首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shen N  Guo L  Yang B  Jin Y  Ding J 《Nucleic acids research》2006,34(11):3246-3258
Aminoacyl-tRNA synthetases (aaRSs) are a family of enzymes responsible for the covalent link of amino acids to their cognate tRNAs. The selectivity and species-specificity in the recognitions of both amino acid and tRNA by aaRSs play a vital role in maintaining the fidelity of protein synthesis. We report here the first crystal structure of human tryptophanyl-tRNA synthetase (hTrpRS) in complex with tRNATrp and Trp which, together with biochemical data, reveals the molecular basis of a novel tRNA binding and recognition mechanism. hTrpRS recognizes the tRNA acceptor arm from the major groove; however, the 3′ end CCA of the tRNA makes a sharp turn to bind at the active site with a deformed conformation. The discriminator base A73 is specifically recognized by an α-helix of the unique N-terminal domain and the anticodon loop by an α-helix insertion of the C-terminal domain. The N-terminal domain appears to be involved in Trp activation, but not essential for tRNA binding and acylation. Structural and sequence comparisons suggest that this novel tRNA binding and recognition mechanism is very likely shared by other archaeal and eukaryotic TrpRSs, but not by bacterial TrpRSs. Our findings provide insights into the molecular basis of tRNA specificity and species-specificity.  相似文献   

2.
Human procathepsin L has been expressed in the yeast Pichia pastoris and its inactive (Cys25Ser) and unglycosylated (Thr110Ala) mutant purified, concentrated to 4 mg/ml, and crystallized by vapor diffusion against solution containing 1.4 M (Na, K)PO4 buffer, pH 7.8. Crystal size was Increased by multiple macroseeding. The crystals are orthorhombic, of space group P212121, with cell dimensions of a = 40.2 Å, b = 88.4 Å, and c = 94.9 Å. A 2.2 Å native data set was collected using synchrotron radiation. Although molecular replacement solution for the mature portion of the enzyme was easily found, the resulting maps could not be interpreted in the proregion. Heavy-atom derivative search is in progress. © 1996 Wiley-Liss, Inc.  相似文献   

3.
S Nanduri  B W Carpick  Y Yang  B R Williams    J Qin 《The EMBO journal》1998,17(18):5458-5465
Protein kinase PKR is an interferon-induced enzyme that plays a key role in the control of viral infections and cellular homeostasis. Compared with other known kinases, PKR is activated by a distinct mechanism that involves double-stranded RNA (dsRNA) binding in its N-terminal region in an RNA sequence-independent fashion. We report here the solution structure of the 20 kDa dsRNA-binding domain (dsRBD) of human PKR, which provides the first three-dimensional insight into the mechanism of its dsRNA-mediated activation. The structure of dsRBD exhibits a dumb-bell shape comprising two tandem linked dsRNA-binding motifs (dsRBMs) both with an alpha-beta-beta-beta-alpha fold. The structure, combined with previous mutational and biochemical data, reveals a highly conserved RNA-binding site on each dsRBM and suggests a novel mode of protein-RNA recognition. The central linker is highly flexible, which may enable the two dsRBMs to wrap around the RNA duplex for cooperative and high-affinity binding, leading to the overall change of PKR conformation and its activation.  相似文献   

4.
Factor H (FH) is the key regulator of the alternative pathway of complement. The carboxyl-terminal domains 19-20 of FH interact with the major opsonin C3b, glycosaminoglycans, and endothelial cells. Mutations within this area are associated with atypical haemolytic uremic syndrome (aHUS), a disease characterized by damage to endothelial cells, erythrocytes, and kidney glomeruli. The structure of recombinant FH19-20, solved at 1.8 A by X-ray crystallography, reveals that the short consensus repeat domain 20 contains, unusually, a short alpha-helix, and a patch of basic residues at its base. Most aHUS-associated mutations either destabilize the structure or cluster in a unique region on the surface of FH20. This region is close to, but distinct from, the primary heparin-binding patch of basic residues. By mutating five residues in this region, we show that it is involved, not in heparin, but in C3b binding. Therefore, the majority of the aHUS-associated mutations on the surface of FH19-20 interfere with the interaction between FH and C3b. This obviously leads to impaired control of complement attack on plasma-exposed cell surfaces in aHUS.  相似文献   

