首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yeast cells deficient in DNA ligase were also deficient in their capacity to rejoin single-strand scissions in prelabeled nuclear DNA. After high-dose-rate gamma irradiation (10 and 25 krads), cdc9-9 mutant cells failed to rejoin single-strand scissions at the restrictive temperature of 37 degrees C. In contrast, parental (CDC9) cells (incubated with mutant cells both during and after irradiation) exhibited rapid medium-independent DNA rejoining after 10 min of post-irradiation incubation and slower rates of rejoining after longer incubation. Parental cells were also more resistant than mutant cells to killing by gamma irradiation. Approximately 2.5 +/- 0.07 and 5.7 +/- 0.6 single-strand breaks per 10(8) daltons were detected in DNAs from either CDC9 or cdc9-9 cells converted to spheroplasts immediately after 10 and 25 krads of irradiation, respectively. At the permissive temperature of 23 degrees C, the cdc9-9 cells contained 2 to 3 times the number of DNA single-strand breaks as parental cells after 10 min to 4 h of incubation after 10 krads of irradiation, and two- to eightfold more breaks after 10 min to 2.5 h of incubation after 25 krads of irradiation. Rejoining of single-strand scissions was faster in medium. After only 10 min in buffered growth medium and after 10 krads of irradiation, the number of DNA single-strand breaks was reduced to 0.32 +/- 0.3 (at 23 degrees C) or 0.21 +/- 0.05 (at 37 degrees C) per 10(8) daltons in parental cells, but remained at 2.1 +/- 0.06 (at 23 degrees C) or 2.3 +/- 0.07 (at 37 degrees C) per 10(8) daltons in mutant cells. After 10 or 25 krads of irradiation plus 1 h of incubation in medium at 37 degrees C, only DNA from CDC9 cells was rejoined to the size of DNA from unirradiated cells, whereas at 23 degrees C, DNAs in both strains were completely rejoined.  相似文献   

2.
Malachite green combined with glutaraldehyde has been used recently as a fixative for preserving and revaling lipid complexes in thin sections of eukaryotic cells examined by electron microscopy. When bacteria were prefixed with the above mixture granular electron dense inclusions were revealed in all cultures tested. These inclusions were replaced by electron transparent areas in cells fixed with glutaraldehyde alone. The structures were frequently located near to or within the nucleoid and adjacent to the cell membrane in Gram-negative bacteria and were associated with the nucleoid and mesosomes in Gram-positive species. Polyhydroxybutyrate granules, generally poorly preserved in thin sections of Aquaspirillum serpens, were well preserved by the malachite green-glutaraldehyde fixative. Malachite green complexes were observed outside of the cells in all preparations. Capsules were neither preserved nor stained.  相似文献   

3.
Malachite green combined with glutaraldehyde has been used recently as a fixative for preserving and revealing lipid complexes in thin sections of eukaryotic cells examined by electron microscopy. When bacteria were prefixed with the above mixture granular electron dense inclusions were revealed in all cultures tested. These inclusions were replaced by electron transparent areas in cells fixed with glutaraldehyde alone. The structures were frequently located near to or within the nucleoid and adjacent to the cell membrane in Gram-negative bacteria and were associated with the nucleoid and mesosomes in Gram-positive species. Polyhydroxybutyrate granules, generally poorly preserved in thin sections of Aquaspirillum serpens, were well preserved by the malachite green-glutaraldehyde fixative. Malachite green complexes were observed outside of the cells in all preparations. Capsules were neither preserved nor stained.  相似文献   

