首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Global analysis using trilinear curve resolution is described and shown to be a powerful method for the resolution of polarized fluorescence data arrays, in which the measured fluorescence intensity is a separable function of polarization orientation, excitation wavelength, and emission wavelength. This methodology is applicable to mixtures the components of which have linearly independent excitation and emission spectra and distinct anisotropies. Normalized excitation and emission spectra of individual components can be uniquely determined without prior assumptions concerning spectral shapes (e.g., sum of Gaussians) and without the uncertainties inherent in bilinear techniques such as principal component analysis or factor analysis. The normalized excitation and emission vectors are combined with the total absorption spectrum of the multicomponent mixture to compute absolute absorption and emission spectra. The precision of this methodology is evaluated as a function of noise, overlap, relative intensity, and anisotropy difference between components using simulated mixtures of the DNA bases. The ability of this method to extract individual spectra from steady-state fluorescence data arrays is illustrated for mixtures containing two and three components.  相似文献   

2.
Amyloid fibril depositions are associated with many neurodegenerative diseases as well as amyloidosis. The detailed molecular mechanism of fibrillation is still far from complete understanding. In our previous study of in vitro fibrillation of hen egg white lysozyme, an irreversible partially unfolded intermediate was characterized. A similarity of unfolding kinetics found for the secondary and tertiary structure of lysozyme using deep UV resonance Raman (DUVRR) and tryptophan fluorescence spectroscopy leads to a hypothesis that the unfolding might be a two-state transition. In this study, chemometric analysis, including abstract factor analysis (AFA), target factor analysis (TFA), evolving factor analysis (EFA), multivariate curve resolution-alternating least squares (ALS), and genetic algorithm, was employed to verify that only two principal components contribute to the DUVRR and fluorescence spectra of soluble fraction of lysozyme during the fibrillation process. However, a definite conclusion on the number of conformers cannot be made based solely on the above spectroscopic data although chemometric analysis suggested the existence of two principal components. Therefore, electrospray ionization mass spectrometry (ESI-MS) was also utilized to address the hypothesis. The protein ion charge state distribution (CSD) envelopes of the incubated lysozyme were well fitted with two principal components. Based on the above analysis, the partial unfolding of lysozyme during in vitro fibrillation was characterized quantitatively and proven to be a two-state transition. The combination of ESI-MS and Raman and fluorescence spectroscopies with advanced statistical analysis was demonstrated to be a powerful methodology for studying protein structural transformations.  相似文献   

3.
Chu RA  Takei J  Barchi JJ  Bai Y 《Biochemistry》1999,38(43):14119-14124
The previous native-state hydrogen exchange experiment with barnase failed to detect any partially unfolded intermediate state which was contrary to the experimental results from kinetic deuterium hydrogen exchange pulse labeling and protein engineering studies. This has been taken to suggest that the native-state hydrogen exchange method cannot be used alone as an analytical tool to study the folding pathways of proteins. Here, we revisited the pulse labeling experiment with barnase and detected no stable folding intermediate. This finding allows a reconciliation of the native-state HX data and the folding pathway of barnase. Along with alternative theoretical interpretations for a curved chevron plot of protein folding, these data suggest that further investigation of the nature of the intermediate of barnase is needed.  相似文献   

4.
A general procedure for the study of conformational transitions of polynucleotides is described. The equilibria between different conformations induced by salt, ethidium bromide, and temperature of poly(dG-dC). poly(dG-dC) and induced by salt and temperature of poly(A). poly(U) are investigated using molecular absorption, circular dichroism, and fluorescence spectroscopies. Spectral data obtained from experiments are analyzed by means of a factor analysis method, namely, multivariate curve resolution, which allows possible intermediate states to be detected and the pure spectra and the concentration profiles of all species present in the system to be estimated. This work shows the application of this procedure for the analysis of data matrices obtained in individual experiments but also for the analysis of several data matrices simultaneously.  相似文献   

