首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have shown that osteopontin (OPN), an extracellular matrix protein, plays an important role in post myocardial infarction (MI) remodeling by promoting collagen synthesis and accumulation. Interleukin-1beta (IL-1beta), increased in the heart following MI, increases matrix metalloproteinase (MMP) activity in cardiac fibroblasts in vitro. Here, we show that OPN alone has no effect on MMP activity or expression. However, it reduces IL-1beta-stimulated increases in MMP activity and expression in adult rat cardiac fibroblasts. Pretreatment with bovine serum albumin had no effect on MMP activity or protein content, whereas GRGDS (glycine-arginine-glycine-aspartic acid-serine)-pentapeptide (which interrupts binding of RGD-containing proteins to cell surface integrins) and monoclonal antibody m7E3 (a rat beta3 integrins antagonist) inhibited the effects of OPN. Inhibition of PKC using chelerythrine inhibited the activities of both MMP-2 and MMP-9. Stimulation of cells using IL-1beta increased phosphorylation and translocation of PKC to membrane fractions, which was inhibited by OPN. OPN inhibited IL-1beta-stimulated increases in translocation of PKC-zeta from cytosolic to membrane fractions. Furthermore, the levels of phospho-PKC-zeta were lower in the cytosolic fractions of OPN knock-out mice hearts as compared with wild type 6 days post-MI. Inhibition of PKC-zeta using PKC-zeta pseudosubstrate inhibited IL-1beta-stimulated increases in MMP-2 and MMP-9 activities. These observations suggest that OPN, acting via beta3 integrins, inhibits IL-1beta-stimulated increases in MMP-2 and MMP-9 activity, at least in part, via the involvement of PKC-zeta. Thus, OPN may play a key role in collagen deposition during myocardial remodeling following MI by modulating cytokine-stimulated MMP activity.  相似文献   

2.
Interleukin-1beta (IL-1beta) is a proinflammatory cytokine increased in the heart following myocardial infarction. Vascular endothelial growth factors (VEGFs) are implicated in angiogenesis due to their involvement in the recruitment and proliferation of endothelial cells. Here we studied expression of VEGFs in response to IL-1beta in rat cardiac microvascular endothelial cells (CMECs) and investigated the signaling pathways involved in the regulation of VEGF-D. cDNA array analysis indicated that IL-1beta modulates the expression of numerous angiogenesis-related genes, notably decreasing the expression of VEGF-D. RT-PCR and Western blot analyses confirmed decreased expression of VEGF-D in response to IL-1beta. IL-1beta decreased the expression of VEGF-C to a lesser extent with no effects on VEGF-A or -B. Inhibition of ERK1/2, JNKs, or PKCalpha/beta1 alone partially inhibited IL-1beta-induced VEGF-D downregulation. Concurrent inhibition of ERK1/2 or JNKs and PKCalpha/beta1 resulted in a synergistic inhibition of IL-1beta-induced decreases in VEGF-D. Inhibition of ERK1/2 partially inhibited IL-1beta-stimulated inactivation of GSK-3beta with no effect on beta-catenin levels. Inhibition of GSK-3beta using SB216763 inhibited basal VEGF-D expression. We conclude that IL-1beta downregulates VEGF-D expression in CMECs via the involvement of ERK1/2, JNKs, and PKCalpha/beta(1). This is the first report to indicate inhibition of VEGF-D gene expression in response to IL-1beta in cardiac microvascular endothelial cells, a cell type of central interest in angiogenesis.  相似文献   