4.
Cells of Chondrococcus columnaris were sectioned and examined in the electron microscope after fixation by two different methods. After fixation with osmium tetroxide alone, the surface layers of the cells consisted of a plasma membrane, a dense layer (mucopeptide layer), and an outer unit membrane. The outer membrane appeared distorted and was widely separated from the rest of the cell. The intracytoplasmic membranes (mesosomes) appeared as convoluted tubules packaged up within the cytoplasm by a unit membrane. The unit membrane surrounding the tubules was continuous with the plasma membrane. When the cells were fixed with glutaraldehyde prior to fixation with osmium tetroxide, the outer membrane was not distorted and separated from the rest of the cell, structural elements (peripheral fibrils) were seen situated between the outer membrane and dense layer, and the mesosomes appeared as highly organized structures produced by the invagination and proliferation of the plasma membrane. The mesosomes were made up of a series of compound membranes bounded by unit membranes. The compound membranes were formed by the union of two unit membranes along their cytoplasmic surfaces.  相似文献   

5.
The structure of the bacterial chromosome was investigated after introducing breaks in the DNA with gamma irradiation. It is demonstrated that irradiation of the chromosome in the cell prior to isolation results in partial unfolding of the isolated condensed DNA, while irradiation of the chromosome after it is released from the cell has no demonstrable effect on DNA folding. The results indicate that RNA/DNA interactions which stabilize DNA folds are unstable when breaks are introduced in the DNA prior to isolation of the chromosome. It is suggested that the supercoiled state of the DNA is required for the initial stabilization of some of the critical RNA/DNA interaction in the isolated nucleoid. However, some of these interactions are not affected by irradiation of the cells. Remnant supercoiling in partially relaxed chromosomes containing a limited number of DNA breaks has the same superhelical density as the unirradiated chromosome. This suggests that restraints on rotation of the packaged DNA are formed prior to the physical unwinding which occurs at the sites of the radiation induced DNA breaks. — Analysis of the in vitro irradiated chromosomes shows that there are 100+-30 domains of supercoiling per genome equivalent of DNA. The introduction of up to 50 double-strand breaks per nucleoid does not influence rotor speed effects of the sedimentation coefficient of the chromosome.  相似文献   

6.
Studies with ndd mutants of phage T4, deficient in the ability to induce nuclear disruption, the movement of the host DNA from a largely central location in the cell into close association with the cell membrane, show that nuclear disruption is not essential for host DNA breakdown. Degradation of prelabeled host DNA to acid-soluble products occurs at the same rate in the absence of nuclear disruption as it does in its presence. Moreover, the absence of nuclear disruption results in an alternative pathway of slow degradation of host DNA independent of phage endonuclease II.M-band analyses of association between DNA andmembrane (Earhart et al., 1968) indicate that endonuclease II is required for the release of host DNA from the membrane when nuclear disruption occurs normally, and that the product of at least one of the genes rIIA, rIIB, D1 or D2a (probably D2a, which is necessary for the synthesis of endonuclease IV) is required for DNA release when nuclear disruption does not occur.Analyses of the sizes of host DNA single strands at various times after infection by means of alkaline sucrose density-gradients show that the presence or absence of nuclear disruption has little, if any, effect on the rate of accumulation of single-strand nicks. Neutral sucrose density-gradient analyses suggest that a limited number of double-strand breaks can accumulate in host DNA when endonuclease IV is active, but few, if any, occur when neither endonuclease II or IV is active.Gentle lysis of ndd-infected cells and subsequent sedimentation analysis of the host DNA in neutral sucrose density-gradients reveal that the host chromosomes become “unfolded” within five minutes after infection. Thin-section electron microscopy shows that the host DNA becomes widely dispersed throughout the cytoplasm of cells at late times after infection with ndd mutants. These observations make it very unlikely that nuclear disruption is a passive process which occurs whenever the forces or structures which maintain the normal state of the Escherichia coli nucleoid are altered.All of our data are consistent with a mechanism of nuclear disruption which involves multiple attachment of the host DNA to the cell membrane under the control of the D2b gene of phage T4. We propose that in ndd-infected cells this multiple attachment does not occur, with the result that a limited number of double-strand breaks release much of the host DNA from the cell membrane.  相似文献   

