首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The European Scientific Committee on Cosmetics and Non-Food Products (SCCNFP) guideline for testing of hair dyes for genotoxic/mutagenic/carcinogenic potential has been reviewed. The battery of six in vitro tests recommended therein differs substantially from the batteries of two or three in vitro tests recommended in other guidelines. Our evaluation of the chemical types used in hair dyes and comparison with other guidelines for testing a wide range of chemical substances, lead to the conclusion that potential genotoxic activity may effectively be determined by the application of a limited number of well-validated test systems that are capable of detecting induced gene mutations and structural and numerical chromosomal changes. We conclude that highly effective screening for genotoxicity of hair dyes can be achieved by the use of three assays, namely the bacterial gene mutation assay, the mammalian cell gene mutation assay (mouse lymphoma tk assay preferred) and the in vitro micronucleus assay. These need to be combined with metabolic activation systems optimised for the individual chemical types. Recent published evidence [D. Kirkland, M. Aardema, L. Henderson, L. Müller, Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens. I. Sensitivity, specificity and relative predictivity, Mutat. Res. 584 (2005) 1-256] suggests that our recommended three tests will detect all known genotoxic carcinogens, and that increasing the number of in vitro assays further would merely reduce specificity (increase false positives). Of course there may be occasions when standard tests need to be modified to take account of special situations such as a specific pathway of biotransformation, but this should be considered as part of routine testing. It is clear that individual dyes and any other novel ingredients should be tested in this three-test battery. However, new products are formed on the scalp by reaction between the chemicals present in hair-dye formulations. Ideally, these should also be tested for genotoxicity, but at present such experiences are very limited. There is also the possibility that one component could mask the genotoxicity of another (e.g. by being more toxic), and so it is not practical at this time to recommend routine testing of complete hair-dye formulations as well. The most sensible approach would be to establish whether any reaction products within the hair-dye formulation penetrate the skin under normal conditions of use and test only those that penetrate at toxicologically relevant levels in the three-test in vitro battery. Recently published data [D. Kirkland, M. Aardema, L. Henderson, L. Müller, Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens. I. Sensitivity, specificity and relative predictivity, Mutat. Res. 584 (2005) 1-256] suggest the three-test battery will produce a significant number of false as well as real positives. Whilst we are aware of the desire to reduce animal experiments, determining the relevance of positive results in any of the three recommended in vitro assays will most likely have to be determined by use of in vivo assays. The bone marrow micronucleus test using routes of administration such as oral or intraperitoneal may be used where the objective is extended hazard identification. If negative results are obtained in this test, then a second in vivo test should be conducted. This could be an in vivo UDS in rat liver or a Comet assay in a relevant tissue. However, for hazard characterisation, tests using topical application with measurement of genotoxicity in the skin would be more appropriate. Such specific site-of-contact in vivo tests would minimise animal toxicity burden and invasiveness, and, especially for hair dyes, be more relevant to human routes of exposure, but there are not sufficient scientific data available to allow recommendations to be made. The generation of such data is encouraged.  相似文献   