3.
Osteopontin (OPN), also called cytokine Eta-1, expressed in the myocardium co-incident with heart failure plays an important role in post myocardial infarction (MI) remodeling by promoting collagen synthesis and accumulation. Angiotensin II (Ang II) and inflammatory cytokines are increased in the heart following MI. We studied the involvement of mitogen-activated protein kinases (ERK1/2, JNKs, p38 kinase) and reactive oxygen species (ROS) in Ang II- and cytokine-induced OPN gene expression in adult rat cardiac fibroblasts. Ang II alone increased OPN mRNA (3.3 +/- 0.3-folds; P < 0.05; n = 7), while interleukin-1beta (IL-1beta), tumor necrosis factor (TNF-alpha), and interferon-gamma (IFN-gamma) had no effect. A combination of Ang II with IL-1beta or TNF-alpha, not IFN-gamma, increased OPN mRNA more than Ang II alone. Nitric oxide donor, S-nitrosoacetylpenicillamine (SNAP), alone or in combination with Ang II had no effect. Diphenylene iodonium (DPI), inhibitor of NAD(P)H oxidase, and tiron, superoxide scavenger, inhibited Ang II- and Ang II+ IL-1beta-stimulated increases in OPN mRNA. Ang II activated ERK1/2 within 5 min of treatment, not JNKs. IL-1beta activated ERK1/2 and JNKs within 15 min of treatment. A combination of Ang II and IL-1beta activated ERK1/2 within 5 min of treatment. None of these stimuli activated p38 kinase. DPI almost completely inhibited Ang II + IL-1beta-stimulated activation of ERK1/2, while partially inhibiting JNKs. PD98059, ERK1/2 pathway inhibitor, and SP600125, JNKs inhibitor, partially inhibited Ang II + IL-1beta-stimulated increases in OPN mRNA. A combination of PD98059 and SP600125 almost completely inhibited Ang II + IL-1beta-stimulated increases in OPN mRNA. Thus, Ang II alone increases OPN expression, while IL-1beta and TNF-alpha act synergistically with Ang II to increase OPN mRNA possibly via NO independent mechanisms. The synergistic increase in OPN mRNA involves ROS-mediated activation of ERK1/2 and JNKs, not P38 kinase, pathways in cardiac fibroblasts.  相似文献   

4.
5.
6.
Vascular smooth muscle (VSM) cell migration is a critical step in the development of a neointima after angioplasty. Matrix metalloproteinases (MMPs) degrade the basement membrane and extracellular matrix, facilitating VSM cell migration. Recently, we demonstrated that nitric oxide (NO) inhibits interleukin-1 beta (IL-1 beta)-stimulated MMP-9 induction in rat aortic VSM cells. In this study, we examined the hypothesis that NO inhibits MMP-9 induction by attenuating superoxide generation and extracellular signal-regulated kinase (ERK) activation. Stimulation of VSM cells with IL-1 beta significantly (P < 0.05) increased superoxide production, ERK activation, and MMP-9 induction. Pretreatment of VSM cells with the NO donor DETA NONOate significantly (P < 0.05) decreased IL-1 beta-stimulated superoxide generation. In addition, pretreatment of VSM cells with a specific ERK pathway inhibitor, PD-98059, or DETA NONOate inhibited IL-1 beta-stimulated ERK activation and MMP-9 induction. Direct exposure of VSM cells to increased superoxide levels by treatment with xanthine/xanthine oxidase increased ERK activation and MMP-9 induction, whereas pretreatment of cells with PD-98059 significantly (P < 0.05) inhibited xanthine/xanthine oxidase-stimulated ERK activation and MMP-9 induction. We conclude that NO inhibits IL-1 beta-stimulated MMP-9 induction by inhibiting superoxide generation and subsequent ERK activation.  相似文献   

7.
Vascular endothelial cells (ECs) continuously experience hemodynamic shear stress generated from blood flow. Previous studies have demonstrated that shear stress modulates monocyte chemotactic protein-1 (MCP-1) expression in ECs. This study explored the roles of protein kinase C (PKC), extracellular signal-regulated protein kinase (ERK1/2), and nitric oxide (NO) in sheared-induced MCP-1 expression in ECs. The activation of PKC-alpha and PKC-epsilon isoforms was observed in ECs exposed to shear stress. The use of an inhibitor (calphostin C) to PKC-alpha and PKC-epsilon decreased ERK1/2 activation and MCP-1 induction by shear, whereas an inhibitor (Go6976) to PKC-alpha did not affect ERK1/2 activation or MCP-1 induction. Inhibition of ERK1/2 activation by PD98059 blocked MCP-1 induction. Transfection of ECs with an antisense to PKC-epsilon abolished the shear inducibility of MCP-1 promoter. These results demonstrate that PKC-epsilon and ERK1/2 participate in shear-induced MCP-1 expression. We also examined the regulatory role of NO in MCP-1 expression. An NO donor (NOC18) suppressed shear-induced activation of PKC-epsilon and ERK1/2, and also repressed MCP-1 induction. Consistently, overexpression of endothelial nitric oxide synthase (eNOS) to enhance the endogenous generation of NO in ECs decreased the activation of PKC-epsilon and ERK1/2, and also inhibited MCP-1 expression. Taken together, these findings suggest that PKC-epsilon and ERK1/2 are critical in the signaling pathway(s) leading to the MCP-1 expression induced by shear stress. Additionally, this study indicates that NO, by repressing PKC-epsilon activity and ERK pathway activation, attenuates shear-induced MCP-1 expression.  相似文献   

