using structural probes and by measuring the temperature dependence of their UV absorbance. This analysis strongly supports the presence of a pseudoknot in E. coli tmRNA, and its involvement in trans-translation. Mutations disrupting the first stem of the pseudoknot inactivate function and promote stable alternative conformations. Mutations of the second stem of the pseudoknot also effect both functions. The nucleotide stretch between the two stems (loop 2) is required for efficient trans-translation, and nucleotides at positions 61 and 62 must be guanine residues. The probing data suggest the presence of magnesium ion(s) interacting with loop 2. The loops crossing the minor and major grooves can be mutated without significant effects on tmRNA function. Nucleotide insertion or deletion between the pseudoknot and the coding sequence do not change the mRNA frame of the tag-peptide sequence, suggesting that the pseudoknot structure is not a determinant for the resumption of translation.  相似文献   

15.
The trans-translation system in bacteria promotes recycling of stalled ribosomes and targets incomplete peptides for proteolysis. In Escherichia coli, loss of trans-translation function has little effect on growth under normal laboratory conditions. Among the subtle phenotypes of tmRNA-deficient mutants is the inability to plate certain lambda imm(P22) phages. This phenotype is dependent on the ribosome recycling functions of the trans-translation system but is independent of its proteolysis-targeting activity. The experiments described here show that translation of the first (resume) codon of the tmRNA open reading frame by a tRNA is both necessary and sufficient for ribosome recycling. While a variety of sense codons can replace the naturally-occurring GCA alanine codon as the resume codon, both AAA and AAG lysine codons are non-functional resume codons. These results suggest that the main function of tmRNA in releasing stalled ribosomes is to supply a stop codon and so facilitate termination and subsequent ribosome recycling.  相似文献   

16.
Problems during gene expression can result in a ribosome that has translated to the 3′ end of an mRNA without terminating at a stop codon, forming a nonstop translation complex. The nonstop translation complex contains a ribosome with the mRNA and peptidyl-tRNA engaged, but because there is no codon in the A site, the ribosome cannot elongate or terminate the nascent chain. Recent work has illuminated the importance of resolving these nonstop complexes in bacteria. Transfer-messenger RNA (tmRNA)-SmpB specifically recognizes and resolves nonstop translation complexes in a reaction known as trans-translation. trans-Translation releases the ribosome and promotes degradation of the incomplete nascent polypeptide and problematic mRNA. tmRNA and SmpB have been found in all bacteria and are essential in some species. However, other bacteria can live without trans-translation because they have one of the alternative release factors, ArfA or ArfB. ArfA recruits RF2 to nonstop translation complexes to promote hydrolysis of the peptidyl-tRNAs. ArfB recognizes nonstop translation complexes in a manner similar to tmRNA-SmpB recognition and directly hydrolyzes the peptidyl-tRNAs to release the stalled ribosomes. Genetic studies indicate that most or all species require at least one mechanism to resolve nonstop translation complexes. Consistent with such a requirement, small molecules that inhibit resolution of nonstop translation complexes have broad-spectrum antibacterial activity. These results suggest that resolving nonstop translation complexes is a matter of life or death for bacteria.  相似文献   

17.
Ito K  Tadaki T  Lee S  Takada K  Muto A  Himeno H 《FEBS letters》2002,516(1-3):245-252
Trans-translation, in which a ribosome switches between translation of an mRNA and a tmRNA, produces a chimera polypeptide of an N-terminal truncated polypeptide and a C-terminal tag-peptide encoded by tmRNA. One of the tmRNA binding proteins, a ribosomal protein S1, has not been found in a group of Gram-positive bacteria. In this study, the trans-translation reaction with tmRNA from Bacillus subtilis belonging to this group was examined. When a truncated gene lacking a termination codon was expressed in B. subtilis, a 15-amino acid tag-peptide derived from tmRNA was identified in the C-termini of the trans-translation products. An identical tag-peptide was also found at the C-termini of the products from a truncated gene, when it was coexpressed with B. subtilis tmRNA in Escherichia coli. B. subtilis tmRNA was functional, although much less efficiently, in the in vitro poly(U)-dependent tag-peptide synthesis system of E. coli. A comparison of two bacterial tmRNAs suggests that the rule for determining the tag-initiation point on tmRNA may be the same in Gram-positive and Gram-negative bacteria.  相似文献   

