首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacteroides ovatus NCTC 11153 was grown in a two-stage continuous culture system at various growth rates (vessel 1, D = 0.06 to 0.19 h-1; vessel 2, D = 0.03 to 0.09 h-1) on media containing mixtures of starch and arabinogalactan as carbon sources. The cell-associated enzyme activities needed to hydrolyze both substrates (amylase, arabinogalactanase, alpha-glucosidase, beta-galactosidase, and alpha-arabinofuranosidase) were variously influenced by growth rate and polysaccharide availability but were detected under all growth conditions tested. Measurements of residual carbohydrate in spent culture media showed that both polysaccharides were co-utilized during growth under putative C-limited conditions. The arabinogalactan was partly depolymerized in N-limited chemostats, and significant amounts of arabinose- and galactose-containing oligosaccharides accumulated in the cultures, indicating that starch was being preferentially utilized. Acetate, propionate, and succinate were the major fermentation products formed by C-limited bacteria, but under N limitation, lactate was also produced. Molar ratios of succinate increased concomitantly with the dilution rate in C-limited chemostats, whereas molar ratios of propionate decreased. During N-limited growth, however, decarboxylation of succinate to propionate was relatively independent of growth rate. Cell viability was higher in C-limited cultures compared with those grown under N limitation and was greatest at high dilution rates, irrespective of nutrient limitation.  相似文献   

2.
Bacteroides ovatus was grown in batch culture on 12 different carbon sources (five polysaccharides, seven monosaccharides and disaccharides). Specific growth rates were determined for each substrate together with polysaccharidase and glycosidase activities. Growth rates on polymerized carbohydrates were as fast or faster than on corresponding simple sugars, demonstrating that the rate of polysaccharide depolymerization was not a factor limiting growth. Bacteroides ovatus synthesized a large range of polymer-degrading enzymes. These polysaccharidases and glycosidases were generally repressed during growth on simple sugars, but arabinose was required for optimal production of alpha-arabinofuranosidase. Polysaccharidase and glycosidase activities were measured in continuous cultures grown with either xylan or guar gum under putative carbon limitation. With the exception of beta-xylosidase, activities of the polymer-degrading enzymes were inversely related to growth rate. This correlated with polysaccharide utilization which was greatest at low dilution rates. These results show that Bact. ovatus is highly adapted for growth on polymerized carbohydrate in the human colon and confirm that the utilization of polysaccharides is partly regulated at the level of enzyme synthesis.  相似文献   

3.
Bacteroides ovatus was grown in batch culture on 12 different carbon sources (five polysaccharides, seven monosaccharides and disaccharides). Specific growth rates were determined for each substrate together with polysaccharidase and glycosidase activities. Growth rates on polymerized carbohydrates were as fast or faster than on corresponding simple sugars, demonstrating that the rate of polysaccharide depolymerization was not a factor limiting growth. Bacteroides ovatus synthesized a large range of polymer-degrading enzymes. These polysaccharidases and glycosidases were generally repressed during growth on simple sugars, but arabinose was required for optimal production of α-arabinofuranosidase. Polysaccharidase and glycosidase activities were measured in continuous cultures grown with either xylan or guar gum under putative carbon limitation. With the exception of β-xylosidase, activities of the polymer-degrading enzymes were inversely related to growth rate. This correlated with polysaccharide utilization which was greatest at low dilution rates. These results show that Bact. ovatus is highly adapted for growth on polymerized carbohydrate in the human colon and confirm that the utilization of polysaccharides is partly regulated at the level of enzyme synthesis. and accepted 8 June 1989  相似文献   

