首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The protein Sup35 has prion properties. Its aggregation is at the origin of the [PSI(+)] trait in Saccharomyces cerevisiae. In vitro, the N-terminal domain of Sup35p alone or with the middle domain assembles into fibrils that exhibit the characteristics of amyloids. The vast majority of in vitro studies on the assembly of Sup35p have been performed using Sup35pNM, as fibrils made of Sup35pNM assembled in vitro propagate [PSI(+)] when reintroduced into yeast cells. Little is known about the assembly of full-length Sup35p and the role of the functional C-terminal domain of the protein. Here we report a systematic comparison of the biochemical and assembly properties of full-length Sup35p and Sup35pNM. We show that the native structure of the C-terminal domain is retained within the fibrils. We determined the size of Sup35p nuclei and the critical concentration for assembly that both differ from that of Sup35pNM. We demonstrate that Sup35pNM co-assembles with the full-length protein and that fibrils made of Sup35p or Sup35pNM seed the assembly of soluble Sup35pNM and Sup35p with different efficiencies. Finally, we show that fibrils made of full-length Sup35p induce with higher efficiency [PSI(+)] appearance as compared with those made of Sup35pNM. Our findings reveal differences and similarities in the assembly of Sup35p and its NM fragment and validate the use of Sup35pNM in studying some aspects of Sup35p aggregation but also underline the importance of using full-length Sup35p in studying prion propagation both in vivo and in vitro.  相似文献   

2.
In yeast cells infected with the [PSI+] prion, Sup35p forms aggregates and its activity in translation termination is downregulated. Transfection experiments have shown that Sup35p filaments assembled in vitro are infectious, suggesting that they reproduce or closely resemble the prion. We have used several EM techniques to study the molecular architecture of filaments, seeking clues as to the mechanism of downregulation. Sup35p has an N-terminal 'prion' domain; a highly charged middle (M-)domain; and a C-terminal domain with the translation termination activity. By negative staining, cryo-EM and scanning transmission EM (STEM), filaments of full-length Sup35p show a thin backbone fibril surrounded by a diffuse 65-nm-wide cloud of globular C-domains. In diameter (~8 nm) and appearance, the backbones resemble amyloid fibrils of N-domains alone. STEM mass-per-unit-length data yield ~1 subunit per 0.47 nm for N-fibrils, NM-filaments and Sup35p filaments, further supporting the fibril backbone model. The 30 nm radial span of decorating C-domains indicates that the M-domains assume highly extended conformations, offering an explanation for the residual Sup35p activity in infected cells, whereby the C-domains remain free enough to interact with ribosomes.  相似文献   

3.
Bateman DA  Wickner RB 《Genetics》2012,190(2):569-579
[PSI+] is a prion of Sup35p, an essential translation termination and mRNA turnover factor. The existence of lethal [PSI+] variants, the absence of [PSI+] in wild strains, the mRNA turnover function of the Sup35p prion domain, and the stress reaction to prion infection suggest that [PSI+] is a disease. Nonetheless, others have proposed that [PSI+] and other yeast prions benefit their hosts. We find that wild Saccharomyces cerevisiae strains are polymorphic for the sequence of the prion domain and particularly in the adjacent M domain. Here we establish that these variations within the species produce barriers to prion transmission. The barriers are partially asymmetric in some cases, and evidence for variant specificity in barriers is presented. We propose that, as the PrP 129M/V polymorphism protects people from Creutzfeldt-Jakob disease, the Sup35p polymorphisms were selected to protect yeast cells from prion infection. In one prion incompatibility group, the barrier is due to N109S in the Sup35 prion domain and several changes in the middle (M) domain, with either the single N109S mutation or the group of M changes (without the N109S) producing a barrier. In another, the barrier is due to a large deletion in the repeat domain. All are outside the region previously believed to determine transmission compatibility. [SWI+], a prion of the chromatin remodeling factor Swi1p, was also proposed to benefit its host. We find that none of 70 wild strains carry this prion, suggesting that it is not beneficial.  相似文献   

