首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
1. A study was made of the effect of hypolipidemic drug clofibrate on the level of lipid peroxidation in homogenates and subcellular fractions of rat liver. The intensity of lipid peroxidation was measured using chemiluminescence technique and malondialdehyde formation. 2. It was shown that under the action of clofibrate the levels of Fe/ADP-ascorbate-, as well as t-butyl hydroperoxide (Bu'OOH)-induced lipid peroxidation were decreased in the whole and "post-nuclear" liver homogenates. Dilution of the homogenates prevented depressing effect of clofibrate on lipid peroxidation. 3. Clofibrate significantly decreased the level of the Bu'OOH-dependent lipid peroxidation, but did not affect the activity of the Fe/ADP-ascorbate-induced reaction in rat liver mitochondria and microsomes. 4. Peroxidative alteration of membrane lipids in vivo was evaluated by determining the extent of conjugated dienes formation (absorption at 233 nm). It was shown that clofibrate did not increase the level of ultraviolet absorption of lipids from rat liver subcellular fractions. 5. The data obtained indicate that cytosol from the clofibrate treated rat liver contains a factor(s) which prevents lipid peroxidation in the mitochondria and microsomes.  相似文献   

2.
1. The effect of chronic ethanol treatment on the level of lipid peroxidation in rat liver homogenate and subcellular fractions was measured using chemiluminescence technique and malondialdehyde formation. 2. It was shown that after chronic ethanol treatment the level of Fe/ADP-ascorbate-induced lipid peroxidation was decreased in the whole and "postnuclear" liver homogenates. Dilution of the homogenates prevented depressive effect of ethanol on lipid peroxidation. 3. Chronic ethanol treatment did not affect the intensity of the Fe/ADP-ascorbate-induced process in rat liver mitochondria and microsomes. 4. Peroxidative alteration of the liver lipids in vivo was evaluated by measurement of conjugated dienes (absorbance at 233 nm). It was shown that ethanol did not increase the level of u.v. absorption of lipids from mitochondria and microsomes. Chronic alcohol treatment did not influence the steady-state concentration of malonic dialdehyde in the whole liver homogenate. 5. The data obtained indicate that cytosol from the ethanol treated rat liver contains a factor(s) which prevents Fe/ADP-ascorbate-dependent lipid peroxidation in biological membranes.  相似文献   

3.
The effect of normal rat liver cytosol on the level of Fe/ADP-ascorbate-induced lipid peroxidation in the total particulate fraction (mitochondria plus microsomes) has been studied. The intensity of lipid peroxidation was measured using the chemiluminescence technique and by malonic dialdehyde (MDA) production. Dialyzed cytosol significantly decreased the level of chemiluminescence and, to a much lesser extent, the rate of MDA production. Gel filtration on a Sephadex G-200 column led to the appearance of at least three cytosolic fractions which suppressed the low-level chemiluminescence. These fractions differed from one another by their molecular masses, kinetics of chemiluminescence inhibition and effects on the intensity of MDA production. The putative functional role of antioxidative defence factors from rat liver cytosol is discussed.  相似文献   

4.
1. The effect of normal rat liver cytosol on the level of Fe/ADP-ascorbate-induced lipid peroxidation in the total particulate fraction (mitochondria plus microsomes) has been studied. The intensity of lipid peroxidation was measured using chemiluminescence technique and malondialdehyde (MDA) formation. 2. Dialysed cytosol significantly decreased the level of chemiluminescence, and to a much lesser extent, the rate of MDA production. 3. Gel filtration on a Sephadex G-200 column led to appearance of at least three cytosolic fractions which suppressed the low-level chemiluminescence. 4. The discovered components differed from each other by their molecular masses, kinetics of chemiluminescence inhibition and effects on intensity of MDA formation. 5. The putative functional role of antioxidative defence factors from rat liver cytosol is discussed.  相似文献   