5.
A series of epimers and deoxy derivatives of castanospermine has been synthesized to investigate the contribution of the different chiral centres to the specificity and potency of inhibition of human liver glycosidases. Castanospermine inhibits all forms of alpha- and beta-D-glucosidases, but alteration to any of the five chiral centres in castanospermine markedly decreases the inhibition. 6-Epicastanospermine, which is related to D-pyranomannose in the same way as castanospermine is to D-pyranoglucose, does not inhibit lysosomal (acidic) alpha-mannosidase, but is a good inhibitor of the cytosolic or neutral alpha-mannosidase. Conversely, 1-deoxy-6-epicastanospermine inhibits acidic alpha-mannosidase strongly, but not the neutral alpha-mannosidase. An explanation of this different inhibition based on preferential recognition of different configurations of mannose by the different forms of alpha-mannosidase is postulated. All derivatives of 6-epicastanospermine also have the minimum structural feature for the inhibition of alpha-L-fucosidase, but those with a beta-anomeric substituent do not inhibit the enzyme, or do so very weakly. 1-Deoxy-6,8a-diepicastanospermine, which has four chiral centres identical with alpha-L-fucose, is, however, a potent inhibitor of alpha-L-fucosidase (Ki 1.3 microM).  相似文献   

6.
Wang L  Li L  Zhang H  Luo X  Dai J  Zhou S  Gu J  Zhu J  Atadja P  Lu C  Li E  Zhao K 《The Journal of biological chemistry》2011,286(44):38725-38737
SMYD2 belongs to a subfamily of histone lysine methyltransferase and was recently identified to methylate tumor suppressor p53 and Rb. Here we report that SMYD2 prefers to methylate p53 Lys-370 over histone substrates in vitro. Consistently, the level of endogenous p53 Lys-370 monomethylation is significantly elevated when SMYD2 is overexpressed in vivo. We have solved the high resolution crystal structures of the full-length SMYD2 protein in binary complex with its cofactor S-adenosylmethionine and in ternary complex with cofactor product S-adenosylhomocysteine and p53 substrate peptide (residues 368-375), respectively. p53 peptide binds to a deep pocket of the interface between catalytic SET(1-282) and C-terminal domain (CTD) with an unprecedented U-shaped conformation. Subtle conformational change exists around the p53 binding site between the binary and ternary structures, in particular the tetratricopeptide repeat motif of the CTD. In addition, a unique EDEE motif between the loop of anti-parallel β7 and β8 sheets of the SET core not only interacts with p53 substrate but also forms a hydrogen bond network with residues from CTD. These observations suggest that the tetratricopeptide repeat and EDEE motif may play an important role in determining p53 substrate binding specificity. This is further verified by the findings that deletion of the CTD domain drastically reduces the methylation activity of SMYD2 to p53 protein. Meanwhile, mutation of EDEE residues impairs both the binding and the enzymatic activity of SMYD2 to p53 Lys-370. These data together reveal the molecular basis of SMYD2 in specifically recognizing and regulating functions of p53 tumor suppressor through Lys-370 monomethylation.  相似文献   

7.
The sterol regulatory element-binding protein (SREBP) and SREBP cleavage-activating protein (SCAP) are central players in the SREBP pathway, which control the cellular lipid homeostasis. SCAP binds to SREBP through their carboxyl (C) domains and escorts SREBP from the endoplasmic reticulum to the Golgi upon sterol depletion. A conserved pathway, with the homologues of SREBP and SCAP being Sre1 and Scp1, was identified in fission yeast Schizosaccharomyces pombe. Here we report the in vitro reconstitution of the complex between the C domains of Sre1 and Scp1 as well as the crystal structure of the WD40 domain of Scp1 at 2.1 Å resolution. The structure reveals an eight-bladed β-propeller that exhibits several distinctive features from a canonical WD40 repeat domain. Structural and biochemical characterization led to the identification of two Scp1 elements that are involved in Sre1 recognition, an Arg/Lys-enriched surface patch on the top face of the WD40 propeller and a 30-residue C-terminal tail. The structural and biochemical findings were corroborated by in vivo examinations. These studies serve as a framework for the mechanistic understanding and further functional characterization of the SREBP and SCAP proteins in fission yeast and higher organisms.  相似文献   

8.
In our previous kinetics studies the natural products oroxylin and wogonin were shown to have strong biological affinity for, and inhibitory effects against, human cytochrome P450 1A2, with IC50 values of 579 and 248 nM, respectively; this might lead to the occurrence of drug–drug interactions when co-administered clinically. However, their inhibitory mechanisms against 1A2 remain elusive. In this study, molecular docking and molecular dynamics simulations were performed to better understand the molecular basis of their inhibitory mechanisms towards 1A2. Structural analysis revealed that oroxylin has a different binding pattern from wogonin and another very strongly binding inhibitor α-naphthoflavone (ANF, IC50 = 49 nM). The O7 atom of oroxylin forms hydrogen bonds with the OD1/OD2 atoms of Asp313, which is not observed in the 1A2–wogonin complex. Because of energetically unfavorable repulsions with the methoxy group at the 6 position of the oroxylin ring, significant conformational changes were observed for the sidechain of Thr118 in the MD simulated model. As a result, the larger and much more open binding-site architecture of the 1A2–oroxylin complex may account for its weaker inhibitory effect relative to the 1A2–ANF complex. Energy analysis indicated that oroxylin has a less negative predicted binding free energy of −19.8 kcal/mol than wogonin (−21.1 kcal/mol), which is consistent with our experimental assays. Additionally, our energy results suggest that van der Waals/hydrophobic and hydrogen-bonding interactions are important in the inhibitory mechanisms of oroxylin whereas the former is the underlying force responsible for strong inhibition by ANF and wogonin.  相似文献   