4.
Importance of the Hsp70 ATPase domain in yeast prion propagation   总被引:1,自引:0,他引:1       下载免费PDF全文
Loovers HM  Guinan E  Jones GW 《Genetics》2007,175(2):621-630
The Saccharomyces cerevisiae non-Mendelian genetic element [PSI+] is the prion form of the translation termination factor Sup35p. The ability of [PSI+] to propagate efficiently has been shown previously to depend upon the action of protein chaperones. In this article we describe a genetic screen that identifies an array of mutants within the two major cytosolic Hsp70 chaperones of yeast, Ssa1p and Ssa2p, which impair the propagation of [PSI+]. All but one of the mutants was located within the ATPase domain of Hsp70, which highlights the important role of regulation of Hsp70-Ssa ATP hydrolysis in prion propagation. A subset of mutants is shown to alter Hsp70 function in a way that is distinct from that of previously characterized Hsp70 mutants that alter [PSI+] propagation and supports the importance of interdomain communication and Hsp70 interaction with nucleotide exchange factors in prion propagation. Analysis of the effects of Hsp70 mutants upon propagation of a second yeast prion [URE3] further classifies these mutants as having general or prion-specific inhibitory properties.  相似文献   

5.
The [PSI+] prion determinant of Saccharomyces cerevisiae causes nonsense suppressor phenotype due to a reduced function of the translation termination factor Sup35 (eRF3) polymerized into amyloid fibrils. Prion state of the Rnq1 protein, [PIN+], is required for the [PSI+] de novo generation but not propagation. Yeast [psi-] [PIN+] cells overproducing Sup35 can exhibit nonsense suppression without generation of a stable [PSI+]. Here, we show that in such cells, most of Sup35 represents amyloid polymers, although the remaining Sup35 monomer is sufficient for normal translation termination. The presence of these polymers strictly depends on [PIN+], suggesting that their maintenance relies on efficient generation de novo rather than inheritance. Sup35 polymers contain Rnq1, confirming a hypothesis that Rnq1 polymers seed Sup35 polymerization. About 10% of cells overproducing Sup35 form colonies on medium selective for suppression, which suggests that the proportion of Sup35 monomers to polymers varies between cells of transformants, allowing selection of cells deficient for soluble Sup35. A hybrid Sup35 with the N-terminal domain replaced for 66 glutamine residues also polymerizes and can cause nonsense suppression when overproduced. The described polymers of these proteins differ from the [PSI+] polymers by poor heritability and very high frequency of the de novo appearance, thus being more similar to amyloids than to prions.  相似文献   

6.
The Sup35 protein (Sup35p) of Saccharomyces cerevisiae is a translation termination factor of the eRF3 family. The proteins of this family possess a conservative C-terminal domain responsible for translation termination and N-terminal extensions of different structure. The N-terminal domain of Sup35p defines its ability to undergo a heritable prion-like conformational switch, which is manifested as the cytoplasmically inherited [PSI(+)] determinant. Here, we replaced the N-terminal domain of S.cerevisiae Sup35p with an analogous domain from Pichia methanolica. Overexpression of hybrid Sup35p induced the de novo appearance of cytoplasmically inherited suppressor determinants manifesting key genetic and biochemical traits of [PSI(+)]. In contrast to the conventional [PSI(+)], 'hybrid' [PSI(+)] showed lower mitotic stability and preserved their suppressor phenotype upon overexpression of the Hsp104 chaperone protein. The lack of Hsp104 eliminated both types of [PSI(+)]. No transfer of prion state between the two Sup35p variants was observed, which reveals a 'species barrier' for the [PSI(+)] prions. The data obtained show that prion properties are conserved within at least a part of this protein family.  相似文献   

