首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method has been established to convert pYAC4-based linear yeast artificial chromosomes (YACs) into circular chromosomes that can also be propagated in Escherichia coli cells as bacterial artificial chromosomes (BACs). The circularization is based on use of a vector that contains a yeast dominant selectable marker (G418R), a BAC cassette and short targeting sequences adjacent to the edges of the insert in the pYAC4 vector. When it is introduced into yeast, the vector recombines with the YAC target sequences to form a circular molecule, retaining the insert but discarding most of the sequences of the YAC telomeric arms. YACs up to 670 kb can be efficiently circularized using this vector. Re-isolation of megabase-size YAC inserts as a set of overlapping circular YAC/BACs, based on the use of an Alu-containing targeting vector, is also described. We have shown that circular DNA molecules up to 250 kb can be efficiently and accurately transferred into E.coli cells by electroporation. Larger circular DNAs cannot be moved into bacterial cells, but can be purified away from linear yeast chromosomes. We propose that the described system for generation of circular YAC derivatives can facilitate sequencing as well as functional analysis of genomic regions.  相似文献   

2.
A method has been established to convert pYAC4-based linear yeast artificial chromosomes (YACs) into circular chromosomes that can also be propagated in Escherichia coli cells as bacterial artificial chromosomes (BACs). The circularization is based on use of a vector that contains a yeast dominant selectable marker (G418R), a BAC cassette and short targeting sequences adjacent to the edges of the insert in the pYAC4 vector. When it is introduced into yeast, the vector recombines with the YAC target sequences to form a circular molecule, retaining the insert but discarding most of the sequences of the YAC telomeric arms. YACs up to 670 kb can be efficiently circularized using this vector. Re-isolation of megabase-size YAC inserts as a set of overlapping circular YAC/BACs, based on the use of an Alu-containing targeting vector, is also described. We have shown that circular DNA molecules up to 250 kb can be efficiently and accurately transferred into E.coli cells by electroporation. Larger circular DNAs cannot be moved into bacterial cells, but can be purified away from linear yeast chromosomes. We propose that the described system for generation of circular YAC derivatives can facilitate sequencing as well as functional analysis of genomic regions.  相似文献   

3.
Here, we describe a protocol for the selective isolation of any genomic fragment or gene of interest up to 250 kb in size from complex genomes as a circular yeast artificial chromosome (YAC). The method is based on transformation-associated recombination (TAR) in the yeast Saccharomyces cerevisiae between genomic DNA and a linearized TAR cloning vector containing targeting sequences homologous to a region of interest. Recombination between the vector and homologous sequences in the co-transformed mammalian DNA results in the establishment of a YAC that is able to propagate, segregate and be selected for in yeast. Yield of gene-positive clones varies from 1% to 5%. The entire procedure takes 2 weeks to complete once the TAR vector is constructed and genomic DNA is prepared. The TAR cloning method has a broad application in functional and comparative genomics, long-range haplotyping and characterization of chromosomal rearrangements, including copy number variations.  相似文献   

4.
细菌人工染色体的研究和应用   总被引:4,自引:0,他引:4  
细菌人工染色体 (Bacterialartificialchromosome ,BAC)是第二代大片段DNA的克隆载体系统。因其嵌合率低 ,遗传稳定性好 ,重组DNA容易分离和制备 ,转化效率高等 ,弥补了YAC的不足 ,很快在基因组研究中处于中心地位。近年来 ,已有多种BAC载体被构建出来 ,这些BAC载体在复杂基因组大片段文库的构建 ,基因的图位克隆 ,基因组物理图谱的构建 ,基因和基因组测序 ,基因组织结构分析 ,染色体组织和进化 ,以及基因的遗传转化和调控研究中得到了广泛的应用。  相似文献   

