首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adenosine and the adenosine 5'-phosphates (5'-AMP, 5'-ADP and 5'-ATP) depress the spontaneous firing of cerebral cortical neurons. In this study adenosine analogs, adenosine transport blockers and adenosine deaminase inhibitors have been used to gain further insight into the nature of the adenosine receptor and the likely routes of metabolism of extracellularly released adenosine. The firing rate of cortical neurons, including identified corticospinal neurons, was depressed by 2-substituted derivatives of adenosine. 2-Halogenated derivatives of adenosine were potent depressors while 2-aminoadenosine and 2-hydroxyadenosine (crotonoside) were slightly less potent than adenosine. The α,β-methylene isosteres of 5'-ADP and 5'-ATP were almost devoid of agonist activity while the β,γ-methylene analog was an active agonist. This suggests that ADP and ATP must be converted to AMP or possibly adenosine before they can activate the adenosine receptor. 2'-, 3'- and 5'- deoxyadenosine depressed spontaneous firing without antagonizing the effect of adenosine. Adenosine deaminase inhibitors, deoxycoformycin and erythro-9-(2-hydroxy-3-nonyl) adenine had potent, long lasting depressant actions on the spontaneous firing of cortical neurons and concurrently potentiated the actions of adenosine or 5'-AMP. Inhibitors of adenosine transport, papaverine and 2-hydroxy-5-nitrobenzylthioguanosine, prolonged the duration of action of adenosine and 5'-AMP. Intracellular recordings show that 5'-AMP hyperpolarizes cerebral cortical neurons and suppresses spontaneous and evoked excitatory postsynaptic potentials, in the absense of any pronounced alterations in membrane resistance.  相似文献   

2.
Adenosine has a potent depressant action on cerebral cortical neurons, including identified corticospinal cells. Adenosine 2′-, 3′- and 5′-phosphates, including adenosine 5′-imidodiphosphate, had comparable depressant actions and 2-chloroadenosine was an even more potent depressant. Inhibitors of adenosine uptake, hexobendine and papaverine, potentiated the actions of adenosine and adenosine 5′-monophosphate. Theophylline and caffeine antagonized the depressant actions of adenosine and adenosine 5′-monophosphate. The results are compatible with the hypothesis that adenosine depresses neurons by activating an extracellular receptor and that this effect can be blocked by theophylline and caffeine.  相似文献   

3.
Nifedipine inhibits the uptake of [3H]adenosine into rat cerebral cortical synaptosomes with an IC50 value of 1.1 μM. When applied by iontophoresis onto rat cerebral cortical neurons it potentiated the depressant effects of adenosine on spontaneous firing. Some of the calcium-antagonist actions of nifedipine may be mediated by adenosine.  相似文献   

4.
Intravenously or iontophoretically applied diazepam potentiated the depressant action of iontophoretically applied 5'-AMP on the spontaneous firing of rat cerebral cortical neurons. This potentiation of purinergic depression may be a result of the previously reported inhibition by diazepam of uptake of adenosine into brain tissues.  相似文献   

5.
The effect of acetylcholine, noradrenalin, and serotonin on spontaneous activity of visual cortical neurons and on their activity evoked by flashes, recorded extracellularly, was studied by microiontophoresis in unanesthetized rabbits. The ability of visual cortical neurons to respond to light does not correlate with their sensitivity to acetylcholine. This substance, which changes the spontaneous firing rate of many of the neurons tested, was less effective against their evoked activity. Noradrenalin had a powerful depressant action on both spontaneous and evoked activity of most neurons studied. Serotonin acted in different ways on the spontaneous and evoked activity of some neurons tested. It is postulated that acetylcholine mediates reticulo-cortical inputs, noradrenalin is a true inhibitory mediator in the cerebral cortex, and serotonin has a presynaptic action by preventing the liberation of natural mediators.  相似文献   