7.
The SUP45 and SUP35 genes of Saccharomyces cerevisiae encode polypeptide chain release factors eRF1 and eRF3, respectively. It has been suggested that the Sup35 protein (Sup35p) is subject to a heritable conformational switch, similar to mammalian prions, thus giving rise to the non-Mendelian [PSI+] nonsense suppressor determinant. In a [PSI+] state, Sup35p forms high-molecular-weight aggregates which may inhibit Sup35p activity, leading to the [PSI+] phenotype. Sup35p is composed of the N-terminal domain (N) required for [PSI+] maintenance, the presumably nonfunctional middle region (M), and the C-terminal domain (C) essential for translation termination. In this study, we observed that the N domain, alone or as a part of larger fragments, can form aggregates in [PSI+] cells. Two sites for Sup45p binding were found within Sup35p: one is formed by the N and M domains, and the other is located within the C domain. Similarly to Sup35p, in [PSI+] cells Sup45p was found in aggregates. The aggregation of Sup45p is caused by its binding to Sup35p and was not observed when the aggregated Sup35p fragments did not contain sites for Sup45p binding. The incorporation of Sup45p into the aggregates should inhibit its activity. The N domain of Sup35p, responsible for its aggregation in [PSI+] cells, may thus act as a repressor of another polypeptide chain release factor, Sup45p. This phenomenon represents a novel mechanism of regulation of gene expression at the posttranslational level.  相似文献   

8.
The protein Sup35 from Saccharomyces cerevisiae possesses prion properties. In vivo, a high molecular weight form of Sup35p is associated to the [PSI+] factor. The continued propagation of [PSI+] is highly dependent on the expression levels of molecular chaperones from the Hsp100, 70 and 40 families; however, so far, their role in this process is unclear. We have developed a reproducible in vitro system to study the effects of molecular chaperones on the assembly of full-length Sup35p. We show that Hsp104p greatly stimulates the assembly of Sup35p into fibrils, whereas Ydj1p has inhibitory effect. Hsp82p, Ssa1p and Sis1p, individually, do not affect assembly. In contrast, Ssa1p together with either of its Hsp40 cochaperones blocks Sup35p polymerization. Furthermore, Ssa1p and Ydj1p or Sis1p can counteract the stimulatory activity of Hsp104p, by forming complexes with Sup35p oligomers, in an ATP-dependent manner. Our observations reveal the functional differences between Hsp104p and the Hsp70-40 systems in the assembly of Sup35p into fibrils and bring new insight into the mechanism by which molecular chaperones influence the propagation of [PSI+].  相似文献   

9.
The Saccharomyces cerevisiae [PSI+] prion is a misfolded form of Sup35p that propagates as self-replicating cytoplasmic aggregates. Replication is believed to occur through breakage of transmissible [PSI+] prion particles, or seeds, into more numerous pieces. In [PSI+] cells, large Sup35p aggregates are formed by coalescence of smaller sodium dodecyl sulfate-insoluble polymers. It is uncertain if polymers or higher-order aggregates or both act as prion seeds. A mutant Hsp70 chaperone, Ssa1-21p, reduces the number of transmissible [PSI+] seeds per cell by 10-fold but the overall amount of aggregated Sup35p by only two- to threefold. This discrepancy could be explained if, in SSA1-21 cells, [PSI+] seeds are larger or more of the aggregated Sup35p does not function as a seed. To visualize differences in aggregate size, we constructed a Sup35-green fluorescent protein (GFP) fusion (NGMC) that has normal Sup35p function and can propagate like [PSI+]. Unlike GFP fusions lacking Sup35p's essential C-terminal domain, NGMC did not form fluorescent foci in log-phase [PSI+] cells. However, using fluorescence recovery after photobleaching and size fractionation techniques, we find evidence that NGMC is aggregated in these cells. Furthermore, the aggregates were larger in SSA1-21 cells, but the size of NGMC polymers was unchanged. Possibly, NGMC aggregates are bigger in SSA1-21 cells because they contain more polymers. Our data suggest that Ssa1-21p interferes with disruption of large Sup35p aggregates, which lack or have limited capacity to function as seed, into polymers that function more efficiently as [PSI+] seeds.  相似文献   

10.
Molecular basis of a yeast prion species barrier   总被引:22,自引:0,他引:22  
Santoso A  Chien P  Osherovich LZ  Weissman JS 《Cell》2000,100(2):277-288
The yeast [PSI+] factor is inherited by a prion mechanism involving self-propagating Sup35p aggregates. We find that Sup35p prion function is conserved among distantly related yeasts. As with mammalian prions, a species barrier inhibits prion induction between Sup35p from different yeast species. This barrier is faithfully reproduced in vitro where, remarkably, ongoing polymerization of one Sup35p species does not affect conversion of another. Chimeric analysis identifies a short domain sufficient to allow foreign Sup35p to cross this barrier. These observations argue that the species barrier results from specificity in the growing aggregate, mediated by a well-defined epitope on the amyloid surface and, together with our identification of a novel yeast prion domain, show that multiple prion-based heritable states can propagate independently within one cell.  相似文献   