5.
Studies were carried out to determine the level of ascorbate-Fe2+ dependent lipid peroxidation of mitochondria and microsomes isolated from liver and heart of rat and pigeon. Measurements of chemiluminescence indicate that the lipid peroxidation process was more effective in mitochondria and microsomes from rat liver than in the same organelles obtained from pigeon. In both mitochondria and microsomes from liver of both species a significant decrease of arachidonic acid was observed during peroxidation. The rate C18:2 n6/C20:4 n6 was 4.5 times higher in pigeon than in rat liver. This observation can explain the differences noted when light emission and unsaturation index of both species were analysed. A significant decrease of C18:2 n6 and C20:4 n6 in pigeon liver mitochondria was observed when compared with native organelles whereas in pigeon liver microsomes only C20:4 n6 diminished. In rat liver mitochondria only arachidonic acid C20:4 n6 showed a significant decrease whereas in rat liver microsomes C20:4 n6 and C22:6 n3 decreased significantly. However changes were not observed in the fatty acid profile of mitochondria and microsomes isolated from pigeon heart. In the heart under our peroxidation conditions the fatty acid profile does not appear to be responsible for the different susceptibility to the lipid peroxidation process. The lack of a relationship between fatty acid unsaturation and sensitivity to peroxidation observed in heart suggest that other factor/s may be involved in the protection to lipid peroxidation in microsomes and mitochondria isolated from heart.  相似文献   

6.
The effect of intraperitoneal administration of alpha-tocopherol (100 mg/kg wt/24 h) on ascorbate (0.4 mM) induced lipid peroxidation of mitochondria and microsomes isolated from rat liver and testis was studied. Special attention was paid to the changes produced on the highly polyunsaturated fatty acids C20:4 n6 and C22:6 n3 in liver and C20:4 n6 and C22:5 n6 in testis. The lipid peroxidation of liver mitochondria or microsomes produced a significant decrease of C20:4 n6 and C22:6 n3 in the control group, whereas changes in the fatty acid composition of the alpha-tocopherol treated group were not observed. The light emission was significantly higher in the control than in the alpha-tocopherol treated group. The lipid peroxidation of testis microsomes isolated from the alpha-tocopherol group produced a significant decrease of C20:4 n6 , C22:5 n6 and C22:6 n3, these changes were not observed in testis mitochondria. The light emission of both groups was similar. The treatment with alpha-tocopherol at the dose and times indicated showed a protector effect on the polyunsaturated fatty acids of liver mitochondria, microsomes and testis mitochondria, whereas those fatty acids situated in testis microsomes were not protected during non enzymatic ascorbate-Fe2+ lipid peroxidation. The protector effect observed by alpha-tocopherol treatment in the fatty acid composition of rat testis mitochondria but not in microsomes could be explained if we consider that the sum of C20:4 n6 + C22:5 n6 in testis microsomes is 2-fold than that present in mitochondria.  相似文献   

7.
Fosfomycin is clinically recognized to reduce the aminoglycoside antibiotics-induced nephrotoxicity. However, little has been clarified why fosfomycin protects the kidney from the aminoglycosides-induced nephrotoxicity. Gentamicin, a typical aminoglycoside, is reported to cause lipid peroxidation. We focused on lipid peroxidation induced by gentamicin as a mechanism for the aminoglycosides-induced nephrotoxicity. The aim of this study is to investigate the effect of fosfomycin on the gentamicin-induced lipid peroxidation. In rat renal cortex mitochondria, fosfomycin was shown to depress the gentamicin-induced lipid peroxidation, which was evaluated by formation of thiobarbituric acid reactive substances (TBARS). Interestingly, this effect was observed in rat renal cortex mitochondria, but not in rat liver microsomes. However, fosfomycin did not affect lipid peroxidation of arachidonic acid caused by gentamicin with iron. Fosfomycin inhibited the gentamicin-induced iron release from rat renal cortex mitochondria. These results indicated that fosfomycin inhibited the gentamicin-induced lipid peroxidation by depressing the iron release from mitochondria. This may possibly be one mechanism for the protection of fosfomycin against the gentamicin-induced nephrotoxicity.  相似文献   