4.
The development of fungal biopesticides requires the efficient production of large numbers spores or other propagules. The current study used published information concerning carbon concentrations and C:N ratios to evaluate the effects of carbon and nitrogen sources on sporulation of Paecilomyces lilacinus (IPC-P and M-14) and Metarhizium anisopliae (SQZ-1-21 and RS-4-1) in a two-stage cultivation system. For P. lilacinus IPCP, the optimal sporulation medium contained urea as the nitrogen source, dextrin as the carbon source at 1 g/L, a C:N ratio of 5:1, with ZnSO(4)·7H(2)O at 10 mg/L and CaCl(2) at 3 g/L. The optimal sporulation medium for P. lilacinus M-14 contained soy peptone as the nitrogen source and maltose as the carbon source at 2 g/L, a C:N ratio of 10:1, with ZnSO(4)·7H(2)O at 250 mg/L, CuSO(4)·5H(2)O at 10 mg/L, H(3)BO(4) at 5 mg/L, and Na(2)MoO(4)·2H(2)O at 5 mg/L. The optimum sporulation medium for M. anisopliae SQZ-1-21 contained urea as the nitrogen source, sucrose as the carbon source at 16 g/ L, a C:N ratio of 80:1, with ZnSO(4)·7H(2)O at 50 mg/L, CuSO(4)·5H(2)O at 50 mg/L, H(3)BO(4) at 5 mg/L, and MnSO(4)·H(2)O at 10 mg/L. The optimum sporulation medium for M. anisopliae RS-4-1 contained soy peptone as the nitrogen source, sucrose as the carbon source at 4 g/L, a C:N ratio of 5:1, with ZnSO(4)·7H(2)O at 50 mg/L and H(3)BO(4) at 50 mg/L. All sporulation media contained 17 g/L agar. While these results were empirically derived, they provide a first step toward low-cost mass production of these biocontrol agents.  相似文献   

5.
The human large intestine is covered with a protective mucus coating, which is heavily colonized by complex bacterial populations that are distinct from those in the gut lumen. Little is known of the composition and metabolic activities of these biofilms, although they are likely to play an important role in mucus breakdown. The aims of this study were to determine how intestinal bacteria colonize mucus and to study physiologic and enzymatic factors involved in the destruction of this glycoprotein. Colonization of mucin gels by fecal bacteria was studied in vitro, using a two-stage continuous culture system, simulating conditions of nutrient availability and limitation characteristic of the proximal (vessel 1) and distal (vessel 2) colon. The establishment of bacterial communities in mucin gels was investigated by selective culture methods, scanning electron microscopy, and confocal laser scanning microscopy, in association with fluorescently labeled 16S rRNA oligonucleotide probes. Gel samples were also taken for analysis of mucin-degrading enzymes and measurements of residual mucin sugars. Mucin gels were rapidly colonized by heterogeneous bacterial populations, especially members of the Bacteroides fragilis group, enterobacteria, and clostridia. Intestinal bacterial populations growing on mucin surfaces were shown to be phylogenetically and metabolically distinct from their planktonic counterparts.  相似文献   

6.
We have applied a model that permits the estimation of the sensitivity of flux through branch point enzymes (D. C. LaPorte, K. Walsh, and D. E. Koshland, J. Biol. Chem. 259:14068-14075, 1984) in order to analyze the control of flux through the lactate-acetate branch point of Selenomonas ruminantium grown in glucose-limited continuous culture. At this branch point, pyruvate is the substrate of both the NAD-dependent L-(+)-lactate dehydrogenase (LDH) and the pyruvate:ferredoxin oxidoreductase (PFOR). The LDH was purified, and it exhibited positive cooperativity for the binding of pyruvate. The LDH had an [S].5 for pyruvate of 0.43 mM, a Hill coefficient of 2.4, and a K' equal to 0.13 mM. The PFOR, assayed in cell extracts, exhibited Michaelis-Menten kinetics for pyruvate, with a Km of 0.49 mM. Carbon flux through the LDH and the PFOR increased 80-fold and 3-fold, respectively, as the dilution rate was increased from 0.07 to 0.52 h-1 in glucose-limited continuous culture. There was nearly a twofold increase, from 6.5 to 11.2 mumol min-1 mg of protein-1 in the specific activity (i.e., maximum velocity) of the LDH at dilution rates of 0.11 and 0.52 h-1, respectively. A flux equation was used to calculate the intracellular concentration of pyruvate; a fourfold increase in pyruvate, from 0.023 to 0.093 mM, was thereby predicted as the dilution rate was increased from 0.07 to 0.52 h-1. When these calculated values of intracellular pyruvate concentration were inserted into the flux equation, the predicted values of flux through the LDH and the PFOR were found to match closely the flux actually measured in the chemostat-grown cells. Thus, the 80-fold increase in flux through the LDH was due to a twofold increase in the maximum velocity of the LDH and a fourfold increase in the intracellular pyruvate concentration. In addition, the flux through the LDH exhibited ultrasensitivity to changes in both the maximum velocity of the LDH and the intracellular concentration of pyruvate. The flux through the PFOR exhibited ultrasensitivity to changes in the maximum velocity of the LDH and hyperbolic sensitivity to changes in the intracellular concentration of pyruvate.  相似文献   