6.
The effects of a number of neuronally localized peptides have been ascertained on corticospinal and other unidentified neurons in the rat cerebral cortex. Motilin, somatostatin, and luteinizing hormone releasing hormone excited most of the corticospinal neurons on which they were tested. Cholecystokinin. Met-enkephalin, vasoactive intestinal peptide, and neurotensin also excited some corticospinal neurons. Many nonidentified neurons were excited by all of these peptides. Met-enkephalin had a depressant action on some (14%) corticospinal neurons. Leu-enkaphalin depressed many identified and nonidentified neurons and had an excitatory action on a few neurons. Both excitatory and inhibitory actions of the enkephalins were antagonized by naloxone. Thyrotropin-releasing hormone had predominantly depressant actions on the spontaneous firing of corticospinal and nonidentified neurons but did excite some unidentified cortical neurons. Secretin had no effect on the firing of most of the neurons tested.  相似文献   

7.
Using the guppy, Lebistes reticulatus, and the siluroid catfish, Parasilurus asotus , the effects of purine and pyrimidine derivatives on the movement of melanophores were studied. All the substances tested did not aggregate pigment within melanophores. Adenosine and adenine nucleotides were very effective in dispersing melanosomes within the cell, although adenine itself lacked such action. Derivatives of other purines than adenine and of pyrimidines did not disperse melanosomes. The pigment dispersion induced by adenine derivatives was specifically antagonized by methylxanthines. It was concluded that adenosine receptors are present on the melanophore membrane, which take part in the darkening reaction of fishes.  相似文献   

8.
The effects of iontophoretically applied histamine H2-receptor antagonists and their antagonism of various amines, acetylcholine (ACh), and adenosine 5'-monophosphate (5'-AMP) were studied on spontaneously active rat cerebral cortical neurons. Metiamide selectively blocked the depressant actions of histamine. Burimamide, in amounts necessary for histamine antagonism, also antagonized the depressant effects of noradrenaline, dopamine, and 5-hydroxytryptamine. Neither antagonist affected 5'-AMP-induced depressions, but both reduced or blocked the excitatory actions of ACh. It is concluded that metiamide may be useful as a reliable antagonist of H2 receptors on cerebral cortical neurons.  相似文献   

9.
Recent reports have described a swelling-induced release of adenosine triphosphate (ATP) from a variety of non-nervous system cell types, which may be involved in the regulatory volume decrease (RVD) response. The present study examined the effects of swelling induced by applications of hypotonic or monocarboxylic acid containing artificial cerebrospinal fluid (aCSF) on the release of adenosine nucleotides and adenosine from the in vivo rat cerebral cortex using a cortical cup technique. Hypotonic aCSF (25mM NaCl) elicited a significant increase in adenosine, but not adenine nucleotide, release. Applications of sodium L-lactate, pyruvate, or acetate (all 20mM) evoked increases in adenine nucleotides but not adenosine. D-Lactate (20mM) enhanced adenosine and ATP release. Inhibition of the plasma membrane monocarboxylate transporter with cyano-4-hydroxycinnamate (4-CIN, 2mM) blocked the effects of L-lactate on purine release. These in vivo results demonstrate that osmoregulatory processes in cortical cells evoke an efflux of adenine nucleotides and/or adenosine. In that these purines activate a variety of receptors, it is possible that they may function as autocrine or paracrine signaling agents, facilitating volume regulation and enhancing local blood flow.  相似文献   

10.
Vasoactive intestinal polypeptide (VIP), applied iontophoretically, excited 40% of the spontaneously firing rat cortical neurons tested. No neurons were depressed by VIP. When applied simultaneously with adenosine or noradrenaline, VIP depressed the firing of cortical neurons, but this depression could be reproduced by the passage of similar positive currents through a 50 mM NaCl-containing barrel of the multiple barrelled micropipette. VIP, therefore, excited rat cortical neurons and no depressant actions were apparent when VIP was applied together with adenosine or noradrenaline. Leakage of adenosine or noradrenaline during iontophoretic applications of the peptide may account for the reported inhibitory actions of VIP.  相似文献   