8.
The effect of nine dibenzo[a,c]cyclooctene lignans isolated from Fructus schizandrae on in vitro and in vivo lipid peroxidation of liver microsomes as well as on anti-oxidative enzyme activities were studied. Seven of the nine lignans (1 mM) were shown to inhibit Vit C/NADPH induced lipid peroxidation (malondialdehyde (MDA) formation) of rat liver microsomes. Of these compounds, schisanhenol (Sal), S(-)schizandrin C (S(-)sin C) and S(-)schizandrin B (S(-)sin B) were shown to be more potent than Vit E at the same concentration. Sal and Sin B were able to inhibit gossypol-induced superoxide anion generation in rat liver microsomes. In addition, oral administration of Sal and Sin B markedly reduced liver MDA formation induced by ethanol, 15 ml/kg in mice, and increased superoxide dismutase and catalase activities in rat liver cytosol. The data of this paper are in favor of the conclusion that some lignans, like Sal, have strong anti-oxidant activity. The mechanisms of anti-oxidant activity of the lignans were discussed.  相似文献   

9.
Dimerumic acid (DMA) is contained in Monascus anka and Monascus pilosus fermented products. The purpose of this study was to evaluate the effect of DMA against salicylic acid (SA)- and tert-butylhydroperoxide (t-BHP)-induced oxidative stress and cytotoxicity in the liver, using rat liver microsomes and isolated rat hepatocytes. DMA was extracted from monascus-garlic-fermented extract using M. pilosus. In rat liver microsomes, 1 microM DMA decreased SA-induced lipid peroxidation but did not affect the production of the oxidative metabolite of SA via CYP. In isolated rat hepatocytes, 1 microM DMA decreased SA-induced lipid peroxidation and chemiluminescence (CL) generation and the intracellular glutathione-reduced form/oxidized form (GSH/GSSG) ratio in the presence of 1 microM DMA was higher than that without DMA; however, 100 microM DMA suppressed the leakage of lactate dehydrogenase (LDH). On the other hand, t-BHP-induced lipid peroxidation, CL generation, and LDH leakage were prevented by 100 microM DMA. Thus, DMA showed an antioxidative effect in hepatocytes and protected against hepatotoxicity by suppressing oxidative stress without affecting CYP enzymes.  相似文献   

10.
1. The effect of chronic alcohol consumption, catalase inhibitor 3-amino-1,2,4-triazole (amino-triazole) and peroxisome proliferator clofibrate on the level of Fe/ADP-ascorbate-induced lipid peroxidation has been studied in the rat myocardium. The intensity of lipid peroxidation was measured using chemiluminescence technique and malondialdehyde formation. 2. Combined us well as separate treatment with ethanol (36% of dietary calories) and aminotriazole caused elevation of the rate of lipid peroxidation in the nuclear-free homogenate or total particulate fraction of the rat heart. The most pronounced effect was noted during combined application of ethanol and aminotriazole. 3. Prolonged clofibrate treatment significantly increased the level of nonenzymatic lipid peroxidation in the rat myocardium. 4. Peroxidative alteration of the myocardial lipids in vivo was evaluated by measurement of conjugated dienes (absorbance at 233 nm). Separate ethanol, aminotriazole or clofibrate treatment did not affect the level of u.v. absorption of lipids from the total particulate fraction. However, when ethanol and aminotriazole were administered simultaneously an increase of conjugated diene formation was observed. 5. The data obtained confirm the hypothesis that ethanol or clofibrate-induced activation of the myocardial lipid peroxidation may be due to the increase of hydrogen peroxide-generating capacity of the heart microperoxisomes.  相似文献   

