首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To identify potent and selective calcium-release-activated calcium (CRAC) channel inhibitors, we examined the structure-activity relationships of the pyrazole and thiophene moieties in compound 4. Compound 25b was found to exhibit highly potent and selective inhibitory activity for CRAC channels and further modifications of the pyrazole and benzoyl moieties of compound 25b produced compound 29. These compounds were potent inhibitors of IL-2 production in vitro and also acted as inhibitors in pharmacological models of diseases resulting from T-lymphocyte activation, after oral administration.  相似文献   

2.
Depletion of intracellular calcium stores activates store-operated calcium entry across the plasma membrane in many cells. STIM1, the putative calcium sensor in the endoplasmic reticulum, and the calcium release-activated calcium (CRAC) modulator CRACM1 (also known as Orai1) in the plasma membrane have recently been shown to be essential for controlling the store-operated CRAC current (I(CRAC)). However, individual overexpression of either protein fails to significantly amplify I(CRAC). Here, we show that STIM1 and CRACM1 interact functionally. Overexpression of both proteins greatly potentiates I(CRAC), suggesting that STIM1 and CRACM1 mutually limit store-operated currents and that CRACM1 may be the long-sought CRAC channel.  相似文献   

3.
Although store-operated calcium release-activated Ca(2+) (CRAC) channels are highly Ca(2+)-selective under physiological ionic conditions, removal of extracellular divalent cations makes them freely permeable to monovalent cations. Several past studies have concluded that under these conditions CRAC channels conduct Na(+) and Cs(+) with a unitary conductance of approximately 40 pS, and that intracellular Mg(2+) modulates their activity and selectivity. These results have important implications for understanding ion permeation through CRAC channels and for screening potential CRAC channel genes. We find that the observed 40-pS channels are not CRAC channels, but are instead Mg(2+)-inhibited cation (MIC) channels that open as Mg(2+) is washed out of the cytosol. MIC channels differ from CRAC channels in several critical respects. Store depletion does not activate MIC channels, nor does store refilling deactivate them. Unlike CRAC channels, MIC channels are not blocked by SKF 96365, are not potentiated by low doses of 2-APB, and are less sensitive to block by high doses of the drug. By applying 8-10 mM intracellular Mg(2+) to inhibit MIC channels, we examined monovalent permeation through CRAC channels in isolation. A rapid switch from 20 mM Ca(2+) to divalent-free extracellular solution evokes Na(+) current through open CRAC channels (Na(+)-I(CRAC)) that is initially eightfold larger than the preceding Ca(2+) current and declines by approximately 80% over 20 s. Unlike MIC channels, CRAC channels are largely impermeable to Cs(+) (P(Cs)/P(Na) = 0.13 vs. 1.2 for MIC). Neither the decline in Na(+)-I(CRAC) nor its low Cs(+) permeability are affected by intracellular Mg(2+) (90 microM to 10 mM). Single openings of monovalent CRAC channels were not detectable in whole-cell recordings, but a unitary conductance of 0.2 pS was estimated from noise analysis. This new information about the selectivity, conductance, and regulation of CRAC channels forces a revision of the biophysical fingerprint of CRAC channels, and reveals intriguing similarities and differences in permeation mechanisms of voltage-gated and store-operated Ca(2+) channels.  相似文献   

4.
Release of Ca(2+) from inositol (1,4,5)-trisphosphate-sensitive Ca(2+) stores causes "capacitative calcium entry," which is mediated by the so-called "Ca(2+) release-activated Ca(2+) current" (I(CRAC)) in RBL-1 cells. Refilling of the Ca(2+) stores or high cytoplasmic [Ca(2+)] ([Ca(2+)](cyt)) inactivate I(CRAC). Here we address the question if also [Ca(2+)](cyt) lower than the resting [Ca(2+)](cyt) influences store-operated channels. We therefore combined patch clamp and mag fura-2 fluorescence methods to determine simultaneously both I(CRAC) and [Ca(2+)] within Ca(2+) stores of RBL-1 cells ([Ca(2+)](store)). We found that low [Ca(2+)](cyt) in the range of 30-50 nM activates I(CRAC) and Ca(2+) influx spontaneously and independently of global Ca(2+) store depletion, while elevation of [Ca(2+)](cyt) to the resting [Ca(2+)](cyt) (100 nM) resulted in store dependence of I(CRAC) activation. We conclude that spontaneous activation of I(CRAC) by low [Ca(2+)](cyt) could serve as a feedback mechanism keeping the resting [Ca(2+)](cyt) constant.  相似文献   