2.
The performance of a battery of three of the most commonly used in vitro genotoxicity tests--Ames+mouse lymphoma assay (MLA)+in vitro micronucleus (MN) or chromosomal aberrations (CA) test--has been evaluated for its ability to discriminate rodent carcinogens and non-carcinogens, from a large database of over 700 chemicals compiled from the CPDB ("Gold"), NTP, IARC and other publications. We re-evaluated many (113 MLA and 30 CA) previously published genotoxicity results in order to categorise the performance of these assays using the response categories we established. The sensitivity of the three-test battery was high. Of the 553 carcinogens for which there were valid genotoxicity data, 93% of the rodent carcinogens evaluated in at least one assay gave positive results in at least one of the three tests. Combinations of two and three test systems had greater sensitivity than individual tests resulting in sensitivities of around 90% or more, depending on test combination. Only 19 carcinogens (out of 206 tested in all three tests, considering CA and MN as alternatives) gave consistently negative results in a full three-test battery. Most were either carcinogenic via a non-genotoxic mechanism (liver enzyme inducers, peroxisome proliferators, hormonal carcinogens) considered not necessarily relevant for humans, or were extremely weak (presumed) genotoxic carcinogens (e.g. N-nitrosodiphenylamine). Two carcinogens (5-chloro-o-toluidine, 1,1,2,2-tetrachloroethane) may have a genotoxic element to their carcinogenicity and may have been expected to produce positive results somewhere in the battery. We identified 183 chemicals that were non-carcinogenic after testing in both male and female rats and mice. There were genotoxicity data on 177 of these. The specificity of the Ames test was reasonable (73.9%), but all mammalian cell tests had very low specificity (i.e. below 45%), and this declined to extremely low levels in combinations of two and three test systems. When all three tests were performed, 75-95% of non-carcinogens gave positive (i.e. false positive) results in at least one test in the battery. The extremely low specificity highlights the importance of understanding the mechanism by which genotoxicity may be induced (whether it is relevant for the whole animal or human) and using weight of evidence approaches to assess the carcinogenic risk from a positive genotoxicity signal. It also highlights deficiencies in the current prediction from and understanding of such in vitro results for the in vivo situation. It may even signal the need for either a reassessment of the conditions and criteria for positive results (cytotoxicity, solubility, etc.) or the development and use of a completely new set of in vitro tests (e.g. mutation in transgenic cell lines, systems with inherent metabolic activity avoiding the use of S9, measurement of genetic changes in more cancer-relevant genes or hotspots of genes, etc.). It was very difficult to assess the performance of the in vitro MN test, particularly in combination with other assays, because the published database for this assay is relatively small at this time. The specificity values for the in vitro MN assay may improve if data from a larger proportion of the known non-carcinogens becomes available, and a larger published database of results with the MN assay is urgently needed if this test is to be appreciated for regulatory use. However, specificity levels of <50% will still be unacceptable. Despite these issues, by adopting a relative predictivity (RP) measure (ratio of real:false results), it was possible to establish that positive results in all three tests indicate the chemical is greater than three times more likely to be a rodent carcinogen than a non-carcinogen. Likewise, negative results in all three tests indicate the chemical is greater than two times more likely to be a rodent non-carcinogen than a carcinogen. This RP measure is considered a useful tool for industry to assess the likelihood of a chemical possessing carcinogenic potential from batteries of positive or negative results.  相似文献   

3.
One of the consequences of the low specificity of the in vitro mammalian cell genotoxicity assays reported in our previous paper [D. Kirkland, M. Aardema, L. Henderson, L. Muller, Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens. I. Sensitivity, specificity and relative predictivity, Mutat. Res. 584 (2005) 1-256] is industry and regulatory agencies dealing with a large number of false-positive results during the safety assessment of new chemicals and drugs. Addressing positive results from in vitro genotoxicity assays to determine which are "false" requires extensive resources, including the conduct of additional animal studies. In order to reduce animal usage, and to conserve industry and regulatory agency resources, we thought it was important to raise the question as to whether the protocol requirements for a valid in vitro assay or the criteria for a positive result could be changed in order to increase specificity without a significant loss in sensitivity of these tests. We therefore analysed some results of the mouse lymphoma assay (MLA) and the chromosomal aberration (CA) test obtained for rodent carcinogens and non-carcinogens in more detail. For a number of chemicals that are positive only in either of these mammalian cell tests (i.e. negative in the Ames test) there was no correlation between rodent carcinogenicity and level of toxicity (we could not analyse this for the CA test as insufficient data were available in publications), magnitude of response or lowest effective positive concentration. On the basis of very limited in vitro and in vivo data, we could also find no correlation between the above parameters and formation of DNA adducts. Therefore, a change to the current criteria for required level of toxicity in the MLA, to limit positive calls to certain magnitudes of response, or to certain concentration ranges would not improve the specificity of the tests without significantly reducing the sensitivity. We also investigated a possible correlation between tumour profile (trans-species, trans-sex and multi-site versus single-species, single-sex and single-site) and pattern of genotoxicity results. Carcinogens showing the combination of trans-species, trans-sex and multi-site tumour profile were much more prevalent (70% more) in the group of chemicals giving positive results in all three in vitro assays than amongst those giving all negative results. However, single-species, single-sex, single-site carcinogens were not very prevalent even amongst those chemicals giving three negative results in vitro. Surprisingly, when mixed positive and negative results were compared, multi-site carcinogens were highly prevalent amongst chemicals giving only a single positive result in the battery of three in vitro tests. Finally we extended our relative predictivity (RP) calculations to combinations of positive and negative results in the genotoxicity battery. For two out of three tests positive, the RP for carcinogenicity was no higher than 1.0 and for 2/3 tests negative the RP for non-carcinogenicity was either zero (for Ames+MLA+MN) or 1.7 (for Ames+MLA+CA). Thus, all values were less than a meaningful RP of two, and indicate that it is not possible to predict outcome of the rodent carcinogenicity study when only 2/3 genotoxicity results are in agreement.  相似文献   