5.
Unfolding and refolding of rabbit muscle triosephosphate isomerase (TIM), a model for (betaalpha)8-barrel proteins, has been studied by amide hydrogen exchange/mass spectrometry. Unfolding was studied by destabilizing the protein in guanidine hydrochloride (GdHCl) or urea, pulse-labeling with 2H2O and analyzing the intact protein by HPLC electrospray ionization mass spectrometry. Bimodal isotope patterns were found in the mass spectra of the labeled protein, indicating two-state unfolding behavior. Refolding experiments were performed by diluting solutions of TIM unfolded in GdHCl or urea and pulse-labeling with 2H2O at different times. Mass spectra of the intact protein labeled after one to two minutes had three envelopes of isotope peaks, indicating population of an intermediate. Kinetic modeling indicates that the stability of the folding intermediate in water is only 1.5 kcal/mol. Failure to detect the intermediate in the unfolding experiments was attributed to its low stability and the high concentrations of denaturant required for unfolding experiments. The folding status of each segment of the polypeptide backbone was determined from the deuterium levels found in peptic fragments of the labeled protein. Analysis of these spectra showed that the C-terminal half folds to form the intermediate, which then forms native TIM with folding of the N-terminal half. These results show that TIM folding fits the (4+4) model for folding of (betaalpha)8-barrel proteins. Results of a double-jump experiment indicate that proline isomerization does not contribute to the rate-limiting step in the folding of TIM.  相似文献   

6.
Understanding the relationship between the amino acid sequence of a protein and its unique, compact three-dimensional structure is one of the grand challenges in molecular biophysics. One exciting approach to the protein-folding problem is fast time-resolved spectroscopy in the ultra-violet (UV). Time-resolved electronic circular dichroism (CD) spectroscopy offers resolution on a nanosecond (or faster) timescale, but does not provide the spatial resolution of techniques like X-ray crystallography or NMR. There is a need to underpin fast timescale spectroscopic studies of protein folding with a stronger theoretical foundation. We review some recent studies in this regard and briefly highlight how modern quantum chemical models of aromatic groups have improved the accuracy of calculations of protein CD spectra near-UV. On the other side of the far-UV, we describe calculations indicating that charge-transfer transitions are likely to be responsible for bands observed in the vacuum UV in protein CD.  相似文献   

7.
The equilibrium and kinetics of canine milk lysozyme folding/unfolding were studied by peptide and aromatic circular dichroism and tryptophan fluorescence spectroscopy. The Ca2+-free apo form of the protein exhibited a three-state equilibrium unfolding, in which the molten globule state is well populated as an unfolding intermediate. A rigorous analysis of holo protein unfolding, including the data from the kinetic refolding experiments, revealed that the holo protein also underwent three-state unfolding with the same molten globule intermediate. Although the observed kinetic refolding curves of both forms were single-exponential, a burst-phase change in the peptide ellipticity was observed in both forms, and the burst-phase intermediates of both forms were identical to each other with respect to their stability, indicating that the intermediate does not bind Ca2+. This intermediate was also shown to be identical to the molten globule state observed at equilibrium. The phi-value analysis, based on the effect of Ca2+ on the folding and unfolding rate constants, showed that the Ca2+-binding site was not yet organized in the transition state of folding. A comparison of the result with that previously reported for alpha-lactalbumin indicated that the folding initiation site is different between canine milk lysozyme and alpha-lactalbumin, and hence, the folding pathways must be different between the two proteins. These results thus provide an example of the phenomenon wherein proteins that are very homologous to each other take different folding pathways. It is also shown that the native state of the apo form is composed of at least two species that interconvert.  相似文献   