9.
10.
Purine nucleoside phosphorylase (PNP) catalyzes the phosphorolysis of the N-ribosidic bonds of purine nucleosides and deoxynucleosides. PNP is a target for inhibitor development aiming at T-cell immune response modulation. This work reports on the crystallographic study of the complex of human PNP-immucillin-H (HsPNP-ImmH) solved at 2.6A resolution using synchrotron radiation. Immucillin-H (ImmH) inhibits the growth of malignant T-cell lines in the presence of deoxyguanosine without affecting non-T-cell tumor lines. ImmH inhibits activated normal human T cells after antigenic stimulation in vitro. These biological effects of ImmH suggest that this agent may have utility in the treatment of certain human diseases characterized by abnormal T-cell growth or activation. This is the first structural report of human PNP complexed with immucillin-H. The comparison of the complex HsPNP-ImmH with recent crystallographic structures of human PNP explains the high specificity of immucillin-H for human PNP.  相似文献   

11.
Inhibition of human renin by synthetic peptides derived from its prosegment   总被引:2,自引:0,他引:2  
The primary structure of human preprorenin has recently been determined from its cDNA sequence. It includes a 46-amino acid NH2-terminal prosegment. Six peptides corresponding to the entire prosegment (9-40), except for the NH2-terminal (1-8) and COOH-terminal (41-46) ends have been synthesized. These peptides were tested for their inhibitory effect on human plasma renin activity. Boc-Tyr-Thr-Thr-Phe-Lys-Arg-Ile-Phe-Leu-Lys-Arg-Met-Pro-OMe (where Boc represents t-butoxycarbonyl and OMe represents methoxy) (h Y(9-20) and its fragment Boc-Leu-Lys-Arg-Met-Pro-OMe h (16-20) were the most potent inhibitors with IC50 values of 2 X 10(-4) and 3 X 10(-4)M, respectively. Peptides located near the COOH-terminus were less inhibitory. The inhibitory capacity of h (16-20) was studied further on highly purified human renin acting on either pure human angiotensinogen or a synthetic human tetradecapeptide substrate. In both of these assays its inhibitory potency was about 10-fold greater than that found on plasma renin activity. Peptide h (16-20) was 3-6 times less potent in inhibiting human renin than its mouse counterpart m (15-19) was in inhibiting mouse renin. Kinetic studies carried out with h (16-20) showed a mixed type of inhibition. When human angiotensinogen was used as substrate, Ki and K'i values were 17.7 +/- 3.9 and 2.9 +/- 0.9 microM, respectively. These studies showed that human renin, like mouse renin and pepsin, can be inhibited by peptides derived from its prosegment. In addition, as in the case of pepsin, they suggest that the NH2-terminal part of the prosegment interacts more strongly with the active enzyme.  相似文献   

12.
Reprieval from execution: the molecular basis of caspase inhibition   总被引:16,自引:0,他引:16  
The suppression of apoptosis is essential to the propagation of viruses, and to the control of development and homeostasis in insects and mammals. The central components of all apoptotic pathways are proteases of the caspase family. Therefore, it is not surprising that the processes of natural selection, as well as pharmaceutical chemists, have designed compounds that directly target caspase activity in attempts to regulate apoptosis. The mechanisms used by highly specialized naturally occurring caspase inhibitors (both host and viral) have remained obscure for some time. However, recently there has been significant progress in this field, particularly because of the structural elucidation of the complexes between caspases and an endogenous inhibitor (XIAP) and a viral inhibitor (p35). This article reviews the newly defined molecular basis for the regulation of the caspases by viral and endogenous inhibitors.  相似文献   

13.
Zheng X  Zhang L  Zhai J  Chen Y  Luo H  Hu X 《FEBS letters》2012,586(1):55-59
Sulindac (SLD) exhibits both the highest inhibitory activity towards human aldose reductase (AR) among popular non-steroidal anti-inflammatory drugs and clear beneficial clinical effects on Type 2 diabetes. However, the molecular basis for these properties is unclear. Here, we report that SLD and its pharmacologically active/inactive metabolites, SLD sulfide and SLD sulfone, are equally effective as un-competitive inhibitors of AR in vitro. Crystallographic analysis reveals that π-π stacking favored by the distinct scaffold of SLDs is pivotal to their high AR inhibitory activities. These results also suggest that SLD sulfone could be a potent lead compound for AR inhibition in vivo.  相似文献   