11.
The ability of coenzyme Q to inhibit lipid peroxidation in intact animals as well as in mitochondrial, submitochondrial, and microsomal systems has been tested. Rats fed coenzyme Q prior to being treated with carbon tetrachloride or while being treated with ethanol excrete less thiobarbituric acid-reacting material in the urine than such rats not fed coenzyme Q. Liver homogenates, mitochondria, and microsomes isolated from rats treated with carbon tetrachloride and ethanol catalyze lipid peroxidation at rates which exceed those from animals also fed coenzyme Q. The rate of lipid peroxidation catalyzed by submitochondrial particles isolated from hearts of young, old, and endurance trained elderly rats was inversely proportional to the coenzyme Q content of the submitochondrial preparation in assays in which succinate was employed to reduce the endogenous coenzyme Q. Reduced, but not oxidized, coenzyme Q inhibited lipid peroxidation catalyzed by rat liver microsomal preparations. These results provide additional evidence in support of an antioxidant role for coenzyme Q.  相似文献   

12.
The testis is a remarkably active metabolic organ; hence it is suitable not only for studies of lipid metabolism in the organ itself but also for the study of lipid peroxidation processes in general. The content of fatty acids in testis is high with a prevalence of polyunsaturated fatty acids (PUFA) which renders this tissue very susceptible to lipid peroxidation. Studies were carried out to evaluate the effect of alpha-tocopherol in vitro on ascorbate-Fe(++) lipid peroxidation of rat testis microsomes and mitochondria. Chemiluminescence and fatty acid composition were used as an index of the oxidative destruction of lipids. Special attention was paid to the changes produced on the highly PUFA [C20:4 n6] and [C22:5 n6]. Lipid peroxidation of testis microsomes or mitochondria induced a significant decrease of both fatty acids. Total chemiluminescence was similar in both kinds of organelles when the peroxidized without (control) and with ascorbate-Fe(++) (peroxidized) groups were compared. Arachidonic acid was protected more efficiently than docosapentaenoic acid at all alpha-tocopherol concentrations tested when rat testis microsomes or mitochondria were incubated with ascorbate-Fe(++). The maximal percentage of inhibition in both organelles was approximately 70%; corresponding to an alpha-tocopherol concentration between 1 and 0.25 mM. IC50 values from the inhibition of alpha-tocopherol on the chemiluminescence were higher in microsomes (0.144 mM) than mitochondria (0.078 mM). The protective effect observed by alpha-tocopherol in rat testis mitochondria was higher compared with microsomes, associated with the higher amount of [C20:4 n6]+[C22:5 n6] in microsomes that in mitochondria. It is proposed that the vulnerability to lipid peroxidation of rat testis microsomes and mitochondria is different because of the different proportion of PUFA in these organelles The peroxidizability index (PI) was positively correlated with the level of long chain fatty acids. The results demonstrated the protective effect of alpha-tocopherol on lipid peroxidation in microsomes and mitochondria from rat testis.  相似文献   

13.
The antioxidative effect of selenium cannot be exclusively due to the functioning of the selenium-dependent glutathione peroxidase mechanism of utilization of various hydroperoxides. This hypothesis is based on the following experimental evidence. Selenium ions are readily incorporated into animal organs and tissues immediately after injection (2 hours) as well as into cell organelles and cytosol where they inhibit lipid peroxidation. The activity of glutathione peroxidase (EC 1.1.1.19) in rat liver and guinea pig cytosol is thereby unchanged but increases drastically after 12 hours reaching a maximum an the 3rd-4th day. The effectiveness of lipid peroxidation inhibition does not increase under these conditions. Although the glutathione peroxidase activity is absent in the nuclei and microsomes, exogenous selenium inhibits lipid peroxidation in these organelles. The activity of the rat liver cytosolic enzyme markedly exceeds that of its guinea pig counterpart. However, lipid peroxidation in guinea pig liver occurs less intensively than that in rat liver cytosol.  相似文献   