5.
Antigen-evoked influx of extracellular Ca(2+) into mast cells may occur via store-operated Ca(2+) channels called calcium release-activated calcium (CRAC) channels. In mast cells of the rat basophilic leukemia cell line (RBL-2H3), cholera toxin (CT) potentiates antigen-driven uptake of (45)Ca(2+) through cAMP-independent means. Here, we have used perforated patch clamp recording at physiological temperature to test whether cholera toxin or its substrate, Gs, directly modulates the activity of CRAC channels. Cholera toxin dramatically amplified (two- to fourfold) the Ca(2)+ release-activated Ca(2+) current (I(CRAC)) elicited by suboptimal concentrations of antigen, without itself inducing I(CRAC), and this enhancement was not mimicked by cAMP elevation. In contrast, cholera toxin did not affect the induction of I(CRAC) by thapsigargin, an inhibitor of organelle Ca(2+) pumps, or by intracellular dialysis with low Ca(2+) pipette solutions. Thus, the activity of CRAC channels is not directly controlled by cholera toxin or Gsalpha. Nor was the potentiation of I(CRAC) due to enhancement of phosphoinositide hydrolysis or calcium release. Because Gs and the A subunit of cholera toxin bind to ADP ribosylation factor (ARF) and could modulate its activity, we tested the sensitivity of antigen-evoked I(CRAC) to brefeldin A, an inhibitor of ARF-dependent functions, including vesicle transport. Brefeldin A blocked the enhancement of antigen-evoked I(CRAC) without inhibiting ADP ribosylation of Gsalpha, but it did not affect I(CRAC) induced by suboptimal antigen or by thapsigargin. These data provide new evidence that CRAC channels are a major route for Fcin receptor I-triggered Ca(2+) influx, and they suggest that ARF may modulate the induction of I(CRAC) by antigen.  相似文献   

6.
The calcium release-activated calcium channel (CRAC) is a highly Ca(2+)-selective ion channel that is activated on depletion of inositol triphosphate (IP(3))-sensitive intracellular Ca(2+) stores. It was recently reported that CaT1, a member of the TRP family of cation channels, exhibits the unique biophysical properties of CRAC, which led to the conclusion that CaT1 comprises all or part of the CRAC pore (Yue, L., Peng, J. B., Hediger, M. A., and Clapham, D. E. (2001) Nature 410, 705-709). Here, we directly compare endogenous CRAC with heterologously expressed CaT1 and show that they manifest several clearly distinct properties. CaT1 can be distinguished from CRAC in the following features: sensitivity to store-depleting agents; inward rectification in the absence of divalent cations; relative permeability to Na(+) and Cs(+); effect of 2-aminoethoxydiphenyl borate (2-APB). Moreover, CaT1 displays a mode of voltage-dependent gating that is fully absent in CRAC and originates from the voltage-dependent binding/unbinding of Mg(2+) inside the channel pore. Our results imply that the pores of CaT1 and CRAC are not identical and indicate that CaT1 is a Mg(2+)-gated channel not directly related to CRAC.  相似文献   

