首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The evolution of sexual dimorphism in species with separate sexes is influenced by the resolution of sexual conflicts creating sex differences through genetic linkage or sex‐biased expression. Plants with different degrees of sexual dimorphism are thus ideal to study the genetic basis of sexual dimorphism. In this study we explore the genetic architecture of sexual dimorphism between Silene latifolia and Silene dioica. These species have chromosomal sex determination and differ in the extent of sexual dimorphism. To test whether QTL for sexually dimorphic traits have accumulated on the sex chromosomes and to quantify their contribution to species differences, we create a linkage map and performed QTL analysis of life history, flower and vegetative traits using an unidirectional interspecific F2 hybrid cross. We found support for an accumulation of QTL on the sex chromosomes and that sex differences explained a large proportion of the variance between species, suggesting that both natural and sexual selection contributed to species divergence. Sexually dimorphic traits that also differed between species displayed transgressive segregation. We observed a reversal in sexual dimorphism in the F2 population, where males tended to be larger than females, indicating that sexual dimorphism is constrained within populations but not in recombinant hybrids. This study contributes to the understanding of the genetic basis of sexual dimorphism and its evolution in Silene.  相似文献   

2.
Theory states that genes on the sex chromosomes have stronger effects on sexual dimorphism than genes on the autosomes. Although empirical data are not necessarily consistent with this theory, this situation may prevail because the relative role of sex‐linked and autosomally inherited genes on sexual dimorphism has rarely been evaluated. We estimated the quantitative genetics of three sexually dimorphic melanin‐based traits in the barn owl (Tyto alba), in which females are on average darker reddish pheomelanic and display more and larger black eumelanic feather spots than males. The plumage traits with higher sex‐linked inheritance showed lower heritability and genetic correlations, but contrary to prediction, these traits showed less pronounced sexual dimorphism. Strong offspring sexual dimorphism primarily resulted from daughters not expressing malelike melanin‐based traits and from sons expressing femalelike traits to similar degrees as their sisters. We conclude that in the barn owl, polymorphism at autosomal genes rather than at sex‐linked genes generate variation in sexual dimorphism in melanin‐based traits.  相似文献   

3.
Sexual dimorphism can evolve when males and females differ in phenotypic optima. Genetic constraints can, however, limit the evolution of sexual dimorphism. One possible constraint is derived from alleles expressed in both sexes. Because males and females share most of their genome, shared alleles with different fitness effects between sexes are faced with intralocus sexual conflict. Another potential constraint is derived from genetic correlations between developmental stages. Sexually dimorphic traits are often favoured at adult stages, but selected against as juvenile, so developmental decoupling of traits between ontogenetic stages may be necessary for the evolution of sexual dimorphism in adults. Resolving intralocus conflicts between sexes and ages is therefore a key to the evolution of age‐specific expression of sexual dimorphism. We investigated the genetic architecture of divergence in the ontogeny of sexual dimorphism between two populations of the Japanese medaka (Oryzias latipes) that differ in the magnitude of dimorphism in anal and dorsal fin length. Quantitative trait loci (QTL) mapping revealed that few QTL had consistent effects throughout ontogenetic stages and the majority of QTL change the sizes and directions of effects on fin growth rates during ontogeny. We also found that most QTL were sex‐specific, suggesting that intralocus sexual conflict is almost resolved. Our results indicate that sex‐ and age‐specific QTL enable the populations to achieve optimal developmental trajectories of sexually dimorphic traits in response to complex natural and sexual selection.  相似文献   

4.
Prenatal sex ratio (through exposure to hormones from siblings in utero) can influence sexually dimorphic traits of many mammals; but research on viviparous reptiles has contrasting outcomes, which have yet to be resolved. The thermal environment experienced during gestation has a strong effect on the phenotype of reptiles, but whether this thermal effect overrides that of prenatal sex ratio has yet to be explored. We experimentally investigated whether the gestation temperature, or litter sex ratio, influences sexually dimorphic traits (head width and axilla-groin length) in a viviparous skink (Oligosoma maccanni). We found that gestation temperature had a significant influence on sexually dimorphic traits of neonates, and at 3 months of age still influenced head width. We found no evidence that traits in either sex were masculinized or feminized in response to litter sex ratio. The development of external sexual dimorphisms increased gradually (all thermal regimes pooled), with neonates showing no sexual dimorphism, 3-month-old juveniles showing some sexual dimorphism in head width, and adults having stronger, but incompletely separated, sexual dimorphism for both traits. We suggest that the overlap in sexually dimorphic traits of adult O. maccanni (and perhaps other reptiles) may be better explained by natural variation in temperatures experienced during embryonic development, rather than hormonal effects arising from litter sex ratio. The interaction of hormones and temperature during gestation and the effect of these factors on sexual dimorphism within reptiles deserve further exploration.  相似文献   