5.
6.
Sopher BL  La Spada AR 《Gene》2006,371(1):136-143
The availability of genomic sequence information and extensive bacterial artificial chromosome (BAC) libraries for both the mouse and human genomes is ushering in a new era in biological research and disease modeling. To facilitate the study of large mammalian genes in vivo, we have developed: i) a simple lambda bacteriophage-based methodology for recombining overlapping bacterial artificial chromosomes (BACs) into a single larger BAC, and ii) a new methodology for targeting "seamless" mutations into BACs. In the first method, overlapping sequence from one BAC is cloned alongside a selectable marker and placed between unique sequence arms from the terminus of the other BAC to create a targeting construct. Two rounds of recombination-based cloning are then performed. The robustness of this methodology is demonstrated herein by using it to obtain a 254 kb BAC containing the entire human androgen receptor (hAR) gene. In the second method, transient expression of three lambda bacteriophage genes to 'pop-in' a targeting cassette is followed by RecA expression from the targeting vector itself to 'pop-out' the vector backbone. This new "hybrid recombineering" method combines the strengths of the lambda bacteriophage and RecA systems, while avoiding their major weaknesses. Application of this method for introduction of a 162 CAG repeat expansion into the hAR 254kb BAC is shown. With "hybrid recombineering", we believe that the power and utility of the classical 'pop-in/pop-out' approach -- so commonly and efficiently employed in yeast for decades -- can now be achieved with BACs.  相似文献   

7.
The transformation-associated recombination (TAR) procedure allows rapid, site-directed cloning of specific human chromosomal regions as yeast artificial chromosomes (YACs). The procedure requires knowledge of only a single, relatively small genomic sequence that resides adjacent to the chromosomal region of interest. We applied this approach to the cloning of the neocentromere DNA of a marker chromosome that we have previously shown to have originated through the activation of a latent centromere at human chromosome 10q25. Using a unique 1.4-kb DNA fragment as a “hook” in TAR experiments, we achieved single-step isolation of the critical neocentromere DNA region as two stable, 110- and 80-kb circular YACs. For obtaining large quantities of highly purified DNA, these YACs were retrofitted with the yeast–bacteria–mammalian-cells shuttle vector BRV1, electroporated intoEscherichia coliDH10B, and isolated as bacterial artificial chromosomes (BACs). Extensive characterization of these YACs and BACs by PCR and restriction analyses revealed that they are identical to the corresponding regions of the normal chromosome 10 and provided further support for the formation of the neocentromere within the marker chromosome through epigenetic activation.  相似文献   

8.
The reported draft human genome sequence includes many contigs that are separated by gaps of unknown sequence. These gaps may be due to chromosomal regions that are not present in the Escherichia coli libraries used for DNA sequencing because they cannot be cloned efficiently, if at all, in bacteria. Using a yeast artificial chromosome (YAC)/ bacterial artificial chromosome (BAC) library generated in yeast, we found that approximately 6% of human DNA sequences tested transformed E. coli cells less efficiently than yeast cells, and were less stable in E. coli than in yeast. When the ends of several YAC/BAC isolates cloned in yeast were sequenced and compared with the reported draft sequence, major inconsistencies were found with the sequences of those YAC/BAC isolates that transformed E. coli cells inefficiently. Two human genomic fragments were re-isolated from human DNA by transformation-associated recombination (TAR) cloning. Re-sequencing of these regions showed that the errors in the draft are the results of both missassembly and loss of specific DNA sequences during cloning in E. coli. These results show that TAR cloning might be a valuable method that could be widely used during the final stages of the Human Genome Project.  相似文献   

9.
10.
The construction of representative large insert DNA libraries is critical for the analysis of complex genomes. The predominant vector system for such work is the yeast artificial chromosome (YAC) system. Despite the success of YACs, many problems have been described including: chimerism, tedious steps in library construction and low yields of YAC insert DNA. Recently a new E.coli based system has been developed, the bacterial artificial chromosome (BAC) system, which offers many potential advantages over YACs. We tested the BAC system in plants by constructing an ordered 13,440 clone sorghum BAC library. The library has a combined average insert size, from single and double size selections, of 157 kb. Sorghum inserts of up to 315 kb were isolated and shown to be stable when grown for over 100 generations in liquid media. No chimeric clones were detected as determined by fluorescence in situ hybridization of ten BAC clones to metaphase and interphase S.bicolor nuclei. The library was screened with six sorghum probes and three maize probes and all but one sorghum probe hybridized to at least one BAC clone in the library. To facilitate chromosome walking with the BAC system, methods were developed to isolate the proximal ends of restriction fragments inserted into the BAC vector and used to isolate both the left and right ends of six randomly selected BAC clones. These results demonstrate that the S. bicolor BAC library will be useful for several physical mapping and map-based cloning applications not only in sorghum but other related cereal genomes, such as maize. Furthermore, we conclude that the BAC system is suitable for most large genome applications, is more 'user friendly' than the YAC system, and will likely lead to rapid progress in cloning biologically significant genes from plants.  相似文献   