8.
Interleukin-1 (IL-1) plays a crucial role in the immunopathological responses involved with tissue destruction in chronic inflammatory diseases, such as periodontal disease, as it stimulates host cells including fibroblasts to produce various inflammatory mediators and catabolic factors. We comprehensively investigated the involvement of mitogen-activated protein kinases (MAPKs)/activator protein-1 (AP-1) and IkappaB kinases (IKKs)/IkappaBs/nuclear factor-kappaB (NF-kappaB) in IL-1beta-stimulated IL-6, IL-8, prostaglandin E(2) (PGE(2)) and matrix metalloproteinase-1 (MMP-1) production by human gingival fibroblasts (HGF). Three MAPKs, extracellular signal-regulated kinase (ERK), p38 MAPK and c-Jun N-terminal kinase (JNK), which were simultaneously activated by IL-1beta, mediated subsequent c-fos and c-jun mRNA expression and DNA binding of AP-1 at different magnitudes. IKKalpha/beta/IkappaB-alpha/NF-kappaB was also involved in the IL-1 signaling cascade. Further, IL-1beta stimulated HGF to produce IL-6, IL-8, PGE(2) and MMP-1 via activation of the 3 MAPKs and NF-kappaB, as inhibitors of each MAPK and NF-kappaB significantly suppressed the production of IL-1beta-stimulated factors, though these pathways might also play distinct roles in IL-1beta activities. Our results strongly suggest that the MAPKs/AP-1 and IKK/IkappaB/NF-kappaB cascades cooperatively mediate the IL-1beta-stimulated synthesis of IL-6, IL-8, PGE(2) and MMP-1 in HGF.  相似文献   

9.
10.
11.
Hypertrophic growth of cardiac muscle is dependent on activation of the PKC-epsilon isoform. To define the effectors of PKC-epsilon involved in growth regulation, recombinant adenoviruses were used to overexpress either wild-type PKC-epsilon (PKC-epsilon/WT) or dominant negative PKC-epsilon (PKC-epsilon/DN) in neonatal rat cardiocytes. PKC-epsilon/DN inhibited acute activation of PKC-epsilon produced in response to phorbol ester and reduced ERK1/2 activity as measured by the phosphorylation of p42 and p44 isoforms. The inhibitory effects were specific to PKC-epsilon because PKC-epsilon/DN did not prevent translocation of either PKC-alpha or PKC-delta. Overexpression of PKC-epsilon/DN blunted the acute increase in ERK1/2 phorphorylation induced by the alpha(1)-adrenergic agonist phenylephrine (PE ). Inhibition of PKC-delta with rottlerin potentiated the effects of PE on ERK1/2 phosphorylation. PKC-epsilon/DN adenovirus also blocked cardiocyte growth as measured after 48 h of PE treatment, although the multiplicity of infection was lower than that required to block acute ERK1/2 activation. PE activated p38 mitogen-activated protein kinase as measured by its phosphorylation, but the response was not blocked by PKC inhibitors or by overexpression of PKC-epsilon/DN. Taken together, these studies show that the hypertrophic agonist PE regulates ERK1/2 activity in cardiocytes by a pathway dependent on PKC-epsilon and that PE-induced growth is mediated by PKC-epsilon.  相似文献   