8.
Intrinsic tryptophans of CRABPI as probes of structure and folding.   总被引:2,自引:1,他引:1       下载免费PDF全文
The native state fluorescence and CD spectra of the predominantly beta-sheet cellular retinoic acid-binding protein I (CRABPI) include contributions from its three tryptophan residues and are influenced by the positions of these residues in the three-dimensional structure. Using a combination of spectroscopic approaches and single Trp-mutants of CRABPI, we have deconvoluted these spectra and uncovered several features that have aided in our analysis of the development of structure in the folding pathway of CRABPI. The emission spectrum of native CRABPI is dominated by Trp 7. Trp 109 is fluorescence-silent due to its interaction with the guanidino group of Arg 111. Although the far-UV CD spectrum of CRABPI is largely determined by the protein's secondary structure, aromatic clustering around Trp 87 and the aromatic-charge interaction between Arg 111 and Trp 109 give rise to a characteristic feature in the CD spectrum at 228 nm. The near-UV CD bands of CRABPI arise largely from additive contributions of the three tryptophan residues. Trp 7 and Trp 87 give a negative CD band at 275 nm. The near-UV CD band from Trp 109 is positive and shifted to longer wavelengths (to 302 nm) due to the charge-aromatic interaction between Arg 111 and Trp 109. Our deconvolution of the equilibrium spectra have been used to interpret kinetic folding experiments monitored by stopped-flow fluorescence. These dynamic experiments suggest the early evolution of a well-populated, hydrophobically collapsed intermediate, which undergoes global rearrangement to form the fully folded structure. The results presented here suggest several additional strategies for dissecting the folding pathway of CRABPI.  相似文献   

9.
A Perczel  K Park  G D Fasman 《Proteins》1992,13(1):57-69
A recently developed algorithm, called Convex Constraint Analysis (CCA), was successfully applied to determine the circular dichroism (CD) spectra of the pure beta-pleated sheet in globular proteins. On the basis of X-ray diffraction determined secondary structures, the original data set used (Perczel, A., Hollosi, M., Tusnady, G. Fasman, G.D. Convex constraint analysis: A natural deconvolution of circular dichroism curves of proteins, Prot. Eng., 4:669-679, 1991), was improved by the addition of proteins with high beta-pleated sheet content. The analysis yielded CD curves of the pure components of the main secondary structural elements (alpha-helix, antiparallel beta-pleated sheet, beta-turns, and unordered conformation), as well as a curve attributed to the "aromatic contribution" in the wavelength range of 195-240 nm. Upon deconvolution the curves obtained were assigned to various secondary structures. The calculated weights (percentages determining the contributions of each pure component curve in the measured CD spectra of a given protein) were correlated with the X-ray diffraction determined percentages in an assignment procedure and were evaluated. The Pearson product correlation coefficients (R) are significant for all five components. The new pure component curves, which were obtained through deconvolution of the protein CD spectra alone, are promising candidates for determining the percentages of the secondary structural components in globular proteins without the necessity of adopting an X-ray database. The CD spectrum of the CheY protein was interesting because it has the characteristic shape associated with the alpha-helical structure, but upon analysis yielded a considerable amount of beta-sheet in agreement with the X-ray structure.  相似文献   

10.
Src SH3 is a small all-beta-sheet protein composed of a single domain. We studied the folding behavior of src SH3 at various conditions by circular dichroism (CD), fluorescence, and X-ray solution scattering methods. On the src SH3 folding pathway, an alpha-helix-rich intermediate appeared not only at subzero temperatures but also above 0 degrees C. The fraction of alpha-helix in the kinetically observed intermediate is ca. 26% based on the kinetic CD experiment. X-ray solution scattering revealed that the intermediate was compact but not fully packed. The analysis of CD implies that the amplitude of the burst phase is proportional to the helical fraction calculated according to the helix-coil transition theory. This strongly suggests that the initial folding core is formed by the collapse of much less stably existing alpha-helices.  相似文献   

11.
A number of studies have examined the structural properties of late folding intermediates of (beta/alpha)8-barrel proteins involved in tryptophan biosynthesis, whereas there is little information available about the early folding events of these proteins. To identify the contiguous polypeptide segments important to the folding of the (beta/alpha)8-barrel protein Escherichia coli N-(5'-phosphoribosyl)anthranilate isomerase, we structurally characterized fragments and circularly permuted forms of the protein. We also simulated thermal unfolding of the protein using molecular dynamics. Our fragmentation experiments demonstrate that the isolated (beta/alpha)(1-4)beta5 fragment is almost as stable as the full-length protein. The far and near-UV CD spectra of this fragment are indicative of native-like secondary and tertiary structures. Structural analysis of the circularly permutated proteins shows that if the protein is cleaved within the two N-terminal betaalpha modules, the amount of secondary structure is unaffected, whereas, when cleaved within the central (beta/alpha)(3-4)beta5 segment, the protein simply cannot fold. An ensemble of the denatured structures produced by thermal unfolding simulations contains a persistent local structure comprised of beta3, beta4 and beta5. The presence of this three-stranded beta-barrel suggests that it may be an important early-stage folding intermediate. Interactions found in (beta/alpha)(3-4)beta5 may be essential for the early events of ePRAI folding if they provide a nucleation site that directs folding.  相似文献   