11.
The yeast artificial chromosome (YAC) cloning system allows the cloning of exogenous DNA several hundred kilobases in length. To enhance the usefulness of this technology, yeast artificial chromosome vectors have been designed for efficient clone characterization, manipulation, and mapping. The vectors contain a polylinker with unique EcoRI, BglII, NotI, EagI, SacII, SalI, NruI, NheI, and ClaI cloning sites and T7 bacteriophage promoters positioned to allow the generation of riboprobes from the exogenous DNA ends. Centric and acentric vector arms were constructed as separate plasmids to allow the recovery of both ends of the YAC insert DNA directly in Escherichia coli. In addition, YACs generated using this vector system contain a yeast gene (SUP 11) that allows visual monitoring of YAC stability and copy number.  相似文献   

12.
A neomycin resistance cassette was integrated into the human-derived insert of a 360-kilobase yeast artificial chromosome (YAC) by targeting homologous recombination to Alu repeat sequences. The modified YAC was transferred into an embryonal carcinoma cell line by using polyethylene glycol-mediated spheroplast fusion. A single copy of the human sequence was introduced intact and stably maintained in the absence of selection for over 40 generations. A substantial portion of the yeast genome was retained in hybrids in addition to the YAC. Hybrid cells containing the YAC retained the ability to differentiate when treated with retinoic acid. This approach provides a powerful tool for in vitro analysis because it can be used to modify any human DNA cloned as a YAC and to transfer large fragments of DNA intact into cultured mammalian cells, thereby facilitating functional studies of genes in the context of extensive flanking DNA sequences.  相似文献   

13.
We have developed software that allows the prediction of the genomic location of a bacterial artificial chromosome (BAC) clone, or other large genomic clone, based on a simple restriction digest of the BAC. The mapping is performed by comparing the experimentally derived restriction digest of the BAC DNA with a virtual restriction digest of the whole genome sequence. Our trials indicate that this program identified the genomic regions represented by BAC clones with a degree of accuracy comparable to that of end-sequencing, but at considerably less cost. Although the program has been developed principally for use with Arabidopsis BACs, it should align large insert genomic clones to any fully sequenced genome.  相似文献   

14.
The BRCA1 gene, mutations of which contribute significantly to hereditary breast cancer, was not identified in the existing YAC and BAC libraries. The gene is now available only as a set of overlapping fragments that form a contig. In this work we describe direct isolation of a genomic copy of BRCA1 from human DNA by transformation-associated recombination (TAR) cloning. Despite the presence of multiple repeats, most of the primary BRCA1 YAC isolates did not contain detectable deletions and could be stably propagated in a host strain with conditional RAD52. Similar to other circular YACs, 90 kb BRCA1 YACs were efficiently and accurately retrofitted into bacterial artificial chromosomes (BACs) with the NeoR mammalian selectable marker and transferred as circular BAC/YACs in E. coli cells. The BRCA1 BAC/YAC DNAs were isolated from bacterial cells and were used to transfect mouse cells using the NeoR gene as selectable marker. Western blot analysis of transfectants showed that BRCA1 YACs isolated by a TAR cloning contained a functional gene. The advantage of this expression vector is that the expression of BRCA1 is generated from its own regulatory elements and does not require additional promoter elements that may result in overexpression of the protein. In contrast to the results with cDNA expression vectors, the level of BRCA1 expression from this TAR vector is stable, does not induce cell death, maintains serum regulation, and approximates the level of endogenously expressed BRCA1 in human cells. The entire isolation procedure of BRCA1 described in this paper can be accomplished in approximately 10 days and can be applied to isolation of gene from clinical material. We propose that the opportunity to directly isolate normal and mutant forms of BRCA1 will greatly facilitate analysis of the gene and its contribution to breast cancer.  相似文献   