7.
Large conductance, Ca(2+)- and voltage-gated K(+) (BK) channel proteins are ubiquitously expressed in cell membranes and control a wide variety of biological processes. Membrane cholesterol regulates the activity of membrane-associated proteins, including BK channels. Cholesterol modulation of BK channels alters action potential firing, colonic ion transport, smooth muscle contractility, endothelial function, and the channel alcohol response. The structural bases underlying cholesterol-BK channel interaction are unknown. Such interaction is determined by strict chemical requirements for the sterol molecule, suggesting cholesterol recognition by a protein surface. Here, we demonstrate that cholesterol action on BK channel-forming Cbv1 proteins is mediated by their cytosolic C tail domain, where we identified seven cholesterol recognition/interaction amino acid consensus motifs (CRAC4 to 10), a distinct feature of BK proteins. Cholesterol sensitivity is provided by the membrane-adjacent CRAC4, where Val-444, Tyr-450, and Lys-453 are required for cholesterol sensing, with hydrogen bonding and hydrophobic interactions participating in cholesterol location and recognition. However, cumulative truncations or Tyr-to-Phe substitutions in CRAC5 to 10 progressively blunt cholesterol sensitivity, documenting involvement of multiple CRACs in cholesterol-BK channel interaction. In conclusion, our study provides for the first time the structural bases of BK channel cholesterol sensitivity; the presence of membrane-adjacent CRAC4 and the long cytosolic C tail domain with several other CRAC motifs, which are not found in other members of the TM6 superfamily of ion channels, very likely explains the unique cholesterol sensitivity of BK channels.  相似文献   

8.
Calcium flux through store-operated calcium entry is a central regulator of intracellular calcium signaling. The two key components of the store-operated calcium release-activated calcium channel are the Ca2+-sensing protein stromal interaction molecule 1 (STIM1) and the channel pore-forming protein Orai1. During store-operated calcium entry activation, calcium depletion from the endoplasmic reticulum triggers a series of conformational changes in STIM1 that unmask a minimal Orai1-activating domain (CRAC activation region (CAD)). To gate Orai1 channels, the exposed STIM1-activating domain binds to two sites in Orai1, one in the N terminus and one in the C terminus. Whether the two sites operate as distinct binding domains or cooperate in CAD binding is unknown. In this study, we show that the N and C-terminal domains of Orai1 synergistically contribute to the interaction with STIM1 and couple STIM1 binding with channel gating and modulation of ion selectivity.  相似文献   

9.
The recent discoveries of Stim1 and Orai proteins have shed light on the molecular makeup of both the endoplasmic reticulum Ca(2+) sensor and the calcium release-activated calcium (CRAC) channel, respectively. In this study, we investigated the regulation of CRAC channel function by extracellular Ca(2+) for channels composed primarily of Orai1, Orai2, and Orai3, by co-expressing these proteins together with Stim1, as well as the endogenous channels in HEK293 cells. As reported previously, Orai1 or Orai2 resulted in a substantial increase in CRAC current (I(crac)), but Orai3 failed to produce any detectable Ca(2+)-selective currents. However, sodium currents measured in the Orai3-expressing HEK293 cells were significantly larger in current density than Stim1-expressing cells. Moreover, upon switching to divalent free external solutions, Orai3 currents were considerably more stable than Orai1 or Orai2, indicating that Orai3 channels undergo a lesser degree of depotentiation. Additionally, the difference between depotentiation from Ca(2+) and Ba(2+) or Mg(2+) solutions was significantly less for Orai3 than for Orai1 or -2. Nonetheless, the Na(+) currents through Orai1, Orai2, and Orai3, as well as the endogenous store-operated Na(+) currents in HEK293 cells, were all inhibited by extracellular Ca(2+) with a half-maximal concentration of approximately 20 mum. We conclude that Orai1, -2, and -3 channels are similarly inhibited by extracellular Ca(2+), indicating similar affinities for Ca(2+) within the selectivity filter. Orai3 channels appeared to differ from Orai1 and -2 in being somewhat resistant to the process of Ca(2+) depotentiation.  相似文献   