12.
Visible circular dichroism (CD) spectra from the copper(II) titration of the metal-binding region of the prion protein, residues 57-98, were analyzed using the self-modeling curve resolution method multivariate curve resolution-alternating least squares (MCR-ALS). MCR-ALS is a set of mathematical tools for estimating pure component spectra and composition profiles from mixture spectra. Model-free solutions (e.g., soft models) are produced under the assumption that pure component profiles should be nonnegative and unimodal. Optionally, equality constraints can be used when the concentration or spectrum of one or more species is known. MCR-ALS is well suited to complex biochemical systems such as the prion protein which binds multiple copper ions and thus gives rise to titration data consisting of several pure component spectra with overlapped or superimposed absorption bands. Our study reveals the number of binding modes used in the uptake of Cu2+ by the full metal-binding region of the prion protein and their relative concentration profiles throughout the titration. The presence of a non-CD active binding mode can also be inferred. We show that MCR-ALS analysis can be initialized using empirically generated or mathematically generated pure component spectra. The use of small model peptides allows us to correlate specific Cu2+-binding structures to the pure component spectra.  相似文献   

13.
The folding of apo-pseudoazurin, a 123-residue, predominantly beta-sheet protein with a complex Greek key topology, has been investigated using several biophysical techniques. Kinetic analysis of refolding using far- and near-ultraviolet circular dichroism (UV CD) shows that the protein folds slowly to the native state with rate constants of 0.04 and 0.03 min(-1), respectively, at pH 7.0 and at 15 degrees C. This process has an activation enthalpy of approximately 90 kJ/mole and is catalyzed by cyclophilin A, indicating that folding is limited by trans-cis proline isomerization, presumably around the Xaa-Pro 20 bond that is in the cis isomer in the native state. Before proline isomerization, an intermediate accumulates during folding. This species has a substantial signal in the far-UV CD, a nonnative signal in the near-UV CD, exposed hydrophobic surfaces (judged by 1-anilino naphthalenesulphonate binding), a noncooperative denaturation transition, and a dynamic structure (revealed by line broadening on the nuclear magnetic resonance time scale). We compare the properties of this intermediate with partially folded states of other proteins and discuss its role in folding of this complex Greek key protein.  相似文献   

14.
Allura red (AR) is a widely used colorant in food industry, but may have a potential security risk. In this study, the properties of interaction between AR and human serum albumin (HSA) in vitro were determined by fluorescence, UV–Vis absorption and circular dichroism (CD) spectroscopy combining with multivariate curve resolution–alternating least squares (MCR–ALS) chemometrics and molecular modeling approaches. An expanded UV–Vis data matrix was resolved by MCR–ALS method, and the concentration profiles and pure spectra for the three reaction components (AR, HSA, and AR–HSA complex) of the system were then successfully obtained to evaluate the progress interaction of AR with HSA. The calculated thermodynamic parameters indicated that hydrogen binding and hydrophobic interactions played major roles in the binding process, and the interaction induced a decrease in the protein surface hydrophobicity. The competitive experiments revealed that AR mainly located in Sudlow’s site I of HSA, and this result was further supported by molecular modeling studies. Analysis of CD spectra found that the addition of AR induced the conformational changes of HSA. This study have provided new insight into the mechanism of interaction between AR and HSA.  相似文献   