11.
印文  何进  喻子牛  王阶平 《生物工程学报》2011,27(10):1401-1407
Sup35是酿酒酵母的翻译终止因子,其朊蛋白结构域在体内外都能形成淀粉样蛋白纤维。由于其高度有序的交叉β-片层构象与其他物种中的淀粉样蛋白纤维相似,因此,Sup35的分子自组装机理的研究可以作为蛋白质错误折叠性疾病及朊病毒生物学等相关研究的理想模型。而Sup35朊蛋白结构域自组装成纳米线的能力在生物技术和纳米材料等方面已得到广泛的应用。  相似文献   

12.
[PSI(+)], the prion form of the yeast Sup35 protein, results from the structural conversion of Sup35 from a soluble form into an infectious amyloid form. The infectivity of prions is thought to result from chaperone-dependent fiber cleavage that breaks large prion fibers into smaller, inheritable propagons. Like the mammalian prion protein PrP, Sup35 contains an oligopeptide repeat domain. Deletion analysis indicates that the oligopeptide repeat domain is critical for [PSI(+)] propagation, while a distinct region of the prion domain is responsible for prion nucleation. The PrP oligopeptide repeat domain can substitute for the Sup35 oligopeptide repeat domain in supporting [PSI(+)] propagation, suggesting a common role for repeats in supporting prion maintenance. However, randomizing the order of the amino acids in the Sup35 prion domain does not block prion formation or propagation, suggesting that amino acid composition is the primary determinant of Sup35's prion propensity. Thus, it is unclear what role the oligopeptide repeats play in [PSI(+)] propagation: the repeats could simply act as a non-specific spacer separating the prion nucleation domain from the rest of the protein; the repeats could contain specific compositional elements that promote prion propagation; or the repeats, while not essential for prion propagation, might explain some unique features of [PSI(+)]. Here, we test these three hypotheses and show that the ability of the Sup35 and PrP repeats to support [PSI(+)] propagation stems from their amino acid composition, not their primary sequences. Furthermore, we demonstrate that compositional requirements for the repeat domain are distinct from those of the nucleation domain, indicating that prion nucleation and propagation are driven by distinct compositional features.  相似文献   

13.
The yeast prion [PSI+] is a self-propagating amyloidogenic isoform of the translation termination factor Sup35. Overproduction of the chaperone protein Hsp104 results in loss of [PSI+]. Here we demonstrate that this effect is decreased by deletion of either the gene coding for one of the major yeast ubiquitin-conjugating enzymes, Ubc4, or the gene coding for the ubiquitin-recycling enzyme, Ubp6. The effect of ubc4Delta on [PSI+] loss was increased by depletion of the Hsp70 chaperone Ssb but was not influenced by depletion of Ubp6. This indicates that Ubc4 affects [PSI+] loss via a pathway that is the same as the one affected by Ubp6 but not by Ssb. In the presence of Rnq1 protein, ubc4Delta also facilitates spontaneous de novo formation of [PSI+]. This stimulation is independent of [PIN+], the prion isoform of Rnq1. Numerous attempts failed to detect ubiquitinated Sup35 in the yeast extracts. While ubc4Delta and other alterations of ubiquitin system used in this work cause slight induction of some Hsps, these changes are insufficient to explain their effect on [PSI+]. However, ubc4Delta increases the proportion of the Hsp70 chaperone Ssa bound to Sup35, suggesting that misfolded Sup35 is either more abundant or more accessible to the chaperones in the absence of Ubc4. The proportion of [PSI+] cells containing large aggregated Sup35 structures is also increased by ubc4Delta. We propose that UPS alterations induce an adaptive response, resulting in accumulation of the large "aggresome"-like aggregates that promote de novo prion generation and prion recovery from the chaperone treatment.  相似文献   