10.
The ubiquitous Ca2+ release-activated Ca2+ (CRAC) channel is crucial to many physiological functions. Both gain and loss of CRAC function is linked to disease. While ORAI1 is a crucial subunit of CRAC channels, recent evidence suggests that ORAI2 and ORAI3 heteromerize with ORAI1 to form native CRAC channels. Furthermore, ORAI2 and ORAI3 can form CRAC channels independently of ORAI1, suggesting diverse native CRAC stoichiometries. Yet, most available CRAC modifiers are presumed to target ORAI1 with little knowledge of their effects on ORAI2/3 or heteromers of ORAIs. Here, we used ORAI1/2/3 triple-null cells to express individual ORAI1, ORAI2, ORAI3 or ORAI1/2/3 concatemers. We reveal that GSK-7975A and BTP2 essentially abrogate ORAI1 and ORAI2 activity while causing only a partial inhibition of ORAI3. Interestingly, Synta66 abrogated ORAI1 channel function, while potentiating ORAI2 with no effect on ORAI3. CRAC channel activities mediated by concatenated ORAI1-1, ORAI1-2 and ORAI1-3 dimers were inhibited by Synta66, while ORAI2-3 dimers were unaffected. The CRAC enhancer IA65 significantly potentiated ORAI1 and ORAI1-1 activity with marginal effects on other ORAIs. Further, we characterized the profiles of individual ORAI isoforms in the presence of Gd3+ (5μM), 2-APB (5 μM and 50 μM), as well as changes in intracellular and extracellular pH. Our data reveal unique pharmacological features of ORAI isoforms expressed in an ORAI-null background and provide new insights into ORAI isoform selectivity of widely used CRAC pharmacological compounds.  相似文献   

11.
Store-operated calcium entry (SOCE) is a ubiquitous mechanism that is mediated by distinct SOC channels, ranging from the highly selective calcium release-activated Ca2+ (CRAC) channel in rat basophilic leukemia and other hematopoietic cells to relatively Ca2+-selective or non-selective SOC channels in other cells. Although the exact composition of these channels is not yet established, TRPC1 contributes to SOC channels and regulation of physiological function of a variety of cell types. Recently, Orai1 and STIM1 have been suggested to be sufficient for generating CRAC channels. Here we show that Orai1 and STIM1 are also required for TRPC1-SOC channels. Knockdown of TRPC1, Orai1, or STIM1 attenuated, whereas overexpression of TRPC1, but not Orai1 or STIM1, induced an increase in SOC entry and I(SOC) in human salivary gland cells. All three proteins were co-localized in the plasma membrane region of cells, and thapsigargin increased co-immunoprecipitation of TRPC1 with STIM1, and Orai1 in human salivary gland cells as well as dispersed mouse submandibular gland cells. In aggregate, the data presented here reveal that all three proteins are essential for generation of I(SOC) in these cells and that dynamic assembly of TRPC1-STIM1-Orai1 ternary complex is involved in activation of SOC channel in response to internal Ca2+ store depletion. Thus, these data suggest a common molecular basis for SOC and CRAC channels.  相似文献   

12.
Depletion of Ca2+ from the endoplasmic reticulum (ER) lumen triggers the opening of Ca2+ release-activated Ca2+ (CRAC) channels at the plasma membrane. CRAC channels are activated by stromal interaction molecule 1 (STIM1), an ER resident protein that senses Ca2+ store depletion and interacts with Orai1, the pore-forming subunit of the channel. The subunit stoichiometry of the CRAC channel is controversial. Here we provide evidence, using atomic force microscopy (AFM) imaging, that Orai1 assembles as a hexamer, and that STIM1 binds to Orai1 with sixfold symmetry. STIM1 associates with Orai1 in the form of monomers, dimers, and multimeric string-like structures that form links between the Orai1 hexamers. Our results provide new insights into the nature of the interactions between STIM1 and Orai1.  相似文献   