11.
Extracellular (EC) adenosine, hypoxanthine, xanthine, and inosine concentrations were monitored in vivo in the striatum during steady state, 15 min of complete brain ischemia, and 4 h of reflow and compared with purine and nucleotide levels in the tissue. Ischemia was induced by three-vessel occlusion combined with hypotension (50 mm Hg) in male Sprague-Dawley rats. EC purines were sampled by microdialysis, and tissue adenine nucleotides and purine catabolites were extracted from the in situ frozen brain at the end of the experiment. ATP, ADP, and AMP were analyzed with enzymatic fluorometric techniques, and adenosine, hypoxanthine, xanthine, and inosine with a modified HPLC system. Ischemia depleted tissue ATP, whereas AMP, adenosine, hypoxanthine, and inosine accumulated. In parallel, adenosine, hypoxanthine, and inosine levels increased in the EC compartment. Adenosine reached an EC concentration of 40 microM after 15 min of ischemia. Levels of tissue nucleotides and purines normalized on reflow. However, xanthine levels increased transiently (sevenfold). In the EC compartment, adenosine, inosine, and hypoxanthine contents normalized slowly on reflow, whereas the xanthine content increased. The high EC levels of adenosine during ischemia may turn off spontaneous neuronal firing, counteract excitotoxicity, and inhibit ischemic calcium uptake, thereby exerting neuroprotective effects.  相似文献   

12.
Adenosine has profound depressant effects upon the electrophysiological activity of the brain, but the adenosine receptor subtypes which mediate these responses are uncertain. In order to resolve this question, we have characterized the effects of two adenosine analogs which differ in their relative potencies at adenosine A1 and A2 receptors. The effects of these adenosine analogs were examined on spontaneous firing rate of Purkinje neurons in the rat cerebellum in situ, in cerebellar brain slices in vitro, and on synaptic transmission in the rat hippocampus in vitro. Although the A2 agonist appeared to be more potent with local drug application techniques in situ, our in vitro results suggest that the A1 receptor subtype is involved in the electrophysiological actions of these drugs in both rat cerebellum and hippocampus. Furthermore, these data indicate that the physical properties of some adenosine analogs may reduce apparent drug potencies when they are studied with local application techniques.  相似文献   

13.
To evaluate the regulation of adenine nucleotide metabolism in relation to purine enzyme activities in rat liver, human erythrocytes and cultured human skin fibroblasts, rapid and sensitive assays for the purine enzymes, adenosine deaminase (EC 2.5.4.4), adenosine kinase (EC 2.7.1.20), hyposanthine phosphoribosyltransferase (EC 2.4.28), adenine phosphoribosyltransferase (EC 2.4.2.7) and 5'-nucleotidase (EC 3.1.3.5) were standardized for these tissues. Adenosine deaminase was assayed by measuring the formation of product, inosine (plus traces of hypoxanthine), isolated chromatographically with 95% recovery of inosine. The other enzymes were assayed by isolating the labelled product or substrate nucleotides as lanthanum salts. Fibroblast enzymes were assayed using thin-layer chromatographic procedures because the high levels of 5'-nucleotidase present in this tissue interferred with the formation of LaCl3 salts. The lanthanum and the thin-layer chromatographic methods agreed within 10%. Liver cell sap had the highest activities of all purine enzymes except for 5'-nucleotidase and adenosine deaminase which were highest in fibroblasts. Erythrocytes had lowest activities of all except for hypoxanthine phosphoribosyltransferase which was intermediate between the liver and fibroblasts. Erhthrocytes were devoid of 5'-nucleotidase activity. Hepatic adenosine kinase activity was thought to control the rate of loss of adenine nucleotides in the tissue. Erythrocytes had excellent purine salvage capacity, but due to the relatively low activity of adenosine deaminase, deamination might be rate limiting in the formation of guanine nucleotides. Fibroblasts, with high levels of 5'-nucleotidase, have the potential to catabolize adenine nucleotides beyond the control od adenosine kinase. The purine salvage capacity in the three tissues was erythrocyte greater than liver greater than fibroblasts. Based on purine enzyme activities, erythrocytes offer a unique system to study adenine salvage; fibroblasts to study adenine degradation; and liver to study both salvage and degradation.  相似文献   

14.
Intravenously administered theophylline (50--100 mg/kg) antagonized the depressant actions of adenosine and flurazepam on rat cerebral cortical neurons. When assessed in conjunction with recent reports that theophylline competes with diazepam for binding sites in brain tissue, this finding suggests that one action of the benzodiazepines may be exerted at a purinergic receptor associated with central neurons.  相似文献   