12.
13.
14.
15.
IL-1beta increased the production of proenzyme of MMP-9 (pro-MMP-9) in a time- and dose-dependent manner in murine macrophage RAW 264.7 cells. However, the production of MMP-2 was not significantly changed by IL-1beta treatment. The intracellular H(2)O(2) content, as determined with H(2)O(2)-sensitive probe 2('),7(')-dichlorodihydrofluorescein, also increased after IL-1beta treatment (5ng/ml). In addition, exogenous H(2)O(2) (50 microM) was found to increase the production of pro-MMP-9. Transient transfection study using a MMP-9 promoter-reporter construct showed that IL-1beta enhanced the MMP-9 promoter activity. Electrophoretic mobility shift assay and site-directed mutagenesis study on the consensus binding site for NF-kappaB revealed that the activation of NF-kappaB is required for the IL-1beta-induced activation of MMP-9 promoter. N-acetylcysteine, an antioxidant, could abrogate the production of pro-MMP-9, H(2)O(2) generation, and activation of NF-kappaB and MMP-9 promoter. These results suggest that IL-1beta upregulates the MMP-9 expression via production of reactive oxygen species and activation of NF-kappaB in RAW 264.7 cells.  相似文献   

16.
Variations in the matrix metalloproteinase (MMP)-9 gene are related to the presence and severity of atherosclerosis. The aim of this study was to determine the signaling pathways of MMP-9 in endothelial cells subjected to low fluid shear stress. We found that low fluid shear stress significantly increased MMP-9 expression, IkappaBalpha degradation, NF-kappaB DNA-binding activity and phosphorylation of MAPK in cultured human umbilical vein endothelial cells (HUVECs). Inhibition of NF-kappaB resulted in remarkable downregulation of stress-induced MMP-9 expression. Pretreatment of HUVECs with inhibitors of p38 mitogen-activating protein kinase (MAPK) and extracellular signal-regulated kinase1/2 (ERK1/2) also led to significant suppression of stress-induced MMP-9 expression and NF-kappaB DNA-binding activity. Similarly, addition of integrins inhibitor to HUVECs suppressed the stress-induced MMP-9 expression, IkappaBalpha degradation, NF-kappaB DNA-binding activity and the phosphorylation of p38 MAPK, ERK1/2. Our findings demonstrated that the shear stress-induced MMP-9 expression involved integrins-p38 MAPK or ERK1/2-NF-kappaB signaling pathways.  相似文献   

17.
18.
19.
Airway smooth muscle cells (ASMC) are a source of inflammatory chemokines that may propagate airway inflammatory responses. We investigated the production of the CXC chemokine growth-related oncogene protein-alpha (GRO-alpha) from ASMC induced by cytokines and the role of MAPK and NF-kappaB pathways. ASMC were cultured from human airways, grown to confluence, and exposed to cytokines IL-1beta and TNF-alpha after growth arrest. GRO-alpha release, measured by ELISA, was increased by >50-fold after IL-1beta (0.1 ng/ml) or 5-fold after TNF-alpha (1 ng/ml) in a dose- and time-dependent manner. GRO-alpha release was not affected by the T helper type 2 cytokines IL-4, IL-10, and IL-13. IL-1beta and TNF-alpha also induced GRO-alpha mRNA expression. Supernatants from IL-1beta-stimulated ASMC were chemotactic for neutrophils; this effect was inhibited by anti-GRO-alpha blocking antibody. AS-602868, an inhibitor of IKK-2, and PD-98059, an inhibitor of ERK, inhibited GRO-alpha release and mRNA expression, whereas SP-600125, an inhibitor of JNK, reduced GRO-alpha release without effect on mRNA expression. SB-203580, an inhibitor of p38 MAPK, had no effect. AS-602868 but not PD-98059 or SP-600125 inhibited p65 DNA-binding induced by IL-1beta and TNF-alpha. By chromatin immunoprecipitation assay, IL-1beta and TNF-alpha enhanced p65 binding to the GRO-alpha promoter, which was inhibited by AS-602868. IL-1beta- and TNF-alpha-stimulated expression of GRO-alpha from ASMC is regulated by independent pathways involving NF-kappaB activation and ERK and JNK pathways. GRO-alpha released from ASMC participates in neutrophil chemotaxis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号