13.
The suitability of an automated patch clamp for the characterization and pharmacological screening of calcium release-activated calcium (CRAC) channels endogenously expressed in RBL-2H3 cells was explored with the QPatch system. CRAC currents (I( CRAC)) are small, and thus precise recordings require high signal-to-noise ratios obtained by high seal resistances. Automated whole-cell establishment resulted in membrane resistances of 1728 +/- 226 MOmega (n = 44). CRAC channels were activated by a number of methods that raise intracellular calcium concentration, including EGTA, ionomycin, Ins(1,4,5)P(3), and thapsigargin. I(CRAC) whole-cell currents ranged from 30 to 120 pA with rise times of 40 to 150 s. An initial delay in current activation was observed in particular when I(CRAC) was activated by passive store depletion using EGTA. Apparent rundown of I(CRAC) was commonly observed, and the current could be reactivated by subsequent addition of thapsigargin. I(CRAC) was blocked by SKF-96365 and 2-APB with IC(50) values of 4.7 +/- 1.1 microM (n = 9) and 7.5 +/- 0.7 (n = 9) microM, respectively. The potencies of these blockers were similar to values reported for I(CRAC) in similar conventional patch-clamp experiments. The study demonstrates that CRAC channels can be rapidly and efficiently targeted with automated patch-clamp techniques for characterization of physiological and pharmacological properties.  相似文献   

14.
P1-(lin-Benzo-5'-adenosyl)-P5-(5'-adenosyl) penraphosphate and P1-(lin-benzo-5'-adenosyl)-P4-(5'-adenosyl) tetraphosphate have been synthesized from lin-benzoadenosine 5'-monophosphoromorpholidate and adenosine 5'-tetraphosphate and adenosine 5'-triphosphate. These mixed dinucleoside polyphosphates are potent inhibitors of porcine muscle adenylate kinase, with association constants of 2 x 10(5) M-1 for the pentaphosphate and 2 x 10(6) M-1 for the tetraphosphate, respectively, as determined by kinetics and fluorescence experiments. The increase in fluorescence intensities and fluorescence lifetimes of both inhibitors upon binding to adenylate kinase results from a breaking of the intramolecular stacking interaction observed when these ligands are free in solution and implicates their binding to the enzyme in an "open" or "extended" form. These results and the dimensional requirements of these inhibitors are discussed in relation to our current knowledge of the active site of adenylate kinase and to the known inhibitors of adenylate kinase, P1,P5-bis(5'-adenosyl) pentaphosphate and P1,P4-bis-(5'-adenosyl) tetraphosphate.  相似文献   

15.
The acute effects of beta-amyloid (25-35) and (1-40) on high voltage activated calcium channels were compared in CA1 pyramidal cells of adult mouse hippocampal slices using the whole-cell patch-clamp recording. Bath application of oligomeric beta-amyloid (25-35) reversibly increased the barium current (I(Ba)) to 1.61 (normalized amplitude), while oligomeric beta-amyloid (1-40) reversibly enhanced the I(Ba) to 1.74. Reverse-sequence beta-amyloid [(35-25) and (40-1)] had no effect. The effect of beta-amyloid (25-35) was blocked by nifedipine, a selective antagonist of L-type calcium channels. In contrast, the effect of beta-amyloid (1-40) was not blocked by nifedipine and I(Ba) was enhanced to 4.96. It is concluded that these oligomeric peptides may act through different types of calcium channels and/or receptors. The toxicity of Abeta(25-35) implicates a potentiation of L-type calcium channels while the one of Abeta(1-40) is related to an increase of non-L-type calcium channels, which may involve an increase in transmitter release.  相似文献   

16.
The Orai family of calcium channels includes the store-operated CRAC channels and store-independent, arachidonic acid (AA)-regulated ARC channels. Both depend on STIM1 for their activation but, whereas CRAC channel activation involves sensing the depletion of intracellular calcium stores via a luminal N terminal EF-hand of STIM1 in the endoplasmic reticulum (ER) membrane, ARC channels are exclusively activated by the pool of STIM1 that constitutively resides in the plasma membrane (PM). Here, the EF-hand is extracellular and unlikely to ever lose its bound calcium, suggesting that STIM1-dependent activation of ARC channels is very different from that of CRAC channels. We now show that attachment of the cytosolic portion of STIM1 to the inner face of the PM via an N terminal Lck-domain sequence is sufficient to enable normal AA-dependent activation of ARC channels, while failing to allow activation of store-operated CRAC channels. Introduction of a point mutation within the Lck-domain resulted in the loss of both PM localization and ARC channel activation. Reversing the orientation of the PM-anchored STIM1 C terminus via a C-terminal CAAX-box fails to support either CRAC or ARC channel activation. Finally, the Lck-anchored STIM1 C-terminal domain also enabled the exclusive activation of the ARC channels following physiological agonist addition. These data demonstrate that simple tethering of the cytosolic C-terminal domain of STIM1 to the inner face of the PM is sufficient to allow the full, normal and exclusive activation of ARC channels, and that the N-terminal regions of STIM1 (including the EF-hand domain) play no significant role in this activation.  相似文献   