15.
[14C]Adenine derivatives in normal guinea pig or rat neocortical tissues maintained by superfusion included ATP, ADP and AMP collectively forming some 98% of the acid-extracted 14C; adenosine, inosine and hypoxanthine each at less than 0.5% and S-adenosylhomocysteine at about 0.1%. l-Homocysteine and/or its thiolactone increased only a little the S-adenosylhomocysteine. The superfusion fluid carried from the tissue per minute about 0.1% of its acid-extractable [14C]adenine derivatives. Electrical stimulation of the superfused tissue increased 10-fold its output of [14C]adenine derivatives and diminished the 5′-nucleotides in the tissue to 94% of the acid-extractable [14C]adenine derivatives, the remainder being adenosine, inosine and hypoxanthine with little change in S-adenosylhomocysteine. Homocysteine in the superfusion fluids now caused large increases in tissue S-adenosylhomocysteine, which became the preponderant non-nucleotide 14C-derivative when homocysteine was 0.1 mM or greater. The total [14C]adenine conversion to non-nucleotide derivatives then increased and the 5′-nucleotides fell to 88% of the total. It is concluded that concentration relationships observed in the action of homocysteine make it feasible that convulsive conditions and mental changes associated with administered homocysteine and with homocystinuria are due to cerebral adenosine concentrations being diminished through formation of S-adenosylhomocysteine. Adenosine is preponderantly depressant in cerebral actions; effects of the S-adenosylhomocysteine produced may also be relevant.  相似文献   

16.
Adenosine is formed during conditions that deplete ATP, such as ischemia. Adenosine deaminase converts adenosine into inosine, and both adenosine and inosine can be beneficial for postischemic recovery. This study investigated adenosine and inosine release from astrocytes and neurons during chemical hypoxia or oxygen-glucose deprivation. In both cell types, 2-deoxyglucose was the most effective stimulus for depleting cellular ATP and for evoking inosine release; in contrast, oxygen-glucose deprivation evoked the greatest adenosine release. alpha,beta-Methylene ADP, an inhibitor of ecto-5'nucleotidase, significantly reduced adenosine release from astrocytes but not neurons. Dipyridamole, an inhibitor of equilibrative nucleoside transporters, inhibited both adenosine and inosine release from neurons. Erythro-9-(2-hydroxy-3-nonyl)adenine, an inhibitor of adenosine deaminase, reduced neuronal inosine release evoked by oxygen-glucose deprivation but not by 2-deoxyglucose treatment. These data indicate that (1). astrocytes release adenine nucleotides that are hydrolyzed extracellularly to adenosine, whereas neurons release adenosine per se, (2). inosine is formed intracellularly and released via nucleoside transporters, and (3). inosine is formed by an adenosine deaminase-dependent pathway during oxygen-glucose deprivation but not during 2-deoxyglucose treatment. In summary, the metabolic pathways for adenosine formation and release were cell-type dependent whereas the pathways for inosine formation were stimulus dependent.  相似文献   

17.
Pulse-labeling of the nucleotide pool in Entamoeba histolytica with radioactive precursors, and subsequent high performance liquid chromatographic (HPLC) analysis of the radiolabeled nucleotides, indicate that E. histolytica is incapable of de novo synthesis of purine nucleotides. Hypoxanthine, inosine and xanthine could not be converted to nucleotides in E. histolytica, which suggests the absence of interconversion between adenine nucleotides and guanine nucleotides through formation of IMP. Adenosine was actively incorporated into nucleotides at an initial rate of 130 pmoles per minute per 10(6) trophozoites. Adenine, guanosine and guanine were also incorporated at much lower rates. The rate of adenine incorporation was enhanced by the presence of guanosine; the rate of guanine incorporation was significantly increased by adenosine. These stimulatory effects suggest that the ribose moiety of adenosine or guanosine can be transferred to another purine base to form a new nucleoside, and that the purine nucleosides are the immediate precursors of E. histolytica nucleotides. HPLC results showed that the radiolabel in adenine was exclusively incorporated into adenine nucleotides and that guanine was found only among guanine nucleotides, whereas the radioactivity associated with the ribose moiety of adenosine or guanosine was distributed among both adenine and guanine nucleotides.  相似文献   