7.
Thin sections of Streptococcus faecalis (ATCC 9790) starved of one essential amino acid (threonine or valine) initially show rapid increases in (i) cell wall thickness, (ii) the apparent size of the central nucleoid region, and (iii) mesosomal membranes. The most rapid increases in all three variables occurred during the first 1 to 2 hr of starvation. After this initial period, the rates progressively decreased over the 20-hr observation period. During threonine starvation, the mesosomal membrane that accumulated in the first hour was subsequently degraded and reached a level similar to that found in exponential-phase cells after 20 hr. With valine starvation, mesosomal membrane continued to slowly accumulate over the entire 20-hr observation period. The mesosomes of the starved cells retained the same “stalked-bag” morphology of those in exponential-phase cells. These cytological observations agree with previously published biochemical data on membrane lipid and wall content after starvation.  相似文献   

8.
Deoxyribonucleic acid (DNA) of Escherichia coli was found to be attached to the cell membrane at about 20 points. This was determined by fractionation of X-irradiated cells with the M band (magnesium-Sarkosyl crystals) technique. The number of attachment points was computed from the relationship between the amount of DNA in M bands and the number of double-strand breaks introduced by the X-ray treatment. The number of attachment points was decreased fourfold by treatment of cells with rifampin. This effect was apparently due to the action of the drug on ribonucleic acid (RNA) polymerase since the drug did not affect a mutant whose RNA polymerase is resistant to rifampin. This suggests that there may be two classes of attachment points of DNA on the membrane, some of which are removed by rifampin treatment and some which are not. Rifampin treatment also resulted in the uncondensing of isolated nucleoids and in an axial appearance of the nucleoids in ultrathin sections. The results suggest that RNA polymerase plays a role, direct or indirect, in maintaining the structure of the bacterial nucleoid and in some of its attachment to the membrane.  相似文献   

9.
Activation of quiescent human peripheral blood lymphocytes or purified T cells by the mitogen, phytohemagglutinin (PHA), involves a rapid rejoining of DNA breaks present in the resting cells as detected by both nucleoid sedimentation analysis and rate of strand unwinding in alkali. Inhibitors of the enzyme ADP-ribosyltransferase (ADPRT) prevent activation of peripheral lymphocytes or T cells by PHA or concanavalin A in a dose-dependent manner, but only if present during the early stages. They do not affect subsequent proliferation if added later, nor do they inhibit the growth of lymphoblastoid cell lines. The inhibitors slow the rejoining of DNA breaks but do not affect the binding of mitogen to the cell surface or the early PHA-stimulated turnover of plasma membrane inositol phospholipids. DNA breaking and rejoining, regulated by ADPRT, may be involved in controlling gene expression during differentiation.  相似文献   

10.
The plasma membrane bounding the cytoplasm immediately inside the hyphal wall of Streptomyces cinnamonensis may not retract from the hyphal wall. When it does retract from the wall, it appears as a single dark line in some sections and as 2 dark lines separated by a light zone in others. The membrane system consists of mesosomes and endomembrane structures. The mesosomes are those membrane structures whose derivatives appear to be the plasma membrane. The endomembrane structures, in the present report, are those that appear to have been derived from either the cytoplasm or the limiting membranes of the pre-existing membrane structures. All membranes seem capable of proliferation, a mechanism obviously responsible for the growth of the individual membrane structures and for the origin of many new ones. The mesosomes, according to their limits, are of 2 distinct types, the open mesosomes and the closed mesosomes. The open mesosomes are partially enclosed by limiting membranes, leaving the unenclosed sides limited by the wall. These mesosomes, when old, usually in aerial hyphae, may become attached to the wall and somewhat deleted from their limiting membranes. The individual membranes in their interior may appear disfigured. The closed mesosomes are completely surrounded by the limiting membranes. These mesosomes, as well as endomembrane structures, retain their original positions in the cytoplasm even in the older aerial hyphae, and the membranes in their interior usually remain practically as distinct in the aerial hyphae as they are in the substratal hyphae. New mesosomes and endomembrane structures are being formed continuously as the mycelium develops. The mesosomes, as a rule, occupy more or less the peripheral regions of the cytoplasm, while the endomembrane structures distribute themselves widely in the cytoplasm and also in the nucleoids. The appearance of the unit membranes, being double-layered (2 dark lines separated by a light line), is not consistent. The membranes as a whole are more resistant to degeneration than the cytoplasm and the nucleoids.  相似文献   