14.
The effect of 5% ethanol on DNA polymerase activity in nuclei, mitochondria, microsomes and cytosol of intact and regenerating liver of adult and old rats has been studied. No changes in DNA polymerase activity were detected in subcellular fractions of adult rat liver. On the contrary, the increased activity of intact liver nuclei and decreased activity of regenerating liver microsomes was observed with ageing. These age-dependent peculiarities of DNA polymerase activity in response to 5% ethanol may be related to changes in the enzyme molecules or microenvironment associated with ageing.  相似文献   

15.
Rat and rabbit liver microsomes catalyze an NADPH-cytochrome P-450 reductase-dependent peroxidation of endogenous lipid in the presence of the chelate, ADP-Fe3+. Although liver microsomes from both species contain comparable levels of NADPH-cytochrome P-450 reductase and cytochrome P-450, the rate of lipid peroxidation (assayed by malondialdehyde and lipid hydroperoxide formation) catalyzed by rabbit liver microsomes is only about 40% of that catalyzed by rat liver microsomes. Microsomal lipid peroxidation was reconstituted with liposomes made from extracted microsomal lipid and purified protease-solubilized NADPH-cytochrome P-450 reductase from both rat and rabbit liver microsomes. The results demonstrated that the lower rates of lipid peroxidation catalyzed by rabbit liver microsomes could not be attributed to the specific activity of the reductase. Microsomal lipid from rabbit liver was found to be much less susceptible to lipid peroxidation. This was due to the lower polyunsaturated fatty acid content rather than the presence of antioxidants in rabbit liver microsomal lipid. Gas-liquid chromatographic analysis of fatty acids lost during microsomal lipid peroxidation revealed that the degree of fatty acid unsaturation correlated well with rates of lipid peroxidation.  相似文献   

16.
It has been shown in experiments in vitro that preincubation of rat liver microsomes with an ethanol solution of all-trans-retinoic acid in the final concentration 7.0 X 10(-5) M results in a decrease of both NADPN-dependent and spontaneous lipid peroxidation (to 53 and 70% of control, respectively) but did not influence ascorbate-dependent lipid peroxidation. Retinol at the same concentration induces more pronounced inhibition of all types of microsomal lipid peroxidation. The rate of NADPN-dependent lipid peroxidation decreases linearly as the retinoic acid concentration in the incubation medium is raised, whereas the rate of ascorbate-dependent lipid peroxidation drastically lessens only after the retinoic acid concentration in the medium is increased to 1.4 X 10(-4) M. The data obtained provide evidence in favour of the concepts of a possible role of vitamin A in LPO regulation in the body and point to the necessity of taking into consideration the antioxidant properties of retinol and retinoic acid while analysing their pharmacological action.  相似文献   

17.
Pregnant female Wistar rats that received a control (100 ppm Zn) or a Zn-deficient diet (1.5 ppm Zn) from d 0 to 21, or nonpregnant normally fed female rats without or with five daily oral doses of 300 mg/kg salicylic acid were used for the experiments. In isolated mitochondria or microsomes from various maternal and fetal tissues, lipid peroxidation was determined as malondialdehyde formation measured by means of the thiobarbiturate method. Zn deficiency increased lipid peroxidation in mitochondria and microsomes from maternal and fetal liver, maternal kidney, maternal lung microsomes, and fetal lung mitochondria. Lipid peroxidation in fetal microsomes was very low. Zn deficiency produced a further reduction of lipid peroxidation in fetal liver microsomes. Salicylate increased lipid peroxidation in liver mitochondria and microsomes after addition in vitro and after application in vivo. The increase of lipid peroxidation by salicylate may be caused by two mechanisms: an increased cellular Fe uptake that, in turn, can increase lipid peroxidation and chelating Fe, in analogy to the effect of ADP in lipid peroxidation. The latter effect of salicylate is particularly expressed at increased Fe content.  相似文献   