5.
Dissecting the genetic architecture of fitness-related traits in wild populations is key to understanding evolution and the mechanisms maintaining adaptive genetic variation. We took advantage of a recently developed genetic linkage map and phenotypic information from wild pedigreed individuals from Ram Mountain, Alberta, Canada, to study the genetic architecture of ecologically important traits (horn volume, length, base circumference and body mass) in bighorn sheep. In addition to estimating sex-specific and cross-sex quantitative genetic parameters, we tested for the presence of quantitative trait loci (QTLs), colocalization of QTLs between bighorn sheep and domestic sheep, and sex × QTL interactions. All traits showed significant additive genetic variance and genetic correlations tended to be positive. Linkage analysis based on 241 microsatellite loci typed in 310 pedigreed animals resulted in no significant and five suggestive QTLs (four for horn dimension on chromosomes 1, 18 and 23, and one for body mass on chromosome 26) using genome-wide significance thresholds (Logarithm of odds (LOD) >3.31 and >1.88, respectively). We also confirmed the presence of a horn dimension QTL in bighorn sheep at the only position known to contain a similar QTL in domestic sheep (on chromosome 10 near the horns locus; nominal P<0.01) and highlighted a number of regions potentially containing weight-related QTLs in both species. As expected for sexually dimorphic traits involved in male-male combat, loci with sex-specific effects were detected. This study lays the foundation for future work on adaptive genetic variation and the evolutionary dynamics of sexually dimorphic traits in bighorn sheep.  相似文献   

6.
Evaluating the genetic architecture of sexual dimorphism can aid our understanding of the extent to which shared genetic control of trait variation versus sex‐specific control impacts the evolutionary dynamics of phenotypic change within each sex. We performed a QTL analysis on Silene latifolia to evaluate the contribution of sex‐specific QTL to phenotypic variation in 46 traits, whether traits involved in trade‐offs had colocalized QTL, and whether the distribution of sex‐specific loci can explain differences between the sexes in their variance/covariance matrices. We used a backcross generation derived from two artificial‐selection lines. We found that sex‐specific QTL explained a significantly greater percent of the variation in sexually dimorphic traits than loci expressed in both sexes. Genetically correlated traits often had colocalized QTL, whose signs were in the expected direction. Lastly, traits with different genetic correlations within the sexes displayed a disproportionately high number of sex‐specific QTL, and more QTL co‐occurred in males than females, suggesting greater trait integration. These results show that sex differences in QTL patterns are congruent with theory on the resolution of sexual conflict and differences based on G ‐matrix results. They also suggest that trade‐offs and trait integration are likely to affect males more than females.  相似文献   

7.
Sex ratio and sexual dimorphism have long been of interest in population and evolutionary ecology, but consequences for communities and ecosystems remain untested. Sex ratio could influence ecological conditions whenever sexual dimorphism is associated with ecological dimorphism in species with strong ecological interactions. We tested for ecological implications of sex ratio variation in the sexually dimorphic western mosquitofish, Gambusia affinis. This species causes strong pelagic trophic cascades and exhibits substantial variation in adult sex ratios. We found that female-biased populations induced stronger pelagic trophic cascades compared with male-biased populations, causing larger changes to key community and ecosystem responses, including zooplankton abundance, phytoplankton abundance, productivity, pH and temperature. The magnitude of such effects indicates that sex ratio is important for mediating the ecological role of mosquitofish. Because both sex ratio variation and sexual dimorphism are common features of natural populations, our findings should encourage broader consideration of the ecological significance of sex ratio variation in nature, including the relative contributions of various sexually dimorphic traits to these effects.  相似文献   