17.
Store-operated Ca(2+) entry is controlled by the interaction of stromal interaction molecules (STIMs) acting as endoplasmic reticulum ER Ca(2+) sensors with calcium release-activated calcium (CRAC) channels (CRACM1/2/3 or Orai1/2/3) in the plasma membrane. Here, we report structural requirements of STIM1-mediated activation of CRACM1 and CRACM3 using truncations, point mutations, and CRACM1/CRACM3 chimeras. In accordance with previous studies, truncating the N-terminal region of CRACM1 or CRACM3 revealed a 20-amino acid stretch close to the plasma membrane important for channel gating. Exchanging the N-terminal region of CRACM3 with that of CRACM1 (CRACM3-N(M1)) results in accelerated kinetics and enhanced current amplitudes. Conversely, transplanting the N-terminal region of CRACM3 into CRACM1 (CRACM1-N(M3)) leads to severely reduced store-operated currents. Highly conserved amino acids (K85 in CRACM1 and K60 in CRACM3) in the N-terminal region close to the first transmembrane domain are crucial for STIM1-dependent gating of CRAC channels. Single-point mutations of this residue (K85E and K60E) eliminate store-operated currents induced by inositol 1,4,5-trisphosphate and reduce store-independent gating by 2-aminoethoxydiphenyl borate. However, short fragments of these mutant channels are still able to communicate with the CRAC-activating domain of STIM1. Collectively, these findings identify a single amino acid in the N terminus of CRAC channels as a critical element for store-operated gating of CRAC channels.  相似文献   

18.
The Orai family of calcium channels includes the store-operated CRAC channels and store-independent, arachidonic acid (AA)-regulated ARC channels. Both depend on STIM1 for their activation but, whereas CRAC channel activation involves sensing the depletion of intracellular calcium stores via a luminal N terminal EF-hand of STIM1 in the endoplasmic reticulum (ER) membrane, ARC channels are exclusively activated by the pool of STIM1 that constitutively resides in the plasma membrane (PM). Here, the EF-hand is extracellular and unlikely to ever lose its bound calcium, suggesting that STIM1-dependent activation of ARC channels is very different from that of CRAC channels. We now show that attachment of the cytosolic portion of STIM1 to the inner face of the PM via an N terminal Lck-domain sequence is sufficient to enable normal AA-dependent activation of ARC channels, while failing to allow activation of store-operated CRAC channels. Introduction of a point mutation within the Lck-domain resulted in the loss of both PM localization and ARC channel activation. Reversing the orientation of the PM-anchored STIM1 C terminus via a C-terminal CAAX-box fails to support either CRAC or ARC channel activation. Finally, the Lck-anchored STIM1 C-terminal domain also enabled the exclusive activation of the ARC channels following physiological agonist addition. These data demonstrate that simple tethering of the cytosolic C-terminal domain of STIM1 to the inner face of the PM is sufficient to allow the full, normal and exclusive activation of ARC channels, and that the N-terminal regions of STIM1 (including the EF-hand domain) play no significant role in this activation.  相似文献   

19.
20.
(2S)-2-(3-Chlorophenyl)-1-[N-(methyl)-N-(phenylsulfonyl)amino]-4-[spiro(2,3-dihydrobenzthiophene-3,4'-piperidin-1'-yl)]butane S-oxide (1b) has been identified as a potent CCR5 antagonist having an IC50=10 nM. Herein, structure-activity relationship studies of non-spiro piperidines are described, which led to the discovery of 4-(N-(alkyl)-N-(benzyloxycarbonyl)amino)piperidine derivatives (3-5) as potent CCR5 antagonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号