7.
The regulation of C1-metabolism in Xanthobacter strain 25a was studied during growth of the organism on acetate, formate and methanol in chemostat cultures. No activity of methanol dehydrogenase (MDH), formate dehydrogenase (FDS) or ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisC/O) could be detected in cells grown on acetate alone over a range of dilution rates tested. Addition of methanol or formate to the feed resulted in the immediate induction of MDH and FDH and complete utilization (D=0.10 h-1) of acetate and the C 1-substrates. The activities of these enzymes rapidly dropped at the higher growth rates, which suggests that their synthesis is further controlled via repression by heterotrophic substrates such as acetate. Synthesis of RuBisC/O already occurred at low methanol concentrations in the feed, resulting in additive growth yields on acetate/methanol mixtures. The energy generated in the oxidation of formate initially allowed an increased assimilation of acetate (and a decreased dissimilation), resulting in enhanced growth yields on the mixture. RuBisC/O activity could only be detected at the higher formate/acetate ratios in the feed. The data suggest that synthesis of RuBisC/O and CO2 fixation via the Calvin cycle in Xanthobacter strain 25 a is controlled via a (de)repression mechanism, as is the case in other facultatively autotrophic bacteria. Autotrophic CO2 fixation only occurs under conditions with a diminished supply of heterotrophic carbon sources and a sufficiently high availability of suitable energy sources. The latter point is further supported by the clearly more pronounced derepressing effect exerted by methanol compared to formate.Abbreviations FDH formate dehydrogenase - FBPase fructose-1,6-bisphosphatase - ICDH isocitrate dehydrogenase - MDH methanol dehydrogenase - PQQ pyrrolo quinoline quinone - PRK phosphoribulokinase - RuBisC/O ribulose-1,5-bisphosphate carboxylase/oxygenase - RuMP ribulose monophosphate - TCA tricarboxylic acid cycle  相似文献   

8.
Exopolysaccharide formation by Pseudomonas NCIB11264 in a single-stage continuous culture was maximal under nitrogen limitation with excess carbohydrate substrate at 30 +/- 1 degrees C and pH 7.0 +/- 0.1. Polysaccharide production was not enhanced by phosphate limitation but was dependent on the dilution rate. Steady states were maintained for up to 500 h without deterioration of the culture or the development of mutant strains. The efficiency of conversion of the glucose substrate utilized into exopolysaccharide by the chemostat cultures was as high as 73%.  相似文献   

9.
Agrobacterium radiobacter NCIB 11883 was grown in glucose-limited continuous culture at low dilution rate. Whole cells transported glucose using an energy-dependent mechanism which exhibited an accumulation ratio greater than 2000. Three major periplasmic proteins were purified and their potential role as glucose-binding proteins (GBP) were investigated using equilibrium dialysis. Two of these, GBP1 (Mr 36,500) and GBP2 (Mr 33,500), bound D-glucose with high affinity (KD 0.23 and 0.07 microM respectively), whereas the third protein (Mr 30,500) showed no binding ability. Competition experiments using various analogues showed that those which differed from glucose at C-6 (e.g. 6-chloro-6-deoxy-D-glucose and 6-deoxy-D-glucose) variably decreased the binding of glucose to both GBP1 and GBP2, whereas those which differed at C-4 (e.g. D-galactose) were only effective with GBP1. The rate of glucose uptake and the concentration of the glucose-binding proteins increased in parallel during prolonged growth under glucose-limitation due to the emergence of new strains in which GBP1 (e.g. strain AR18) or GBP2 (e.g. strain AR9), but not both, was hyperproduced and accounted for at least 27% of the total cell protein. It is concluded that A. radiobacter synthesizes two distinct periplasmic binding proteins which are involved in glucose transport, and that these proteins are maximally derepressed during growth under glucose limitation.  相似文献   

10.
The isotopic fractionation associated with uptake of NO3by six species of phytoplankton (two diatoms, one cryptophyte,one chlorophyte and two haptophytes) was measured at a varietyof steady-state growth rates in nitrogen-limited continuousculture. The magnitude of the isotopic fractionation factor(  相似文献   