8.
Due to its hemizygous inheritance and role in sex determination, the X‐chromosome is expected to play an important role in the evolution of sexual dimorphism and to be enriched for sexually antagonistic genetic variation. By forcing the X‐chromosome to only be expressed in males over >40 generations, we changed the selection pressures on the X to become similar to those experienced by the Y. This releases the X from any constraints arising from selection in females and should lead to specialization for male fitness, which could occur either via direct effects of X‐linked loci or trans‐regulation of autosomal loci by the X. We found evidence of masculinization via up‐regulation of male‐benefit sexually antagonistic genes and down‐regulation of X‐linked female‐benefit genes. Potential artefacts of the experimental evolution protocol are discussed and cannot be wholly discounted, leading to several caveats. Interestingly, we could detect evidence of microevolutionary changes consistent with previously documented macroevolutionary patterns, such as changes in expression consistent with previously established patterns of sexual dimorphism, an increase in the expression of metabolic genes related to mito‐nuclear conflict and evidence that dosage compensation effects can be rapidly altered. These results confirm the importance of the X in the evolution of sexual dimorphism and as a source for sexually antagonistic genetic variation and demonstrate that experimental evolution can be a fruitful method for testing theories of sex chromosome evolution.  相似文献   

9.
10.
We explored the idea that sex ratio represents a unique context for selection on attractive traits by manipulating sex ratio and pollinator abundance in experimental populations of a gender-dimorphic wild strawberry Fragaria virginiana. We found that increasing the frequency of functional males (the pollen-bearing morph) increased the frequency of pollen-collecting syrphid flies in the pollinator assemblage, decreased pollinator visitation to less preferred morph (females), and decreased the degree of pollen limitation of females. Moreover, sex ratio influenced the strength of selection on petal size through female fitness but did not alter the strength of selection through male fitness components, suggesting that sex ratio can alter the gender bias of selection on an attractive trait. This study of context-dependent selection has important implications for the evolution of sexual dimorphism in attractive traits. First, it suggests that only certain conditions generate male-biased selection and, thus, could lead to selection-driven male-biased petal size dimorphism. Second, it suggests that flexible pollinator foraging may be an important mechanism by which sex ratio influences selection on attractive traits. Finally, it implies that variation in sex ratio could limit the evolution of sexual dimorphism and/or could maintain genetic variation in attractive traits.  相似文献   

11.
Males and females share much of their genome, and as a result, intralocus sexual conflict is generated when selection on a shared trait differs between the sexes. This conflict can be partially or entirely resolved via the evolution of sex‐specific genetic variation that allows each sex to approach, or possibly achieve, its optimum phenotype, thereby generating sexual dimorphism. However, shared genetic variation between the sexes can impose constraints on the independent expression of a shared trait in males and females, hindering the evolution of sexual dimorphism. Here, we examine genetic constraints on the evolution of sexual dimorphism in Drosophila melanogaster cuticular hydrocarbon (CHC) expression. We use the extended G matrix, which includes the between‐sex genetic covariances that constitute the B matrix, to compare genetic constraints on two sets of CHC traits that differ in the extent of their sexual dimorphism. We find significant genetic constraints on the evolution of further dimorphism in the least dimorphic traits, but no such constraints for the most dimorphic traits. We also show that the genetic constraints on the least dimorphic CHCs are asymmetrical between the sexes. Our results suggest that there is evidence both for resolved and ongoing sexual conflict in D. melanogaster CHC profiles.  相似文献   

12.
Parents should differentially invest in sons or daughters depending on the sex‐specific fitness returns from male and female offspring. In species with sexually selected heritable male characters, highly ornamented fathers should overproduce sons, which will be more sexually attractive than sons of less ornamented fathers. Because of genetic correlations between the sexes, females that express traits which are under selection in males should also overproduce sons. However, sex allocation strategies may consist in reaction norms leading to spatiotemporal variation in the association between offspring sex ratio (SR) and parental phenotype. We analysed offspring SR in barn swallows (Hirundo rustica) over 8 years in relation to two sexually dimorphic traits: tail length and melanin‐based ventral plumage coloration. The proportion of sons increased with maternal plumage darkness and paternal tail length, consistently with sexual dimorphism in these traits. The size of the effect of these parental traits on SR was large compared to other studies of offspring SR in birds. Barn swallows thus manipulate offspring SR to overproduce ‘sexy sons’ and potentially to mitigate the costs of intralocus sexually antagonistic selection. Interannual variation in the relationships between offspring SR and parental traits was observed which may suggest phenotypic plasticity in sex allocation and provides a proximate explanation for inconsistent results of studies of sex allocation in relation to sexual ornamentation in birds.  相似文献   