4.
At a recent ECVAM workshop considering ways to reduce the frequency of irrelevant positive results in mammalian cell genotoxicity tests [D. Kirkland, S. Pfuhler, D. Tweats, M. Aardema, R. Corvi, F. Darroudi, A. Elhajouji, H.-R. Glatt, P. Hastwell, M. Hayashi, P. Kasper, S. Kirchner, A. Lynch, D. Marzin, D. Maurici, J.-R. Meunier, L. Müller, G. Nohynek, J. Parry, E. Parry, V. Thybaud, R. Tice, J. van Benthem, P. Vanparys, P. White, How to reduce false positive results when undertaking in vitro genotoxicity testing and thus avoid unnecessary followup animal tests: Report of an ECVAM Workshop, Mutat. Res. 628 (2007) 31-55], recommendations for improvements/modifications to existing tests, and suggestions for new assays were made. Following on from this, it was important to identify chemicals that could be used in the evaluation of modified or new assays. An expert panel was therefore convened and recommendations made for chemicals to fit three different sets of characteristics, namely: This paper therefore contains these three recommended lists of chemicals and describes how these should be used for any test-evaluation programme.  相似文献   

5.
To determine whether genotoxic and non-genotoxic carcinogens contribute similarly to the cancer burden in humans, an analysis was performed on agents that were evaluated in Supplements 6 and 7 to the IARC Monographs for their carcinogenic effects in humans and animals and for the activity in short-term genotoxicity tests. The prevalence of genotoxic carcinogens on four groups of agents, consisting of established human carcinogens (group 1, n = 30), probable human carcinogens (group 2A, n = 37), possible human carcinogens (group 2B, n = 113) and on agents with limited evidence of carcinogenicity in animals (a subset of group 3, n = 149) was determined. A high prevalence in the order of 80 to 90% of genotoxic carcinogens was found in each of the groups 1, 2A and 2B, which were also shown to be multi-species/multi-tissues carcinogens. The distribution of carcinogenic potency in rodents did not reveal any specific characteristic of the human carcinogens in group 1 that would differentiate them from agents in groups 2A, 2B and 3. The results of this analysis indicate that (a) an agent with unknown carcinogenic potential showing sufficient evidence of activity in in vitro/in vivo genotoxicity assays (involving as endpoints DNA damage and chromosomal/mutational damage) may represent a hazard to humans; and b) an agent showing lack of activity in this spectrum of genotoxicity assays should undergo evaluation for carcinogenicity by rodent bioassay, in view of the present lack of validated short-term tests for non-genotoxic carcinogens. Overall, this analysis implies that genotoxic carcinogens add more to the cancer burden in man than non-genotoxic carcinogens. Thus, identification of such genotoxic carcinogens and subsequent lowering of exposure will remain the main goal for primary cancer prevention in man.  相似文献   