18.
In bacteria, ribosomes often become stalled and are released by a trans-translation process mediated by transfer-messenger RNA (tmRNA). In the absence of tmRNA, however, there is evidence that stalled ribosomes are released from non-stop mRNAs. Here, we show a novel ribosome rescue system mediated by a small basic protein, YaeJ, from Escherichia coli, which is similar in sequence and structure to the catalytic domain 3 of polypeptide chain release factor (RF). In vitro translation experiments using the E. coli-based reconstituted cell-free protein synthesis system revealed that YaeJ can hydrolyze peptidyl–tRNA on ribosomes stalled by both non-stop mRNAs and mRNAs containing rare codon clusters that extend downstream from the P-site and prevent Ala-tmRNA•SmpB from entering the empty A-site. In addition, YaeJ had no effect on translation of a normal mRNA with a stop codon. These results suggested a novel tmRNA-independent rescue system for stalled ribosomes in E. coli. YaeJ was almost exclusively found in the 70S ribosome and polysome fractions after sucrose density gradient sedimentation, but was virtually undetectable in soluble fractions. The C-terminal basic residue-rich extension was also found to be required for ribosome binding. These findings suggest that YaeJ functions as a ribosome-attached rescue device for stalled ribosomes.  相似文献   

19.
tmRNA (also known as SsrA or 10Sa RNA) is involved in a trans-translation reaction that contributes to the recycling of stalled ribosomes at the 3' end of an mRNA lacking a stop codon or at an internal mRNA cluster of rare codons. Inactivation of the ssrA gene in most bacteria results in viable cells bearing subtle phenotypes, such as temperature-sensitive growth. Herein, we report on the functional characterization of the ssrA gene in the cyanobacterium Synechocystis sp. strain PCC6803. Deletion of the ssrA gene in Synechocystis resulted in viable cells with a growth rate identical to wild-type cells. However, null ssrA cells (deltassrA) were not viable in the presence of the protein synthesis inhibitors chloramphenicol, lincomycin, spiramycin, tylosin, erythromycin, and spectinomycin at low doses that do not significantly affect the growth of wild-type cells. Sensitivity of deltassrA cells similar to wild-type cells was observed with kasugamycin, fusidic acid, thiostrepton, and puromycin. Antibiotics unrelated to protein synthesis, such as ampicillin or rifampicin, had no differential effect on the deltassrA strain. Furthermore, deletion of the ssrA gene is sufficient to impair global protein synthesis when chloramphenicol is added at sublethal concentrations for the wild-type strain. These results indicate that ribosomes stalled by some protein synthesis inhibitors can be recycled by tmRNA. In addition, this suggests that the first elongation cycle with tmRNA, which incorporates a noncoded alanine on the growing peptide chain, may have mechanistic differences with the normal elongation cycles that bypasses the block produced by these specific antibiotics. tmRNA inactivation could be an useful therapeutic target to increase the sensitivity of pathogenic bacteria against antibiotics.  相似文献   

20.
周海燕  吴永尧  陈建红  曾分有  田云 《遗传》2006,28(8):1051-1054
反式翻译是细菌体内一种修复翻译水平上受阻的遗传信息表达过程的机制。tmRNA是反式翻译的核心分子,它兼具tRNA和mRNA的特点,在SmpB蛋白的帮助下特异性识别携带mRNA缺失体的核糖体,在核糖体蛋白S1的传递作用下结合在A位点上,一方面延续被中断的mRNA上的遗传信息,一方面终止蛋白质的合成,释放被束缚的核糖体和tRNA进入新的翻译过程。本文对近年来关于反式翻译模型的研究进行综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号