15.
Q Tao  H B Zhang 《Nucleic acids research》1998,26(21):4901-4909
Bacterial artificial chromosome (BAC) and P1-derived artificial chromosome (PAC) systems were previously developed for cloning of very large eukaryotic DNA fragments in bacteria. We report the feasibility of cloning very large fragments of eukaryotic DNA in bacteria using conventional plasmid-based vectors. One conventional plasmid vector (pGEM11), one conventional binary plasmid vector (pSLJ1711) and one conventional binary cosmid vector (pCLD04541) were investigated using the widely used BAC (pBeloBAC11 and pECBAC1) and BIBAC (BIBAC2) vectors as controls. The plasmid vector pGEM11 yielded clones ranging in insert sizes from 40 to 100 kb, whereas the two binary vectors pCLD04541 and pSLJ1711 yielded clones ranging in insert sizes from 40 to 310 kb. Analysis of the pCLD04541 and pSLJ1711 clones indicated that they had insert sizes and stabilities similar to the BACs and BIBACs. Our findings indicate that conventional plasmid-based vectors are capable of cloning and stably maintaining DNA fragments as large as BACs and PACs in bacteria. These results suggest that many existing plasmid-based vectors, including plant and animal transformation and expression binary vectors, could be directly used for cloning of very large eukaryotic DNA fragments. The pCLD04541 and pSLJ1711 clones were shown to be present at at least 4-5 copies/cell. The high stability of these clones indicates that stability of clones does not seem contingent on single-copy status. The insert sizes and the copy numbers of the pCLD04541 and pSLJ1711 clones indicate that Escherichia coli can stably maintain at least 1200 kb of foreign DNA per cell. These results provide a new conceptual and theoretical basis for development of improved and new vectors for large DNA fragment cloning and transformation. According to this discovery, we have established a system for large DNA fragment cloning in bacteria using the two binary vectors, with which several very large-insert DNA libraries have been developed.  相似文献   

16.
Two genomic tools for the study of Lepidoptera and the holocentric structure of their chromosomes are presented in this paper. A bacterial artificial chromosome (BAC) library was constructed using nuclear DNA partially digested with HindIII from eggs of Spodoptera frugiperda. The library contains a total of 36,864 clones with an average insert size of 125 kb, which corresponds to approximately 11.5 genome equivalents. Hybridization screening of the library was performed with eight single-copy genes, giving an average hit of 10 clones per marker gene. Colinearity between the genome and BACs was demonstrated at the triose phosphate isomerase (tpi) locus. Probing of the library with a PCR fragment internal to the 18S ribosomal gene allowed an estimation of the rDNA locus size close to 115 repeats per haploid genome. A new vector (pBAC3.6eGFP) for transient transfection into S. frugiperda cell lines has been constructed. It is based on the BAC vector, pBAC3.6e, in which a gene encoding GFP was inserted under the control of the densovirus P9 promoter. This vector has the advantage to accommodate large genomic inserts and to be transfected in a large lepidopteran host range. It was used to construct a second BAC library from Sf9 cell nuclear DNA in order to allow a comparison between somatic and cell line genome organization.  相似文献   

17.
The transformation-associated recombination (TAR) cloning technique allows selective and accurate isolation of chromosomal regions and genes from complex genomes. The technique is based on in vivo recombination between genomic DNA and a linearized vector containing homologous sequences, or hooks, to the gene of interest. The recombination occurs during transformation of yeast spheroplasts that results in the generation of a yeast artificial chromosome (YAC) containing the gene of interest. To further enhance and refine the TAR cloning technology, we determined the minimal size of a specific hook required for gene isolation utilizing the Tg.AC mouse transgene as a targeted region. For this purpose a set of vectors containing a B1 repeat hook and a Tg.AC-specific hook of variable sizes (from 20 to 800 bp) was constructed and checked for efficiency of transgene isolation by a radial TAR cloning. When vectors with a specific hook that was ≥60 bp were utilized, ~2% of transformants contained circular YACs with the Tg.AC transgene sequences. Efficiency of cloning dramatically decreased when the TAR vector contained a hook of 40 bp or less. Thus, the minimal length of a unique sequence required for gene isolation by TAR is ~60 bp. No transgene-positive YAC clones were detected when an ARS element was incorporated into a vector, demonstrating that the absence of a yeast origin of replication in a vector is a prerequisite for efficient gene isolation by TAR cloning.  相似文献   