14.
Yeast prions are a powerful model for understanding the dynamics of protein aggregation associated with a number of human neurodegenerative disorders. The AAA+ protein disaggregase Hsp104 can sever the amyloid fibrils produced by yeast prions. This action results in the propagation of "seeds" that are transmitted to daughter cells during budding. Overexpression of Hsp104 eliminates the [PSI+] prion but not other prions. Using biochemical methods we identified Hsp104 binding sites in the highly charged middle domain of Sup35, the protein determinant of [PSI+]. Deletion of a short segment of the middle domain (amino acids 129-148) diminishes Hsp104 binding and strongly affects the ability of the middle domain to stimulate the ATPase activity of Hsp104. In yeast, [PSI+] maintained by Sup35 lacking this segment, like other prions, is propagated by Hsp104 but cannot be cured by Hsp104 overexpression. These results provide new insight into the enigmatic specificity of Hsp104-mediated curing of yeast prions and sheds light on the limitations of the ability of Hsp104 to eliminate aggregates produced by other aggregation-prone proteins.  相似文献   

15.
Functional and structural similarities between tRNA and eukaryotic class 1 release factors (eRF1) described previously, provide evidence for the molecular mimicry concept. This concept is supported here by the demonstration of a genetic interaction between eRF1 and the decoding region of the ribosomal RNA, the site of tRNA-mRNA interaction. We show that the conditional lethality caused by a mutation in domain 1 of yeast eRF1 (P86A), that mimics the tRNA anticodon stem-loop, is rescued by compensatory mutations A1491G (rdn15) and U1495C (hyg1) in helix 44 of the decoding region and by U912C (rdn4) and G886A (rdn8) mutations in helix 27 of the 18 S rRNA. The rdn15 mutation creates a C1409-G1491 base-pair in yeast rRNA that is analogous to that in prokaryotic rRNA known to be important for high-affinity paromomycin binding to the ribosome. Indeed, rdn15 makes yeast cells extremely sensitive to paromomycin, indicating that the natural high resistance of the yeast ribosome to paromomycin is, in large part, due to the absence of the 1409-1491 base-pair. The rdn15 and hyg1 mutations also partially compensate for inactivation of the eukaryotic release factor 3 (eRF3) resulting from the formation of the [PSI+] prion, a self-reproducible termination-deficient conformation of eRF3. However, rdn15, but not hyg1, rescues the conditional cell lethality caused by a GTPase domain mutation (R419G) in eRF3. Other antisuppressor rRNA mutations, rdn2(G517A), rdn1T(C1054T) and rdn12A(C526A), strongly inhibit [PSI+]-mediated stop codon read-through but do not cure cells of the [PSI+] prion. Interestingly, cells bearing hyg1 seem to enable [PSI+] strains to accumulate larger Sup35p aggregates upon Sup35p overproduction, suggesting a lower toxicity of overproduced Sup35p when the termination defect, caused by [PSI+], is partly relieved.  相似文献   

16.
Two infectious proteins (prions) of Saccharomyces cerevisiae have been identified by their unusual genetic properties: (1) reversible curability, (2) de novo induction of the infectious prion form by overproduction of the protein, and (3) similar phenotype of the prion and mutation in the chromosomal gene encoding the protein. [URE3] is an altered infectious form of the Ure2 protein, a regulator of nitrogen catabolism, while [PSI] is a prion of the Sup35 protein, a subunit of the translation termination factor. The altered form of each is inactive in its normal function, but is able to convert the corresponding normal protein into the same altered inactive state. The N-terminal parts of Ure2p and Sup35p (the "prion domains") are responsible for prion formation and propagation and are rich in asparagine and glutamine residues. Ure2p and Sup35p are aggregated in vivo in [URE3]- and [PSI]-containing cells, respectively. The prion domains can form amyloid in vitro, suggesting that amyloid formation is the basis of these two prion diseases. Yeast prions can be cured by growth on millimolar concentrations of guanidine. An excess or deficiency of the chaperone Hsp104 cures the [PSI] prion. Overexpression of fragments of Ure2p or certain fusion proteins leads to curing of [URE3].  相似文献   