18.
Simultaneous addition of ascorbic acid and organic hydroperoxides to rat liver microsomes resulted in enhanced lipid peroxidation (approximately threefold) relative to incubation of organic hydroperoxides with microsomes alone. No lipid peroxidation was evident in incubations of ascorbate alone with microsomes. The stimulatory effect of ascorbate on linoleic acid hydroperoxide (LAHP)-dependent peroxidation was evident at all times whereas stimulation of cumene hydroperoxide (CHP)-dependent peroxidation occurred after a lag phase of up to 20 min. EDTA did not inhibit CHP-dependent lipid peroxidation but completely abolished ascorbate enhancement of lipid peroxidation. Likewise, EDTA did not significantly inhibit peroxidation by LAHP but dramatically reduced ascorbate enhancement of lipid peroxidation. The results reveal a synergistic prooxidant effect of ascorbic acid on hydroperoxide-dependent lipid peroxidation. The inhibitory effect of EDTA on enhanced peroxidation suggests a possible role for endogenous metals mobilized by hydroperoxide-dependent oxidations of microsomal components.  相似文献   

19.
Studies were carried out to determine the effects of lung and liver cytosol on pulmonary and hepatic mierosomal lipid peroxidation, to determine the cytosolic concentrations of various substances which affect lipid peroxidation, and to determine which of these substances is responsible for the effects of the cytosol on lipid peroxidation. Lung cytosol inhibits both enzymatic (NADPH-induced) and nonenzymatic (Fe2+-induced) lung microsomal lipid peroxidation. In contrast, liver cytosol stimulates lipid peroxidation in hepatic microsomes during incubation alone, enhances Fe2+-stimulated lipid peroxidation, and has no effect on the NADPH-induced response. Substances which are known to be involved in inhibition of lipid peroxidation, including glutathione, glutathione reductase, glutathione peroxidase, and superoxide dismutase, are found in greater concentrations in liver cytosol than in lung cytosol. However, ascorbate is found in approximately equal concentrations in pulmonary and hepatic cytosol. Most of the effects of the cytosol on lipid peroxidation seem to be due to ascorbate and glutathione. For example, ascorbate, in concentrations found in lung cytosol, inhibits lung microsomal lipid peroxidation to about the same extent as the cytosol. The effects of liver cytosol on hepatic microsomal lipid peroxidation can be duplicated by concentrations of ascorbate and glutathione normally found in the cytosol; i.e., ascorbate stimulates and glutathione inhibits lipid peroxidation with the net effect being similar to that of liver cytosol. The results indicate that ascorbate has opposite effects on pulmonary and hepatic microsomal lipid peroxidation and suggest that ascorbate plays a major role in protecting pulmonary tissue against the harmful effects of lipid peroxidation.  相似文献   

20.
The effect of intraperitoneal administration of tocopherol (100 mg/kg wt/24 h) on ascorbate (0.4 mM) induced lipid peroxidation of mitochondria and microsomes isolated from rat liver and testis was studied. Special attention was paid to the changes produced on the highly polyunsaturated fatty acids C20:4 n6 and C22:6 n3 in liver and C20:4 n6 and C22:5 n6 in testis. The lipid peroxidation of liver mitochondria or microsomes produced a significant decrease of C20:4 n6 and C22:6 n3 in the control group, whereas changes in the fatty acid composition of the tocopherol treated group were not observed. The light emission was significantly higher in the control than in the tocopherol treated group. The lipid peroxidation of testis microsomes isolated from the tocopherol group produced a significant decrease of C20:4 n6 , C22:5 n6 and C22:6 n3, these changes were not observed in testis mitochondria. The light emission of both groups was similar. The treatment with tocopherol at the dose and times indicated showed a protector effect on the polyunsaturated fatty acids of liver mitochondria, microsomes and testis mitochondria, whereas those fatty acids situated in testis microsomes were not protected during non enzymatic ascorbateFe2+ lipid peroxidation. The protector effect observed by tocopherol treatment in the fatty acid composition of rat testis mitochondria but not in microsomes could be explained if we consider that the sum of C20:4 n6 + C22:5 n6 in testis microsomes is 2-fold than that present in mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号