13.
Spigler RB  Lewers KS  Main DS  Ashman TL 《Heredity》2008,101(6):507-517
The evolution of separate sexes (dioecy) from hermaphroditism is one of the major evolutionary transitions in plants, and this transition can be accompanied by the development of sex chromosomes. Studies in species with intermediate sexual systems are providing unprecedented insight into the initial stages of sex chromosome evolution. Here, we describe the genetic mechanism of sex determination in the octoploid, subdioecious wild strawberry, Fragaria virginiana Mill., based on a whole-genome simple sequence repeat (SSR)-based genetic map and on mapping sex determination as two qualitative traits, male and female function. The resultant total map length is 2373 cM and includes 212 markers on 42 linkage groups (mean marker spacing: 14 cM). We estimated that approximately 70 and 90% of the total F. virginiana genetic map resides within 10 and 20 cM of a marker on this map, respectively. Both sex expression traits mapped to the same linkage group, separated by approximately 6 cM, along with two SSR markers. Together, our phenotypic and genetic mapping results support a model of gender determination in subdioecious F. virginiana with at least two linked loci (or gene regions) with major effects. Reconstruction of parental genotypes at these loci reveals that both female and hermaphrodite heterogamety exist in this species. Evidence of recombination between the sex-determining loci, an important hallmark of incipient sex chromosomes, suggest that F. virginiana is an example of the youngest sex chromosome in plants and thus a novel model system for the study of sex chromosome evolution.  相似文献   

14.
Sexually dimorphic plumage coloration is widespread in birds and is generally thought to be a result of sexual selection for more ornamented males. Although many studies find an association between coloration and fitness related traits, few of these simultaneously examine selection and inheritance. Theory predicts that sex‐linked genetic variation can facilitate the evolution of dimorphism, and some empirical work supports this, but we still know very little about the extent of sex linkage of sexually dimorphic traits. We used a longitudinal study on juvenile Florida scrub‐jays (Aphelocoma coerulescens) to estimate strength of selection and autosomal and Z‐linked heritability of mean brightness, UV chroma, and hue. Although plumage coloration signals dominance in juveniles, there was no indication that plumage coloration was related to whether or not an individual bred or its lifetime reproductive success. While mean brightness and UV chroma are moderately heritable, hue is not. There was no evidence for sex‐linked inheritance of any trait with most of the variation explained by maternal effects. The genetic correlation between the sexes was high and not significantly different from unity. These results indicate that evolution of sexual dimorphism in this species is constrained by low sex‐linked heritability and high intersexual genetic correlation.  相似文献   

15.
Gynodioecious plants exhibit modest sexual dimorphism in vegetative and phenological traits, which stands in stark contrast to pronounced dimorphism in reproductive traits. I evaluate the roles of limited genetic variation, negative genetic covariation (within and between sex morphs), and lack of gender-differential selection in contributing to minimal sexual dimorphism for these traits in Fragaria virginiana. Major findings are as follows. First, selection was sometimes differential but rarely divergent between male and female fertility modes. Second, response to selection was constrained by low genetic variation and extensive genetic covariance. In fact, covariance between traits within sex morphs appears to represent a constraint on par with that of covariance between sex morphs. Third, these constraints combine with different modes of gamete transmission to produce very different gender-specific contributions to the mean phenotypes of the next generation. Finally, predicted responses to selection for several traits are concordant with the degree and direction of dimorphism in a closely related dioecious species. In sum, this work suggests that minimal sexual dimorphism in vegetative and phenological traits is due to similar directional selection via male and female fertility combined with the constraints of low genetic variation and extensive genetic covariance both within and between sex morphs.  相似文献   

16.
Sexual selection can drive rapid evolutionary change in reproductive behaviour, morphology and physiology. This often leads to the evolution of sexual dimorphism, and continued exaggerated expression of dimorphic sexual characteristics, although a variety of other alternative selection scenarios exist. Here, we examined the evolutionary significance of a rapidly evolving, sexually dimorphic trait, sex comb tooth number, in two Drosophila species. The presence of the sex comb in both D. melanogaster and D. pseudoobscura is known to be positively related to mating success, although little is yet known about the sexually selected benefits of sex comb structure. In this study, we used experimental evolution to test the idea that enhancing or eliminating sexual selection would lead to variation in sex comb tooth number. However, the results showed no effect of either enforced monogamy or elevated promiscuity on this trait. We discuss several hypotheses to explain the lack of divergence, focussing on sexually antagonistic coevolution, stabilizing selection via species recognition and nonlinear selection. We discuss how these are important, but relatively ignored, alternatives in understanding the evolution of rapidly evolving sexually dimorphic traits.  相似文献   