18.
Synthetic biology is a newly developed field of research focused on designing and rebuilding novel biomolecular components, circuits, and networks. Synthetic biology can also help understand biological principles and engineer complex artificial metabolic systems. DNA manipulation on a large genome-wide scale is an inevitable challenge, but a necessary tool for synthetic biology. To improve the methods used for the synthesis of long DNA fragments, here we constructed a novel shuttle vector named p GF(plasmid Genome Fast) for DNA assembly in vivo. The BAC plasmid p CC1 BAC, which can accommodate large DNA molecules, was chosen as the backbone. The sequence of the yeast artificial chromosome(YAC) regulatory element CEN6-ARS4 was synthesized and inserted into the plasmid to enable it to replicate in yeast. The selection sequence HIS3, obtained by polymerase chain reaction(PCR) from the plasmid p BS313, was inserted for screening. This new synthetic shuttle vector can mediate the transformation-associated recombination(TAR) assembly of large DNA fragments in yeast, and the assembled products can be transformed into Escherichia coli for further amplification. We also conducted in vivo DNA assembly using p GF and yeast homologous recombination and constructed a 31-kb long DNA sequence from the cyanophage PP genome. Our findings show that this novel shuttle vector would be a useful tool for efficient genome-scale DNA reconstruction.  相似文献   

19.
The aim of the present study was to investigate differences in the methods for preparing a large DNA fragment to be used for making transgenic rats from the standpoint of transgenic production efficiency and integrity of the introduced gene. In yeast artificial chromosome (YAC) transgenesis, three methods for preparing DNA for microinjection were compared: amplification of YAC in yeast (AMP), amplification of YAC in yeast and removal of the amplification element (AMP/RE), and no amplification of the YAC in yeast (AMP-). Production efficiency per microinjected ovum with DNA by the AMP method was four times higher than that by the AMP/RE and AMP-. Based on these results, we favor the AMP method in spite of the thymidine kinase gene-induced male sterility. In bacterial artificial chromosome (BAC) transgenesis, linear DNA fragments for microinjection prepared by three kinds of purification procedures were compared: Not I digestion and CsCl gradient ultra-centrifugation (Prep. 1), CsCl gradient ultra-centrifugation, Not I digestion, gel electrophoresis, and beta-agarase digestion (Prep. 2), and CsCl gradient ultra-centrifugation, Not I digestion, pulse field gel electrophoresis, and beta-agarase digestion (Prep. 3). Although the efficiency of producing transgenic rats was similar with all these three DNA preparations, integration of the intact DNA fragment only occurred with the Prep. 3 procedure. We therefore favor the Prep. 3 method for preparing BAC DNA fragments. These results indicate that the method used to prepare a large DNA fragment such as YAC and BAC DNAs is important in order to produce transgenic rats with an intact transgene.  相似文献   

20.
Physical mapping of the rice genome with BACs   总被引:10,自引:0,他引:10  
Zhang  Hong-Bin  Wing  Rod A. 《Plant molecular biology》1997,35(1-2):115-127
The development of genetics in this century has been catapulted forward by several milestones: rediscovery of Mendel's laws, determination of DNA as the genetic material, discovery of the double-helix structure of DNA and its implications for genetic behavior, and most recently, analysis of restriction fragment length polymorphisms (RFLPs). Each of these milestones has generated a huge wave of progress in genetics. Consequently, our understanding of organismal genetics now extends from phenotypes to their molecular genetic basis. It is now clear that the next wave of progress in genetics will hinge on genome molecular physical mapping, since a genome physical map will provide an invaluable, readily accessible system for many detailed genetic studies and isolation of many genes of economic or biological importance. Recent development of large-DNA fragment (>100 kb) manipulation and cloning technologies, such as pulsed-field gel electrophoresis (PFGE), and yeast artificial chromosome (YAC) and bacterial artificial chromosome (BAC) cloning, has provided the powerful tools needed to generate molecular physical maps for higher-organism genomes. This chapter will discuss (1) an ideal physical map of plant genome and its applications in plant genetic and biological studies, (2) reviews on physical mapping of the genomes of Caenorhabditis elegans, Arabidopsis thaliana, and man, (3) large-insert DNA libraries: cosmid, YAC and BAC, and genome physical mapping, (4) physical mapping of the rice genome with BACs, and (5) perspectives on the physical mapping of the rice genome with BACs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号