11.
A Chinese hamster ovary (CHO) cell line that expresses human erythropoietin (huEPO) was in a 2-L Cytopilot fluidized-bed bioreactor with 400 mL macroporous Cytoline-1 microcarriers and a variable perfusion rate of serum-free and protein-free medium for 48 days. The cell density increased to a maximum of 23 x 10(6) cells/mL, beads on day 27. The EPO concentration increased to 600 U/mL during the early part of the culture period (on day 24) and increased further to 980 U/mL following the addition of a higher concentration of glucose and the addition of sodium butyrate. The EPO concentration was significantly higher (at least 2x than that in a controlled stirred-tank bioreactor, in a spinner flask, or in a stationary T-flask culture. The EPO accumulated to a total production of 28,000 kUnits over the whole culture period. The molecular characteristics of EPO with respect to size and pattern of glycosylation did not change with scale up. The pattern of utilization and production of 18 amino acids was similar in the Cytopilot culture to that in a stationary batch culture in a T-flask. The concentration of ammonia was maintained at a low level (< 2 mM) over the entire culture period. The specific rate of consumption of glucose, as well as the specific rates of production of lactate and ammonia, were constant throughout the culture period indicating a consistent metabolic behavior of the cells in the bioreactor. These results indicate the potential of the Cytopilot bioreactor culture system for the continuous production of a recombinant protein over several weeks.  相似文献   