17.
Theory predicts that intralocus sexual conflict can constrain the evolution of sexual dimorphism, preventing each sex from independently maximizing its fitness. To test this idea, we limited genome-wide gene expression to males in four replicate Drosophila melanogaster populations, removing female-specific selection. Over 25 generations, male fitness increased markedly, as sexually dimorphic traits evolved in the male direction. When male-evolved genomes were expressed in females, their fitness displayed a nearly symmetrical decrease. These results suggest that intralocus conflict strongly limits sex-specific adaptation, promoting the maintenance of genetic variation for fitness. Populations may carry a heavy genetic load as a result of selection for separate genders.  相似文献   

18.
Investigating sexual dimorphism is important for our understanding of its influence on reproductive strategies including male-male competition, mate choice, and sexual conflict. Measuring physical traits in wild animals can be logistically challenging and disruptive for the animals. Therefore body size and ornament variation in wild primates have rarely been quantified. Gorillas are amongst the most sexually dimorphic and dichromatic primates. Adult males (silverbacks) possess a prominent sagittal crest, a pad of fibrous and fatty tissue on top of the head, have red crest coloration, their saddle appears silver, and they possess a silverline along their stomach. Here we measure levels of sexual dimorphism and within-male variation of body length, head size, and sexual dichromatism in a population of wild western gorillas using photogrammetry. Digital photogrammetry is a useful and precise method to measure sexual dimorphism in physical traits yielding sexual dimorphism indices (ISD), similar to those derived from traditional measurements of skeletal remains. Silverbacks were on an average 1.23 times longer in body length than adult females. Sexual dimorphism of head size was highest in measures of crest size (max ISD: 60.4) compared with measures of facial height (max ISD: 24.7). The most sexually dimorphic head size measures also showed the highest within-sex variation. We found no clear sex differences in crest coloration but there was large sexual dichromatism with high within-male variation in saddle coloration and silverline size. Further studies should examine if these sexually dimorphic traits are honest signals of competitive ability and confer an advantage in reproductive success.  相似文献   

19.
The genetic basis of sexual dimorphisms is an intriguing problem of evolutionary genetics because dimorphic traits are limited to one sex. Such traits can arise genetically in two ways. First, the alleles that cause dimorphisms could be limited in expression to only one sex at their first appearance. Alternatively, dimorphism alleles could initially be expressed in both sexes, but subsequently be repressed or promoted in only one sex by the evolution of modifier genes or regulatory elements. We investigated these alternatives by looking for the expression of sexually dimorphic traits in female hybrids between bird species whose males show different types of ornaments. If modifier alleles or regulatory elements involved in sex-limited traits are not completely dominant, the modification should break down in female hybrids, which might then show dimorphic traits resembling those seen in males. Of 13 interspecific hybridizations examined, we found not a single instance of the expression of male-limited ornaments in female hybrids. This suggests that male ornaments were sex limited from the outset or that those traits became sex limited through the evolution of dominant modifiers -- possibly cis-dominant regulatory elements. Observing hybrid phenotypes is a useful approach to studying the genetics and evolution of dimorphic traits.  相似文献   

20.
Several patterns of sexual shape dimorphism, such as male body elongation, eye stalks, or extensions of the exoskeleton, have evolved repeatedly in the true flies (Diptera). Although these dimorphisms may have evolved in response to sexual selection on male body shape, conserved genetic factors may have contributed to this convergent evolution, resulting in stronger phenotypic convergence than might be expected from functional requirements alone. I compared phenotypic variation in body shape in two distantly related species exhibiting sexually dimorphic body elongation: Prochyliza xanthostoma (Piophilidae) and Telostylinus angusticollis (Neriidae). Although sexual selection appears to act differently on male body shape in these species, they exhibited strikingly similar patterns of sexual dimorphism. Likewise, patterns of within-sex shape variation were similar in the two species, particularly in males: relative elongation of the male head capsule, antenna, and legs was associated with reduced head capsule width and wing length, but was nearly independent of variation in thorax length. However, the two species presented contrasting patterns of static allometry: male sexual traits exhibited elevated allometric slopes in T. angusticollis, but not in P. xanthostoma. These results suggest that a shared pattern of covariation among traits may have channeled the evolution of sexually dimorphic body elongation in these species. Nonetheless, static allometries may have been shaped by species-specific selection pressures or genetic architectures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号