6.
Three structurally related compounds, 4-chloro-o-phenylenediamine (COP), 4-nitro-o-phenylenediamine (NOP) and p-phenylenediamine dihydrochloride (PPD), are used in fur dyes, inks and hair coloring formulations. COP has been reported to be carcinogenic in both rats and mice. NOP and PPD are non-carcinogens, but have consistently tested positive in short-term in vitro genotoxicity assays. Studies were undertaken to evaluate their genotoxicity with the in vivo mouse bone-marrow micronucleus assay. Five CD-1 male mice per dose were injected i.p. with the compounds and sacrificed at intervals of 24, 48 and 72 h. 2000 cells were scored per animal to determine the frequency of micronucleated-polychromatic erythrocytes (MPCE). COP induced significant dose-related increases in MPCE over the 3 doses tested at each of the sampling intervals. The peak response occurred at 24 h. No response was observed in animals treated with PPD or NOP.  相似文献   

7.
The GreenScreen GADD45alpha indicator assay has been assessed for its concordance with in vitro genotoxicity and rodent carcinogenicity bioassay data. To test robustness, sensitivity, and specificity of the assay, 91 compounds with known genotoxicity results were screened in a blinded manner. Fifty seven of the compounds were classified as in vitro genotoxic whereas 34 were non-genotoxic. Out of the 91 compounds, 50 had been tested in 2-year carcinogenicity assays, with 33 identified to be rodent carcinogens and 17 non-carcinogens. Gadd45alpha assay sensitivity and specificity for genotoxicity was 30% and 97%, respectively (17/57 and 33/34), whereas its sensitivity and specificity for rodent carcinogenicity was 30% and 88%, respectively (10/33 and 15/17). Gadd45alpha assay genotoxicity results from this validation study exhibited a high concordance with previously published results as well as for compound test results generated at two different sites (91%, 19/21), indicating that the assay is both robust and reproducible. In conclusion, results from this blinded and independent validation study indicate that the GreenScreen GADD45 indicator assay is reproducible and reliable with low sensitivity and high specificity for identifying genotoxic and carcinogenic compounds.  相似文献   

8.
Recent reports of the association of hair dyes usage with increased bladder cancer risk in women with the slow NAT-2 acetylator phenotype have resulted both in attempts to identify the putative carcinogen as well as in devising batteries of tests that could be used to screen for such putative carcinogens in hair dye formulations, their intermediates and final products. Analytical studies have reported the presence of traces ( approximately 0.5 ppm) of the carcinogen 4-aminobiphenyl in some hair dye preparations. In parallel, SCCNFP (Scientific Committee on Cosmetic and Non-Food Products Intended for Consumers) has suggested the deployment of a battery of six in vitro assays followed by an in vivo assay. The practicality of deploying and interpreting such a battery is analyzed herein as it is expected to result in 64 and 128 possible test results and SCCNFP does not provide detailed guidance of how the test results are to be interpreted. In this study we have applied a previously described Bayesian approach which takes advantage of the known predictive performances of individual assays, to analyze the possible outcomes of the 6-7 test batteries. While the SCCNFP battery is clearly risk-averse, it is shown that performing all of the assays is not always necessary and moreover it does not necessarily improve predictive performance. Finally, based upon the reported mutagenicity of 4-aminobiphenyl, it is doubtful that this "impurity" would be detected by the test battery.  相似文献   