15.
Ausili A  Scirè A  Damiani E  Zolese G  Bertoli E  Tanfani F 《Biochemistry》2005,44(49):15997-16006
Despite extensive investigations on thermal denaturation of alpha(1)-acid glycoprotein (AGP) using a variety of techniques, structural features of the folded-unfolded state in terms of residual secondary structures and the structural transitions involved in this process have not been fully characterized. In this study we employed FT-IR spectroscopy to investigate the thermal unfolding and reversibility of temperature-induced changes in AGP. The data revealed a fully reversible beta-sheet-rich protein which exhibits a molten globule-like state, an important protein folding intermediate. 2D-IR COS revealed the sequence of the conformational changes occurring before denaturation and confirmed the formation of this intermediate which was further supported by CD spectroscopy. On account of the similarities in the FT-IR spectra of AGP with those of porcine odorant-binding protein (OBP), homology modeling of AGP using OBP as template was performed. The resemblance of AGP and OBP 3D structures confirmed the similarities of data obtained using FT-IR spectroscopy. Overall, FT-IR spectroscopy appears to be useful for investigating the structural characteristics and stability of proteins whose 3D structures are unavailable and for assessing the molten globule-like state in small beta-sheet-rich proteins.  相似文献   

16.
Normally, proteins will aggregate and precipitate by direct folding processes. In this study, we report that quasi-static processes can restore both the structure and bio-function of two kinds of fish recombinant growth hormones (Plecoglossus altivelis and Epinephelus awoara). The conformational changes and the particle-size-distribution (PSD) of each refolding intermediate can be monitored by circular dichroism spectroscopy (CD) and dynamic light scattering (DLS), respectively. Conformation analysis of the CD spectra of the refolding intermediates indicated that the secondary structures were restored in the initial refolding intermediate. However, the tertiary interactions of the proteins were restored during the last two refolding stages, as elucidated by thermal stability tests. This is consistent with a sequential model. DLS analysis suggested that the average hydrodynamic radii of the refolding intermediates shrank to their native-like sizes after the first refolding stage. This is consistent with a collapse model. After comparison with the data on the direct folding process, it is concluded that the denaturant-containing protein folding reaction is a first-order-like state transition process.  相似文献   

17.
Chymotrypsin inhibitor 2 (CI2) is the archetypal single-foldon protein that folds in simple two-state kinetics without the accumulation of a folding intermediate. To model the effects of fusion of single foldons to give a multi-foldon protein, we engineered a "double-CI2" protein, in which another CI2 polypeptide was inserted into the loop region of the parent CI2. CD and HSQC spectra demonstrated that while the double-CI2 protein adopted two kinds of native conformations, CI2-like structure was almost preserved in both the domains of double-CI2. In the folding kinetic studies, double-CI2 exhibited a remarkable rollover of the observed folding rates at low denaturant concentrations, indicating that double-CI2 accumulated a kinetic folding intermediate. The different folding mechanisms between WT-CI2 and double-CI2 support the present view that protein size or number of domains is an important determinant for formation of folding intermediates.  相似文献   

18.
Kinetic and equilibrium studies of the folding and unfolding of the SH3 domain of the PI3 kinase, have been used to identify a folding intermediate that forms after the rate-limiting step on the folding pathway. Folding and unfolding, in urea as well as in guanidine hydrochloride (GdnHCl), were studied by monitoring changes in the intrinsic fluorescence or in the far-UV circular dichroism (CD) of the protein. The two probes yield non-coincident equilibrium transitions for unfolding in urea, indicating that an intermediate, I, exists in equilibrium with native (N) and unfolded (U) protein, during unfolding. Hence, the equilibrium unfolding data were analyzed according to a three-state N ↔ I ↔ U mechanism. An intermediate is observed also in kinetic unfolding studies, and its presence leads to the unfolding reaction in urea as well as in GdnHCl, occurring in two steps. The fast step is complete within the initial 11 ms of unfolding and manifests itself in a burst phase change in fluorescence. At high concentrations of GdnHCl, the entire change in fluorescence during unfolding occurs during the 11 ms burst phase. CD measurements indicate, however, that I retains N-like secondary structure. An analysis of the kinetic and thermodynamic data, according to a minimal three-state N ↔ I ↔ U mechanism, positions I after the rate-limiting transition state, TS1, of folding, on the reaction coordinate of folding in GdnHCl. Hence, I is not revealed when folding is commenced from U, regardless of the nature of the probe used to follow the folding reaction. Interrupted unfolding experiments, in which the protein is unfolded transiently in GdnHCl for various lengths of time before being refolded, showed that I refolds to N much faster than does U, confirms the analysis of the direct folding and unfolding experiments, that I is formed after the rate-limiting step of refolding in GdnHCl.  相似文献   