11.
The changes in the morphology of the nucleoids and the mesosomes in Bacillus subtilis cells during synchronous outgrowth after spore germination were followed in large-scale three-dimensional cell reconstructions. Shortly after outgrowth of the cell begins in Spizizen medium with glucose, the mesosome becomes an elongated structure in close contact with a rounded nucleoid. When nuclear replication reaches full activity, the mesosome develops into a single, complicated versatile system, with tubules that traverse the cytoplasm and have elaborations in and near the nucleoplasm. Later the system may retract to form large rounded mesosomes; the tubules and strings of vesicles within these mesosomes probably have been collected from the cytoplasm. Shortly after the first cell division, both sister cells have two nucleoids, but with longer generation times induced by growth in media containing acetate instead of glucose; these sister cells have only one nucleoid each. In acetate-grown cells rounded nucleoids that have no contact with a mesosome may represent nucleoids in a temporary stage of rest. On the other hand, the nucleoids of cells growing in glucose-containing medium are always penetrated by mesosomal material, superficially or deeply. Since the mesosome appears capable of traversing the nuclear fibrils, and even reaching the last strands connecting the dividing nucleoids, it is suggested that this organelle may play a vital role in the Bacillus division cycle.  相似文献   

12.
A study was made of the ultrastructure of stable L-forms of Nag vibrios aged 24 hours. Cells of all types of the L-forms had cytoplasmic membranes, and a three-layered structure, which was found not everywhere. Externally of the cytoplasmic membrane, in some areas of the individual cells there were revealed a plastic layer of cell wall and a basal membrane. However, in difference to bacterial forms of the vibryos, rigidity of the cell wall was disturbed, and the links between the cell wall and the cytoplasmic membrane were indetectable. There were regularly revealed lamellar of myelin-like membranous structures in the cytoplasm, which did not occur in bacterial forms, and also lamellar mesosomes. The latter were found in the sites of cell division. Viability of small bodies as the minimal reproductive forms of the L-cultures is confirmed by the presence in them of a nucleoid and of the binary division.  相似文献   

13.
Certain features of the fine structure of a marine achromobacter and a marine pseudomonad were dependent upon the conditions of growth. Cells of achromobacter grown at 10 C in a low peptone-seawater (SW) medium displayed the characteristic morphology of the achromobacter: a regularly undulant outer element of the cell wall and a planar inner element, tightly packed ribonucleoprotein (RNP) particles in the cytoplasm, deoxyribonucleic acid (DNA) disposed in a lobate manner, and dense inclusion bodies. Few mesosomes, however, were seen. Cells of achromobacter grown at 10 C in a high peptone-SW medium had larger and more highly organized mesosomes. At 22 C, in a low peptone-SW medium, no mesosomes were seen, but the inclusions were more frequently seen and were larger in the achromobacter cells. At 22 C, in a high peptone-SW medium, these cells revealed the greatest variation in cellular morphology. They contained both small and large mesosomes, or no mesosomes, and both small and large inclusions, or no inclusions. Pseudomonad cells at 10 C in a low peptone-SW medium revealed a typical gram-negative morphology: double-layered, irregularly undulant cell wall; more nearly planar cytoplasmic membrane; densely stained, lightly packed RNP particles; finely fibrillar, axially disposed DNA; simple mesosomes. At 10 C, in a high peptone-SW medium, pseudomonad cells revealed associated strands of material and intracytoplasmic ringlike structures. At 22 C, in a low peptone-SW medium, pseudomonad cells had a more undulant cell-wall and a more nearly planar cytoplasmic membrane. At 22 C, in a high peptone-SW medium, these cells revealed prominent blebs of the cell wall.  相似文献   