18.
To evaluate the regulation of adenine nucleotide metabolism in relation to purine enzyme activities in rat liver, human erythrocytes and cultured human skin fibroblasts, rapid and sensitive assays for the purine enzymes, adenosine deaminase (EC 2.5.4.4), adenosine kinase (EC 2.7.1.20), hypoxanthine phosphoribosyltransferase (EC 2.4.28), adenine phosphoribosyltransferase (EC 2.4.2.7) and 5′-nucleotidase (EC 3.1.3.5) were standardized for these tissues. Adenosine deaminase was assayed by measuring the formation of product, inosine (plus traces of hypoxanthine), isolated chromatographically with 95% recovery of inosine. The other enzymes were assayed by isolating the labelled product or substrate nucleotides as lanthanum salts. Fibroblast enzymes were assayed using thin-layer chromatographic procedures because the high levels of 5′-nucleotidase present in this tissue interferred with the formation of LaCl3 salts. The lanthanum and the thin-layer chromatographic methods agreed with-in 10%.Liver cell sap had the highest activities of all purine enzymes except for 5′-nucleotidase and adenosine deaminase which were highest in fibroblasts. Erythrocytes had lowest activities of all except for hypoxanthine phosphoribosyltransferase which was intermediate between the liver and fibroblasts. Erythrocytes were devoid of 5′-nucleotidase activity. Hepatic adenosine kinase activity was thought to control the rate of loss of adenine nucleotides in the tissue.Erythrocytes had excellent purine salvage capacity, but due to the relatively low activity of adenosine deaminase, deamination might be rate limiting in the formation of guanine nucleotides. Fibroblasts, with high levels of 5′-nucleotidase, have the potential to catabolize adenine nucleotides beyond the control of adenosine kinase. The purine salvage capacity in the three tissues was erythrocyte > liver > fibroblasts. Based on purine enzyme activities, erythrocytes offer a unique system to study adenine salvage; fibroblasts to study adenine degradation; and liver to study both salvage and degradation.  相似文献   

19.
1. Uptake of [(14)C]adenine and [(14)C]adenosine from surrounding fluids to guinea-pig cerebral tissues was measured during incubation in vitro. Output of (14)C-labelled compounds from the loaded tissues to superfusion fluids occurred on continued incubation, at about 0.2% of the tissue's content/min, and this rate was increased about fourfold by electrical excitation of the tissue. 2. The compounds released from the tissue to superfusion fluids included adenine, adenosine, inosine and hypoxanthine with small amounts of nucleotides. Output of all these compounds, except adenine, increased on excitation. Media depleted of oxygen or glucose also increased the output of (14)C-labelled derivatives from [(14)C]adenine-loaded tissues, and this augmented output was further increased by electrical stimulation. 3. [(14)C]Adenosine was found as the main product from [(14)C]ATP when this was added at low concentrations to fluids superfusing cerebral tissue. Metabolic and neurohumoural explanations of the liberation and action of adenosine derivatives in the tissue are discussed.  相似文献   

20.
5'-Nucleotidase, adenosine phosphorylase, adenosine deaminase and purine nucleoside phosphorylase, four enzymes involved in the utilization of exogenous compounds in Bacillus cereus, were measured in extracts of this organism grown in different conditions. It was found that adenosine deaminase is inducible by addition of adenine derivatives to the growth medium, and purine, nucleoside phosphorylase by metabolizable purine and pyrimidine ribonucleosides. Adenosine deaminase is repressed by inosine, while both enzymes are repressed by glucose. Evidence is presented that during growth of B. cereus in the presence of AMP, the concerted action of 5'-nucleotidase and adenosine phosphorylase, two constitutive enzymes, leads to formation of adenine, and thereby to induction of adenosine deaminase. The ionsine formed would then cause induction of the purine nucleoside phosphorylase and repression of the deaminase. Taken together with our previous findings showing that purine nucleoside phosphorylase of B. cereus acts as a translocase of the ribose moiety of inosine inside the cell (Mura, U., Sgarrella, F. and Ipata, P.L. (1978) J. Biol Chem. 253, 7905-7909), our results provide a clear picture of the molecular events leading to the utilization of the sugar moiety of exogenous AMP, adenosine and inosine as an energy source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号