9.
Information in the 1999 Physician's Desk Reference as well as from the peer-reviewed published literature was used to evaluate the genotoxicity of marketed pharmaceuticals. This survey is a compendium of genotoxicity information and a means to gain perspective on the inherent genotoxicity of structurally diverse pharmaceuticals. Data from 467 marketed drugs were collected. Excluded from analysis were anti-cancer drugs and nucleosides, which are expected to be genotoxic, steroids, biologicals and peptide-based drugs. Of the 467 drugs, 115 had no published gene-tox data. This group was comprised largely of acutely administered drugs such as antibiotics, antifungals, antihistamines decongestants and anesthetics. The remaining 352 had at least one standard gene-tox assay result. Of these, 101 compounds (28.7%) had at least one positive assay result in the pre-ICH/OECD standard four-test battery (bacterial mutagenesis, in vitro cytogenetics, mouse lymphoma assay (MLA), in vivo cytogenetics). Per assay type, the percentage of positive compounds was: bacterial mutagenesis test, 27/323 (8.3%); in vitro cytogenetics 55/222 (24.8%); MLA 24/96 (25%); in vivo cytogenetics 29/252 (11.5%). Of the supplemental genetic toxicology test findings reported, the sister chromatid exchange (SCE) assay had the largest percentage of positives 17/39 (43.5%) and mammalian mutagenesis assays (excluding MLA) had the lowest percentage of positives 2/91 (2.2%). The predictive value of genetic toxicology findings for 2-year bioassay outcomes is difficult to assess since carcinogenicity can occur via non-genotoxic mechanisms. Nevertheless, the following survey findings were made: 201 drugs had both gene-tox data and rodent carcinogenicity data. Of these, 124 were negative and 77 were equivocal or positive for carcinogenicity in at least 1 gender/1 species. Of the 124 non-carcinogens, 100 had no positive gene-tox findings. Of the remaining 24, 19 were positive in in vitro cytogenetics assays. Among the 77 compounds that exhibited equivocal or positive effects in carcinogenesis studies, 26 were positive in gene-tox assays and 51 were negative. Of the 51 negatives, 47 had multiple negative gene-tox assay results suggesting that these are probably non-genotoxic carcinogens. Statistical analyses suggested that no combination of gene-tox assays provided a higher predictivity of rodent carcinogenesis than the bacterial mutagenicity test itself.  相似文献   

10.
The genotoxicity of 30 aromatic amines selected from IARC (International Agency for Research on Cancer) groups 1, 2A, 2B and 3 and from the U.S. NTP (National Toxicology Program) carcinogenicity database were evaluated using the alkaline single cell gel electrophoresis (SCG) (Comet) assay in mouse organs. We treated groups of four mice once orally at the maximum tolerated dose (MTD) and sampled stomach, colon, liver, kidney, bladder, lung, brain, and bone marrow 3, 8 and 24 h after treatment. For the 20 aromatic amines that are rodent carcinogens, the assay was positive in at least one organ, suggesting a high predictive ability for the assay. For most of the SCG-positive aromatic amines, the organs exhibiting increased levels of DNA damage were not necessarily the target organs for carcinogenicity. It was rare, in contrast, for the target organs not to show DNA damage. Organ-specific genotoxicity, therefore, is necessary but not sufficient for the prediction of organ-specific carcinogenicity. For the 10 non-carcinogenic aromatic amines (eight were Ames test-positive and two were Ames test-negative), the assay was negative in all organs studied. In the safety evaluation of chemicals, it is important to demonstrate that Ames test-positive agents are not genotoxic in vivo. Chemical carcinogens can be classified as genotoxic (Ames test-positive) and putative non-genotoxic (Ames test-negative) carcinogens. The alkaline SCG assay, which detects DNA lesions, is not suitable for identifying non-genotoxic carcinogens. The present SCG study revealed a high positive response ratio for rodent genotoxic carcinogens and a high negative response ratio for rodent genotoxic non-carcinogens. These results suggest that the alkaline SCG assay can be usefully used to evaluate the in vivo genotoxicity of chemicals in multiple organs, providing for a good assessment of potential carcinogenicity.  相似文献   