19.
The loops connecting the seven transmembrane helices of bacteriorhodopsin have each been replaced in turn by structureless linkers of Gly-Gly-Ser repeat sequences, and the effect on the protein folding kinetics has been determined. An SDS-denatured state of each loop mutant bacterio-opsin was folded in l-alpha-1,2-dihexanoylphosphatidylcholine/l-alpha-1,2-dimyristoylphosphatidylcholine micelles, containing retinal, to give functional bacteriorhodopsin. Stopped-flow mixing was used to initiate the folding reaction, giving a time resolution of milliseconds, and changes in protein fluorescence were used to monitor folding. All loop mutant proteins folded according to the same reaction scheme as wild-type protein. The folding kinetics of the AB, BC and DE loop mutants were the same as wild-type protein, despite the blue-shifted chromophore band of the BC loop mutant bR state. A partially folded apoprotein intermediate state of the AB loop mutant did however appear to decay in the absence of retinal. The most significant effects on the folding kinetics were seen for mutant protein with structureless linkers in place of the CD, EF and FG loops. The rate-limiting apoprotein folding step of the CD loop mutant was about ten times slower than wild-type, whilst that of the EF loop mutant was almost four times slower than wild-type. Wild-type behaviour was observed for the other folding and retinal binding events of the CD and EF loop mutant proteins. These effects of the CD and EF loop mutations on apoprotein folding correlate with the fact that these two loop mutants also have the least stable, partially folded apoprotein intermediate of all the loop mutants, and are the most affected by a decrease in lipid lateral pressure. In contrast, the FG loop mutant exhibited wild-type apoprotein folding, but altered covalent binding of retinal and final folding to bacteriorhodopsin. This correlates with the fact that the FG loop mutant bacteriorhodopsin is the most susceptible to denaturation by SDS of all the loop mutants, but its partially folded apoprotein intermediate is more stable than that of the CD and EF mutants. Thus the CD and EF loops may contribute to the transition state for the rate-limiting apoprotein folding step and the FG loop to that for final folding and covalent binding of retinal.  相似文献   

20.
During denaturant-induced equilibrium (un)folding of wild-type apoflavodoxin from Azotobacter vinelandii, a molten globule-like folding intermediate is formed. This wild-type protein contains three tryptophans. In this study, we use a general approach to analyze time-resolved fluorescence and steady-state fluorescence data that are obtained upon denaturant-induced unfolding of a single-tryptophan-containing variant of apoflavodoxin [i.e., W74/F128/F167 (WFF) apoflavodoxin]. The experimental data are assembled in matrices, and subsequent singular-value decomposition of these matrices (i.e., based on either steady-state or time-resolved fluorescence data) shows the presence of three significant, and independent, components. Consequently, to further analyze the denaturation trajectories, we use a three-state protein folding model in which a folding intermediate and native and unfolded protein molecules take part. Using a global analysis procedure, we determine the relative concentrations of the species involved and show that the stability of WFF apoflavodoxin against global unfolding is ~4.1 kcal/mol. Analysis of time-resolved anisotropy data of WFF apoflavodoxin unfolding reveals the remarkable observation that W74 is equally well fixed within both the native protein and the molten globule-like folding intermediate. Slight differences between the direct environments of W74 in the folding intermediate and native protein cause different rotameric populations of the indole in both folding species as fluorescence lifetime analysis reveals. Importantly, thermodynamic analyses of the spectral denaturation trajectories of the double-tryptophan-containing protein variants WWF apoflavodoxin and WFW apoflavodoxin show that these variants are significantly more stable (5.9 kcal/mol and 6.8 kcal/mol, respectively) than WFF apoflavodoxin (4.1 kcal/mol) Hence, tryptophan residues contribute considerably to the 10.5 kcal/mol thermodynamic stability of native wild-type apoflavodoxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号