12.
The myriad functions of complex carbohydrates include modulating interactions between bacteria and their eukaryotic hosts. In humans and other vertebrates, variations in the activity of glycosyltransferases of CAZy family 6 generate antigenic variation between individuals and species that facilitates resistance to pathogens. The well characterized vertebrate glycosyltransferases of this family are multidomain membrane proteins with C-terminal catalytic domains. Genes for proteins homologous with their catalytic domains are found in at least nine species of anaerobic commensal bacteria and a cyanophage. Although the bacterial proteins are strikingly similar in sequence to the catalytic domains of their eukaryotic relatives, a metal-binding Asp-X-Asp sequence, present in a wide array of metal ion-dependent glycosyltransferases, is replaced by Asn-X-Asn. We have cloned and expressed one of these proteins from Bacteroides ovatus, a bacterium that is linked to inflammatory bowel disease. Functional characterization shows it to be a metal-independent glycosyltransferase with a 200-fold preference for UDP-GalNAc as substrate relative to UDP-Gal. It efficiently catalyzes the synthesis of oligosaccharides similar to human blood group A and may participate in the synthesis of the bacterial O-antigen. The kinetics for GalNAc transfer to 2′-fucosyl lactose are characteristic of a sequential mechanism, as observed previously for this family. Mutational studies indicate that despite the lack of a metal cofactor, there are pronounced similarities in structure-function relationships between the bacterial and vertebrate family 6 glycosyltransferases. These two groups appear to provide an example of horizontal gene transfer involving vertebrates and prokaryotes.The structures of complex glycans are determined by the specificities of the glycosyltransferases (GTs)2 that catalyze their biosynthesis. GTs fall into two groups that differ in mechanism, based on whether the anomeric configuration of the donor substrate (α for most UDP-sugars) is retained or inverted in the product (13). They are classified into 90 different families in the CAZy data base based on sequence similarities (4, 5), but the majority of those that have been structurally characterized fall into one of two fold types, designated GT-A and GT-B (2). The retaining GTs of CAZy family 6 (GT6) have a GT-A fold and catalyze the transfer of either galactose or GalNAc into an α-linkage with the 3-OH group of β-linked galactose or GalNAc. GT6 includes the histo-blood group A and B GTs (GTA and GTB), the α-galactosyltransferase (α3GT) that catalyzes the synthesis of the xenoantigen or α-gal epitope, Forssman glycolipid synthase, isogloboside 3 synthase, and their homologues from other vertebrates (6). GT6 enzymes from vertebrates are type-2 membrane proteins with N-terminal cytosolic domains, a transmembrane helix, a spacer, and a C-terminal catalytic domain (6). Crystallographic studies of recombinant catalytic domains of GTA, GTB, and α3GT have provided detailed information about their interactions with substrates, metal cofactor, and inhibitors (79). Most GT-A fold GTs, including those in the GT6 family, require divalent metal ions, such as Mn2+, for catalytic activity; their metal dependence is linked to a shared DXD sequence motif. Residues of this motif interact with the metal ion and both the ribose and phosphates of the donor substrate to produce an appropriate substrate orientation and conformation for catalysis and to stabilize the UDP leaving group (3, 710).Mammalian members of GT6 are responsible for variations in glycan structures between different species and individuals as the result of selective enzyme inactivation in certain species (α3GT, Forssman glycolipid synthase, and isogloboside 3 synthase) or the inheritance of multiple alleles at one locus that encode enzymes with different substrate specificity (GTA and GTB) or are inactive (1114). The presence of circulating antibodies against glycan structures that are subject to interspecies and individual variability has been linked to resistance to pathogens that also carry the glycans; these antibodies are thought to arise from exposure to potential pathogens, including enveloped viruses and bacteria that carry structurally similar glycans (11).In addition to the well characterized enzymes discussed previously, atypical members of the GT6 family have been identified in mammals that have sequence changes in highly conserved regions of the active site, including the DXD motif (6). However, no glycosyltransferase activity was detected in recombinant forms of two of these, and their functions are unclear (6). Although GT6 members are widely distributed among vertebrates, no homologues have been found in other eukaryotes (6). However, GT6 members have been identified in several bacterial species (1517). GT6 enzymes from Escherichia coli O86, and Helicobacter mustelae that appear to function in the biosynthesis of the lipopolysaccharide O-antigen have been cloned and expressed by Wang and co-workers (16, 17) and found to have specificities similar to those of human GTB and GTA, respectively. These enzymes have been applied in the enzymatic synthesis of oligosaccharides. Other homologues are encoded by Hemophilus somnus, Psychroacter sp., PRwf-1 (15), Francisella philomiragia, and three Bacteroides species, Bacteroides ovatus, Bacteroides caccae, and Bacteroides stercoris, as well as a cyanophage, PSSM-2 (15). Genes for other homologues from unidentified species are present in the marine metagenome (18, 19) and human gut metagenome (20, 21). The phage and bacterial enzymes are substantially truncated at the N terminus relative to the catalytic domains of vertebrate GT6 representatives and are smaller than the reported minimal functional unit of a primate α3GT (22). When bacterial and vertebrate GT6 amino acid sequences are aligned (Fig. 1 and supplemental Figs. S1 and S2), it can be seen that the metal-binding DXD of the eukaryotic GTs is replaced by NXN (where X is Ala, Gly, or Ser) in the bacterial homologues. The cyanophage GT6 member and related proteins in the marine metagenome, however, retain the DXD motif. This conspicuous difference in the bacterial proteins is particularly interesting, since, in the mammalian enzymes, the aspartates of the DXD and adjacent residues are crucial for catalytic activity (10, 23).Open in a separate windowFIGURE 1.An alignment of selected bacterial, cyanophage and mammalian GT6 amino acid sequences. Abbreviations and Interpro sequence IDs (in parentheses) are as follows. HuA, human histo-blood group A synthase (A1EAJ6); Bova, bovine α1,3-galactosyltransferase (P14769); PSSM2, cyanophage PSSM-2 (Q58M87); Bs, B. stercoris (B0NSM3); Bo1, B. ovatus GT1 (A7LVT2); Bo2, B. ovatus GT2 (A7M0P3); Bc, B. caccae (A5ZC71). The boxed regions in the alignment identify regions that have been shown to be involved in interactions with substrates and cofactor and in catalysis in bovine α1,3-galactosyltransferase and histo-blood group A and B enzymes. These are labeled (below) as follows. A, interactions with uracil; B, interactions with the galactose moiety of UDP-Gal; C, interactions with Mn2+, phosphates, and galactose; D, interactions with acceptor substrate; E, interactions with Gal or GalNAc of donor substrate; F, interactions with monosaccharide of donor substrate and acceptor and catalysis; The arrow (above) denotes the intron/exon boundary in vertebrate GT6s, and the asterisks indicate the residues in BoGT6a that were subjected to mutagenesis.B. ovatus is a Gram-negative commensal bacterium that inhabits the distal mammalian gut and has been implicated in the pathology of inflammatory bowel disease in humans (24). The B. ovatus genome contains two genes that encode GT6 representatives (Fig. 1). We selected one of these for initial investigation, and designate it BoGT6a (family 6 glycosyltransferase 1 of Bacteroides). The gene for this protein was amplified by PCR and cloned and expressed in His-tagged form in E. coli BL21(DE3). Assays with a variety of substrates show that its substrate specificity is similar to that of human GTA. Previous studies of the activities of bacterial enzymes were conducted in the presence of Mn2+ (16, 17), but we find that the B. ovatus enzyme does not require divalent metal ions for activity and is fully active in EDTA. Despite this striking difference, BoGT6a is similar to its metal-dependent relatives in catalytic properties; also, the effects of amino acid substitutions for residues corresponding to several that act in substrate binding and catalysis in vertebrate GT6 glycosyltransferases suggest that they have similar structure-function relationships. These results indicate that the metal cofactor is not a conserved feature in the GT6 family. They also raise questions about the catalytic mechanism of prokaryotic GT6 members and the evolutionary relationship between bacterial, phage, and vertebrate enzymes.  相似文献   