11.
An approach is described that enables the germ cell mutagenicity of chemicals to be assessed as part of an integrated assessment of genotoxic potential. It is recommended, first, that the genotoxicity of a chemical be defined by appropriate studies in vitro. This should involve use of the Salmonella mutation assay and an assay for the induction of chromosomal aberrations, but supplementary assays may be indicated in specific instances. If negative results are obtained from these 2 tests there is no need for the conduct of additional tests. Agents considered to be genotoxic in vitro should then be assessed for genotoxicity to rodents. This will usually involve the conduct of a bone marrow cytogenetic assay, and in the case of negative results, a genotoxicity test in an independent tissue. Agents found to be non-genotoxic in vivo are regarded as having no potential for germ cell mutagenicity. Agents found to be genotoxic in vivo may either be assumed to have potential as germ cell mutagens, or their status in this respect may be defined by appropriate germ cell mutagenicity studies. The basis of the approach, which is supported by the available experimental data, is that germ cell mutagens will be evident as somatic cell genotoxins in vivo, and that these will be detected as genotoxins in vitro given appropriate experimentation. The conduct of appropriate and adequate studies is suggested to be of more value than the conduct of a rigid set of prescribed tests.  相似文献   

12.
There has been much discussion in recent years regarding the most appropriate follow-up testing in vivo when positive results are obtained in vitro but the in vivo micronucleus (MN) test (traditionally the most widely-used test) is negative. Not all rodent carcinogens give positive results in the micronucleus test, and so it has been common practice to include a second in vivo assay such as the unscheduled DNA synthesis (UDS) test. This has proved useful but is usually limited to analysis of rodent (usually rat) liver. With the increased evaluation and use of other in vivo assays, e.g. for transgenic mutations (TG) and DNA damage (Comet assay) it was important to investigate their usefulness. We therefore examined the published in vivo UDS, TG and Comet-assay results for 67 carcinogens that were negative or equivocal in the micronucleus test. Between 30 and 41 chemicals were evaluated in each of the three in vivo tests, with some overlap. In general, the UDS test was disappointing and gave positive results with <20% of these carcinogens, some of which induced tumours in rat liver and produced DNA adducts in vivo. The TG assay gave positive responses with >50% of the carcinogens, but the Comet assay detected almost 90% of the micronucleus-negative or equivocal carcinogens. This pattern of results was virtually unchanged when the in vitro profile (gene mutagen or clastogen) was taken into account. High sensitivity (ability to detect carcinogens as positive) is only really useful when the specificity (ability to give negative results with non-carcinogens) is also high. Based on small numbers of publications with non-carcinogens, the TG and Comet assays gave negative results with non-carcinogens on 69 and 78% of occasions, respectively. Although further evaluation of the Comet and TG assays, particularly with non-carcinogens, is needed, these data suggest that they both should play a more prominent role in regulatory testing strategies than the UDS test.  相似文献   

13.
In vitro genotoxicity testing needs to include tests in both bacterial and mammalian cells, and be able to detect gene mutations, chromosomal damage and aneuploidy. This may be achieved by a combination of the Ames test (detects gene mutations) and the in vitro micronucleus test (MNvit), since the latter detects both chromosomal aberrations and aneuploidy. In this paper we therefore present an analysis of an existing database of rodent carcinogens and a new database of in vivo genotoxins in terms of the in vitro genotoxicity tests needed to detect their in vivo activity. Published in vitro data from at least one test system (most were from the Ames test) were available for 557 carcinogens and 405 in vivo genotoxins. Because there are fewer publications on the MNvit than for other mammalian cell tests, and because the concordance between the MNvit and the in vitro chromosomal aberration (CAvit) test is so high for clastogenic activity, positive results in the CAvit test were taken as indicative of a positive result in the MNvit where there were no, or only inadequate data for the latter. Also, because Hprt and Tk loci both detect gene-mutation activity, a positive Hprt test was taken as indicative of a mouse-lymphoma Tk assay (MLA)-positive, where there were no data for the latter. Almost all of the 962 rodent carcinogens and in vivo genotoxins were detected by an in vitro battery comprising Ames+MNvit. An additional 11 carcinogens and six in vivo genotoxins would apparently be detected by the MLA, but many of these had not been tested in the MNvit or CAvit tests. Only four chemicals emerge as potentially being more readily detected in MLA than in Ames+MNvit--benzyl acetate, toluene, morphine and thiabendazole--and none of these are convincing cases to argue for the inclusion of the MLA in addition to Ames+MNvit. Thus, there is no convincing evidence that any genotoxic rodent carcinogens or in vivo genotoxins would remain undetected in an in vitro test battery consisting of Ames+MNvit.  相似文献   