17.
As concepts evolve in mammalian and yeast prion biology, rather preliminary research investigating the interplay between prion and RNA processes are gaining momentum. The yeast prion [PSI+] represents an aggregated state of the translation termination factor Sup35 resulting in the tendency of ribosomes to readthrough stop codons. This "nonsense suppression" activity is investigated for its possible physiological role to engender on Saccharomyces cerevisiae the ability to respond to stress or variable growth conditions and thereby act as a capacitor to evolve. The interaction between prion and RNA is a two way street--the cell may have adopted RNA processes in translation to govern the presence of prions and the [PSI+] prion's nonsense suppressor phenotype may exhibit different growth phenotypes by its control of translation termination. RNA processes in the mammalian cell also effect and are affected by prions.  相似文献   

18.
The cytoplasmic [PSI+] determinant of Saccharomyces cerevisiae is the prion form of the Sup35 protein. Oligopeptide repeats within the Sup35 N-terminal domain (PrD) presumably are required for the stable [PSI+] inheritance that in turn involves fragmentation of Sup35 polymers by the chaperone Hsp104. The nonsense suppressor [PSI+] phenotype can vary in efficiency probably due to different inheritable Sup35 polymer structures. Here we study the ability of Sup35 mutants with various deletions of the oligopeptide repeats to support [PSI+] propagation. We define the minimal region of the Sup35-PrD necessary to support [PSI+] as amino acids 1-64, which include the first two repeats, although a longer fragment, 1-83, is required to maintain weak [PSI+] variants. Replacement of wild-type Sup35 with deletion mutants decreases the strength of the [PSI+] phenotype. However, with one exception, reintroducing the wild-type Sup35 restores the original phenotype. Thus, the specific prion fold defining the [PSI+] variant can be preserved by the mutant Sup35 protein despite the change of phenotype. Coexpression of wild-type and mutant Sup35 containing three, two, one, or no oligopeptide repeats causes variant-specific [PSI+] elimination. These data suggest that [PSI+] variability is primarily defined by differential folding of the Sup35-PrD oligopeptide-repeat region.  相似文献   

19.
The nuclear-encoded Sup35p protein is responsible for the prion-like [PSI(+)] determinant of yeast, with Sup35p existing largely as a high molecular weight aggregate in [PSI(+)] strains. Here we show that the five oligopeptide repeats present at the N-terminus of Sup35p are responsible for stabilizing aggregation of Sup35p in vivo. Sequential deletion of the oligopeptide repeats prevented the maintenance of [PSI(+)] by the truncated Sup35p, although deletants containing only two repeats could be incorporated into pre-existing aggregates of wild-type Sup35p. The mammalian prion protein PrP also contains similar oligopeptide repeats and we show here that a human PrP repeat (PHGGGWGQ) is able functionally to replace a Sup35p oligopeptide repeat to allow stable [PSI(+)] propagation in vivo. Our data suggest a model in which the oligopeptide repeats in Sup35p stabilize intermolecular interactions between Sup35p proteins that initiate establishment of the aggregated state. Modulating repeat number therefore alters the rate of yeast prion conversion in vivo. Furthermore, there appears to be evolutionary conservation of function of the N-terminally located oligopeptide repeats in prion propagation.  相似文献   

20.
The Sup35 protein can exist in a non-infectious form or in various infectious forms called [PSI+] prion variants (or prion strains). Each of the different [PSI+] prion variants converts non-infectious Sup35 molecules into that prion variant's infectious form. One definition of a 'prion domain' is the minimal fragment of a prion protein that is necessary and sufficient to maintain the prion form. We now demonstrate that the Sup35 N region (residues 1-123), which is frequently referred to as the 'prion domain', is insufficient to maintain the weak or strong [PSI+] variants per se, but appears to maintain them in an 'undifferentiated' [PSI+] state that can differentiate into weak or strong [PSI+] variants when transferred to the full-length Sup35 protein. In contrast, Sup35 residues 1-137 are necessary and sufficient to faithfully maintain weak or strong [PSI+] variants. This implicates Sup35 residues 124-137 in the variant-specific maintenance of the weak or strong [PSI+] forms. Structure predictions indicate that the residues in the 124-137 region form an alpha-helix and that the 1-123 region may have beta structure. In view of these findings, we discuss a plausible molecular basis for the [PSI+] prion variants as well as the inherent difficulties in defining a 'prion domain'.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号