13.
Summary Large amounts (3 g.l–1) of tensio-active substances can be produced continuously and recuperated using a tangential-flow filtration device. These compounds can emulsify crude oil and the emulsions, obtained with a crude oil over biosurfactants ratio of 500, remain stable for hours.  相似文献   

14.
A Flavobacterium sp. was grown in continuous culture limited for growth with ammonium, phosphate, sulfate, glucose, glucose + pentachlorophenol (PCP) (0.065 h -1), or PCP. Cells ere harvested, washed, and suspended to 3 x 10(7) cells ml (-1) in shake flasks containing a complete mineral salts medium without added carbon or supplemented with 50 mg of PCP ml(-1) or 50 mg of PCP ml(-1) + 100 mg of glucose ml(-1). The PCP concentration and the viable cell density were determined periodically. Cells that were grown under phosphate, glucose, or glucose + PCP limitation were more sensitive to PCP and took longer to degrade 50 mg of PCP ml(-1) than did cells that very were grown under ammonium, sulfate, or PCP limitation. Glucose stimulated viability and PCP degradation in all cases except when the cells were grown under carbon limitation with glucose and PCP added together as the carbon source. These results indicate that there is a relationship between nutrient limitation, phenotypic variation, and the sensitivity to and degradation of PCP by this organism.  相似文献   

15.
The stability of the outer-membrane proteins and antigens of a strain of Bacteroides intermedius (VPI 8944 group genotype II) grown in continuous culture at varying pH and growth rates (D = 0.025-0.2 h-1, pH 6.0-7.3) has been measured. The membranes showed nine major proteins (greater than 67-19.55 kilodaltons) and six major antigens (65-28 kilodaltons). Membrane proteins and antigens were stable under the conditions tested; the major proteins were detected in all membranes, and the antigen profiles tested with different antisera showed maximum similarities of 82-95%. Differences did occur in the amounts of membrane proteins synthesized; cells at high growth rates and those growing on the surfaces in the chemostat showed increased amounts of two proteins (40 and 32 kilodaltons) and possibly novel proteins of 24 and 25 kilodaltons. In addition, these membranes reflected increased synthesis or a change to increased reactivity of antigens between 20.5 and 24 kilodaltons. The results indicate stability of the expression of outer-membrane proteins and antigens in environments of differing pH and under different growth rates. However, the amount of these molecules synthesized can vary, and increases in certain proteins and antigens occur as the growth rate increases and the organisms grow on surfaces.  相似文献   

16.
As part of the process optimization of a two-stage continuous culture system, the effect of growth rate mu(2) (app) on the performance of the second stage (production stage) was studied in a recombinant Escherichia coli K12 (DeltaH1Deltatrp/pPLc23trpA1). Important parameters considered were specific gene expression rate, plasmid content, and plasmid stability, all of which were closely related to the cell growth rate and the production rate of the cloned gene product (trpalpha). When operating conditions were maintained constant (T(1) = 35 degrees C, D(1) = 0.9 h(-1), T(2) = 40 degrees C, and D(2) = 0.7 h(-1)) and mu(2) (app) was varied, plasmid content in the second stage showed its maximum at mu(2) (app) = 0.4 h(-1) and decreased thereafter. Specific gene expression rate linearly increased with increasing mu(2) (app), while plasmid stability decreased. Optimum cell growth rate giving the maximum value in overall productivity was observed at around mu(2) (app) = 0.4 h(-1). The contribution or role of the three parameters, specific gene expression rate, plasmid content, and plasmid stability in exhibiting the maximum productivity at the optimal mu(2) (app) is discussed.  相似文献   