14.
The carcinogenic potential of chemicals is currently evaluated with rodent life-time bioassays, which are time consuming, and expensive with respect to cost, number of animals and amount of compound required. Since the results of these 2-year bioassays are not known until quite late during development of new chemical entities, and since the short-term test battery to test for genotoxicity, a characteristic of genotoxic carcinogens, is hampered by low specificity, the identification of early biomarkers for carcinogenicity would be a big step forward. Using gene expression profiles from the livers of rats treated up to 14 days with genotoxic and non-genotoxic carcinogens we previously identified characteristic gene expression profiles for these two groups of carcinogens. We have now added expression profiles from further hepatocarcinogens and from non-carcinogens the latter serving as control profiles. We used these profiles to extract biomarkers discriminating genotoxic from non-genotoxic carcinogens and to calculate classifiers based on the support vector machine (SVM) algorithm. These classifiers then predicted a set of independent validation compound profiles with up to 88% accuracy, depending on the marker gene set. We would like to present this study as proof of the concept that a classification of carcinogens based on short-term studies may be feasible.  相似文献   

15.
The cost-effectiveness of using short-term genotoxicity tests to screen unknown chemicals for carcinogenicity depends upon the inherent reliability of the tests (sensitivity, or fraction of carcinogens giving positive results, and specificity, or fraction of non-carcinogens giving negative results) and also upon the proportion of carcinogens in the population of chemicals to be screened. Individual tests may be combined into batteries to improve reliability; however, this requires decision rules to declare the overall result positive or negative. A framework for developing such rules based upon minimizing costs of false-positives and false-negatives was presented in a seminal paper by Lave and Omenn (1986, Nature (London), 324, 29-34). We have extended their work, which is based on logit analysis, to consider, using Bayes' theorem, the influence of the proportion of carcinogens upon the decision rules for declaring a battery result positive or negative. If the proportion of carcinogens is high (20% or greater), then the most effective tests are those with high sensitivity, and if the proportion of carcinogens is low, then the most effective tests are those with high specificity.  相似文献   

16.
The battery of genetic toxicity tests required by most regulatory authorities includes both bacterial and mammalian cell assays and identifies practically all genotoxic carcinogens. However, the relatively high specificity of the Salmonella mutagenicity assay (Ames test) is offset by the low specificity of the established mammalian cell assays, which leads to difficulties in the interpretation of the biological relevance of results. This paper describes a new high-throughput assay that links the regulation of the human GADD45a gene to the production of Green Fluorescent Protein (GFP). A study of 75 well-characterised genotoxic and non-genotoxic compounds with diverse mechanisms of DNA-damage induction (including aneugens) reveals that the assay responds positively to all classes of genotoxic damage with both high specificity and high sensitivity. The current micro-well assay format does not include metabolic activation, but a separate low-throughput protocol demonstrates a successful proof-of-principle for an S9 metabolic activation assay with the model pro-mutagen cyclophosphamide. The test should be of value both as a tool in the selection of candidate compounds for further development, where additional data may be required because of conflicting information from the in vitro test battery, or in product development areas where the use of animals is to be discontinued. As a microplate assay however, it has the qualities of high throughput and low compound use that will facilitate its application in early screening for genotoxic liability.  相似文献   