14.
15.
16.
Chalcone synthase (CHS) is pivotal for the biosynthesis of flavonoid antimicrobial phytoalexins and anthocyanin pigments in plants. It produces chalcone by condensing one p-coumaroyl- and three malonyl-coenzyme A thioesters into a polyketide reaction intermediate that cyclizes. The crystal structures of CHS alone and complexed with substrate and product analogs reveal the active site architecture that defines the sequence and chemistry of multiple decarboxylation and condensation reactions and provides a molecular understanding of the cyclization reaction leading to chalcone synthesis. The structure of CHS complexed with resveratrol also suggests how stilbene synthase, a related enzyme, uses the same substrates and an alternate cyclization pathway to form resveratrol. By using the three-dimensional structure and the large database of CHS-like sequences, we can identify proteins likely to possess novel substrate and product specificity. The structure elucidates the chemical basis of plant polyketide biosynthesis and provides a framework for engineering CHS-like enzymes to produce new products.  相似文献   

17.
The molecular mechanism by which heparin modulates the processing of procathepsin L in the extracellular environment is proposed. We show that heparin reduces the stability of the pro form of cathepsin L at pH 5 by binding to a putative heparin binding motif (BBXB) in the pro-domain. Mutations to this motif on procathepsin L reduce heparin binding affinity and heparin-induced destabilization; in contrast, heparin only slightly destabilizes the mature cathepsin L domain. Gel analysis further shows that heparin makes procathepsin L a much better substrate for cathepsin L. Thus, heparin enhances the rate of zymogen activation by destabilization upon binding to the BBXB motif. Determining the mechanism by which procathepsin L is activated in the extracellular matrix is important to the understanding of the role that cathepsin L plays in tumour invasion.  相似文献   

18.
The ras oncogene product p21 functions as a molecular switch in the early section of the signal transduction pathway that is involved in cell growth and differentiation. When the protein is in its GTP-complexed form it is active in signal transduction, whereas it is inactive in its GDP-complexed form. The transforming activity of p21ras is neutralized by the mouse monoclonal antibody Y13-259, possibly by preventing GDP-GTP exchange. A molecular model of the variable fragment of Y13-259 has been derived using a knowledge-based prediction approach and computer-assisted modeling techniques. An analysis of this model while complexed with p21ras/(GDP) indicated that the two molecular switch regions are constrained by complex formation. Antibody binding inhibits GDP-GTP exchange through a mechanism of steric hindrance. Having identified necessary bound sites for inhibition, and explored their electrostatic properties, it should be possible to proceed with the design of antibody mimics as therapeutic agents in cancer control.  相似文献   

19.
Cathepsin K is a lysosomal cysteine protease belonging to the papain superfamily. It has been implicated as a major mediator of osteoclastic bone resorption. Wild-type human procathepsin K has been crystallized in a glycosylated and a deglycosylated form. The latter crystals diffract better, to 3.2 A resolution, and contain four molecules in the asymmetric unit. The structure was solved by molecular replacement and refined to an R-factor of 0.194. The N-terminal fragment of the proregion forms a globular domain while the C-terminal segment is extended and shows substantial flexibility. The proregion interacts with the enzyme along the substrate binding groove and along the proregion binding loop (residues Ser138-Asn156). It binds to the active site in the opposite direction to that of natural substrates. The overall binding mode of the proregion to cathepsin K is similar to that observed in cathepsin L, caricain, and cathepsin B, but there are local differences that likely contribute to the specificity of these proregions for their cognate enzymes. The main observed difference is in the position of the short helix alpha3p (67p-75p), which occupies the S' subsites. As in the other proenzymes, the proregion utilizes the S2 subsite for anchoring by placing a leucine side chain there, according to the specificity of cathepsin K toward its substrate.  相似文献   

20.
The c-Kit proto-oncogene is a receptor protein-tyrosine kinase associated with several highly malignant human cancers. Upon binding its ligand, stem cell factor (SCF), c-Kit forms an active dimer that autophosphorylates itself and activates a signaling cascade that induces cell growth. Disease-causing human mutations that activate SCF-independent constitutive expression of c-Kit are found in acute myelogenous leukemia, human mast cell disease, and gastrointestinal stromal tumors. We report on the phosphorylation state and crystal structure of a c-Kit product complex. The c-Kit structure is in a fully active form, with ordered kinase activation and phosphate-binding loops. These results provide key insights into the molecular basis for c-Kit kinase transactivation to assist in the design of new competitive inhibitors targeting activated mutant forms of c-Kit that are resistant to current chemotherapy regimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号