17.
Hydrolytic enzymes were measured in gut contents from four sudden death victims. Pancreatic amylase and total protease activities decreased distally from the small bowel to the sigmoid/rectum region of the large intestine, showing that considerable breakdown or inactivation of the enzymes occurred during gut transit. To determine whether pancreatic enzymes were substrates for the gut microflora, mixed populations of bacteria were grown in a 3-stage continuous culture system on a medium that contained pancreatic extract as the sole nitrogen source. The multichamber system (MCS) was designed to reproduce in vitro , the low pH, high nutrient, fast growth conditions of the caecum and right colon and the neutral pH, low nutrient, slow growth conditions of the left colon. Results showed that pancreatic amylase was resistant to breakdown by intestinal bacteria compared with the peptide hydrolases in pancreatic secretions. Leucine aminopeptidase, trypsin and to a lesser degree, chymotrypsin, were easily degraded by gut bacteria, but pancreatic elastase was comparatively resistant to breakdown. Protein degradation in the MCS, as determined by enzyme activities, protein concentration and ammonia and phenol production, increased concomitantly with system retention time over the range 24–69 h. These results suggest that intestinal bacteria play an important role in the breakdown of hydrolytic enzymes secreted by the pancreas and that this process and protein fermentation in general, is likely to occur maximally in individuals with extended colonic retention times.  相似文献   

18.
Hydrolytic enzymes were measured in gut contents from four sudden death victims. Pancreatic amylase and total protease activities decreased distally from the small bowel to the sigmoid/rectum region of the large intestine, showing that considerable breakdown or inactivation of the enzymes occurred during gut transit. To determine whether pancreatic enzymes were substrates for the gut microflora, mixed populations of bacteria were grown in a 3-stage continuous culture system on a medium that contained pancreatic extract as the sole nitrogen source. The multichamber system (MCS) was designed to reproduce in vitro, the low pH, high nutrient, fast growth conditions of the caecum and right colon and the neutral pH, low nutrient, slow growth conditions of the left colon. Results showed that pancreatic amylase was resistant to breakdown by intestinal bacteria compared with the peptide hydrolases in pancreatic secretions. Leucine aminopeptidase, trypsin and to a lesser degree, chymotrypsin, were easily degraded by gut bacteria, but pancreatic elastase was comparatively resistant to breakdown. Protein degradation in the MCS, as determined by enzyme activities, protein concentration and ammonia and phenol production, increased concomitantly with system retention time over the range 24-69 h. These results suggest that intestinal bacteria play an important role in the breakdown of hydrolytic enzymes secreted by the pancreas and that this process and protein fermentation in general, is likely to occur maximally in individuals with extended colonic retention times.  相似文献   

19.
Summary Clostridium thermocellum produced different levels of true cellulase (Avicelase) depending on the carbon source used for growth. In defined medium with fructose, the cellulase titer was seven times higher than with cells growing on cellobiose and four times higher than cells growing with glucose. During the lag phase on fructose, the differences were even more dramatic, i.e. 60 times higher than in cells growing on cellobiose and 40 times that of cells lagging or growing in glucose. In an attempt to detect factors that might contribute to these differences, we considered intracellular ATP, chemical potential (pH), electrical potential (Y), proton motive force (p), growth rate, and rates of uptake of inorganic phosphate and sugars. We noted a direct correlation between cellulase production and intracellular ATP levels and an inverse relationship of cellulase production with Y and p values. It thus appears that cellulase is best produced by cells high in ATP and low in Dp and its electrical component DY. There was no obvious relationship between the cellulase titer and the other parameters. Although the physiological significance of such correlations is unknown, the data suggest that further investigation is warranted.  相似文献   

20.
Nine strains of bacteroides fragilis were cultivated in stirred fermentors and tested for their ability to produce glycosidases. B. fragilis subsp. vulgatus B70 was used for optimizing the production of glycosidases. The highest bacterial yield was obtained in proteose peptone-yeast extract medium. The optimum pH for maximal bacterial yield was 7.0, and the optimum temperature for growth was 37 degrees C. The formation of glycosidases was optimal between pH 6.5 and 7.5, and the optimum temperature for synthesis of glycosidases was between 33 and 37 degrees C. Culture under controlled conditions in fermentors gave more reproducible production of glycosidases than static cultures in bottles. The strain was also grown in continuous culture at a dilution rate of 0.1 liter/h at pH 7.0 and 37 degrees C with a yield of 2.0 mg of dry weight per ml in the complex medium. The formation of glycosidases remained constant during the entire continuous process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号