17.
In vivo genotoxicity tests play a pivotal role in genotoxicity testing batteries. They are used both to determine if potential genotoxicity observed in vitro is realised in vivo and to detect any genotoxic carcinogens that are poorly detected in vitro. It is recognised that individual in vivo genotoxicity tests have limited sensitivity but good specificity. Thus, a positive result from the established in vivo assays is taken as strong evidence for genotoxic carcinogenicity of the compound tested. However, there is a growing body of evidence that compound-related disturbances in the physiology of the rodents used in these assays can result in increases in micronucleated cells in the bone marrow that are not related to the intrinsic genotoxicity of the compound under test. For rodent bone marrow or peripheral blood micronucleus tests, these disturbances include changes in core body temperature (hypothermia and hyperthermia) and increases in erythropoiesis following prior toxicity to erythroblasts or by direct stimulation of cell division in these cells. This paper reviews relevant data from the literature and also previously unpublished data obtained from a questionnaire devised by the IWGT working group. Regulatory implications of these findings are discussed and flow diagrams have been provided to aid in interpretation and decision-making when such changes in physiology are suspected.  相似文献   

18.
Direct-acting mutagenic properties of some hair dyes used in New Zealand   总被引:1,自引:0,他引:1  
Mutagenicity or carcinogenicity data are not publicly available on many hair dyes or dye components commonly used within New Zealand. Representative mid- to dark-warm brown hair dyes of 12 brands supplying more than 1% of the New Zealand market were tested for direct-acting mutagenicity using the bacterial 'Ames' test. Despite recent scientific advances in the development of non-mutagenic dyes, 23 of the 40 products tested gave positive results in one or both of the tester strains used. There appeared to be differences between distributors in the proportion of their hair dyes which were mutagenic. In the case of 6 out of 10 of the above dyes which had tested positive, in vitro mutagenicity or toxicity was enhanced in the presence of verapamil, suggesting that risks from hair-dye exposure may change in the case of persons using this or similar drugs. It is recognised that there are uncertainties regarding human risks from dyes which are shown to be mutagenic in in vitro tests. However, from the above results, it seems possible to produce non-mutagenic hair dyes in this color range; and in the interests of public reassurance, it may be prudent to require that such dyes be used.  相似文献   

19.
p-Aminophenol (PAP; as a component of, e.g., hair dyes, photographic developers, as adsorbent in gas filters, as a metabolite of various fungicides, pesticides and drugs) has been tested for genotoxicity in Drosophila by means of the sex-linked recessive lethal test (SLRLT) and the somatic mutation and recombination test (SMART) of the wing. While the SLRLT was not significant, the SMART clearly indicated that the compound has genotoxic properties in this in vivo test in agreement with a majority of mammalian short-term tests in vitro and in vivo. The reducing agent dithiothreitol enhanced the genotoxic effects of PAP in the SMART; the reasons for this interaction remain to be elucidated.  相似文献   

20.
Differences between the results of numerical validation studies comparing in vitro and in vivo genotoxicity tests with the rodent cancer bioassay are leading to the perception that short-term tests predict carcinogenicity only with uncertainty. Consideration of factors such as the pharmacokinetic distribution of chemicals, the systems available for metabolic activation and detoxification, the ability of the active metabolite to move from the site of production to the target DNA, and the potential for expression of the induced lesions, strongly suggests that the disparate sensitivity of the different test systems is a major reason why numerical validation is not more successful. Furthermore, genotoxicity tests should be expected to detect only a subset of carcinogens, namely genotoxic carcinogens, rather than those carcinogens that appear to act by non-genetic mechanisms. Instead of relying primarily on short-term in vitro genotoxicity tests to predict carcinogenic activity, these tests should be used in a manner that emphasizes the accurate determination of mutagenicity or clastogenicity. It must then be determined whether the mutagenic activity is further expressed as carcinogenicity in the appropriate studies using test animals. The prospects for quantitative extrapolation of in vitro or in vivo genotoxicity test results to carcinogenicity requires a much more precise understanding of the critical molecular events in both processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号