14.
Mesosomes in Escherichia coli   总被引:14,自引:10,他引:4       下载免费PDF全文
When Escherichia coli was grown in a synthetic medium and fixed with osmium, sections of the cells revealed clearly defined mesosomes. These mesosomes appeared to develop, in dividing cells, as coiled infoldings of the cytoplasmic membrane. Mature mesosomes formed a link between the cytoplasmic membrane and the nucleus of the cell. The arrangement of the mesosomes in dividing cells led to the hypothesis that division of the nucleus in these cells is accomplished by two separate polar mesosomes. One mesosome is derived from the parent cell and is present at one pole of the daughter cell. The other is freshly synthesized at or near the newly forming pole of the daughter cell. While the old mesosome remains attached to the chromosome received from the parent cell, the newly synthesized mesosome becomes attached to and initiates replication of the new chromosome. As the cell grows and elongates, the two mesosomes, attached to their respective chromosomes move apart, thus effecting nuclear division.  相似文献   

15.
The ultrastructural study of membrane organization in gram-positive bacteria related to the OsO4 fixation conditions revealed that large, complex mesosomes are observed only when the bacteria are subjected to an initial fixation with 0.1% OsO4 in the culture broth, as in the prefixation step of the Ryter-Kellenberger procedure. Evidence was obtained suggesting that the large mesosomes are produced by this prefixation. The kinetic study of the membrane morphological alterations occurring during the prefixation of Bacillus cereus with 0.1% OsO4 in the culture broth showed that the amount of mesosome material increases linearly from zero to a maximum observed at 1.7 min of prefixation and that at about this time a maximum is reached for the number of mesosomes per unity of cell area and for the average individual mesosome area. The large mesosomes observed in gram-positives fixed by the complete Ryter-Kellenberger procedure would be the result of the membrane-damaging action of 0.1% OsO4. Such damaging action was deduced from the observation that 0.1% OsO4 quickly lyses protoplasts and induces a quick and extensive leakage of intracellular K+ from B. cereus and Streptococcus faeculis. In support of that interpretation is the observation that in bacteria subjected to several membrane-damaging treatments, mesosome-like structures are seen after three different fixation procedures. In bacteria initially fixed with 1% OsO4, 4% OsO4 or 2.5% glutaraldehyde, no large, complex mesosomes are observed, small and simple invaginations of the cytoplasmic membrane being present. The size of these minute mesosomes is inversely proportional that causes of fixation. Uranyl acetate was found among the studied fixatives the one to the rate the least damage to bacterial membranes. This fixative satisfactorily preserves protoplasts. In bacteria initially fixed with uranyl acetate no mesosomes were found. The results of the present work throw serious doubts on the existence of mesosomes, both large and small, as real structures of bacterial cells. It is proposed that a continuous cytoplasmic membrane without infoldings (mesosomes) would be the real pattern of membrane organization in gram-positives.  相似文献   

16.
With the aid of serial-section electron microscopy two types of mesosomes can be distinguished in cells of competent cultures of Bacillus subtilis: (i) mesosomes connected to the plasma membrane only (plasma membrane mesosomes) and (ii) mesosomes which extend from the plasma membrane into the nuclear bodies (nuclear mesosomes). Contrary to plasma membrane mesosomes, nuclear mesosomes are absent from the tip zones. Electron microscopic autoradiography of sections of Bacillus subtilis cells exposed to [(3)H]thymidine-labeled transforming deoxyribonucleic acid (DNA) for a short period of time shows that the DNA becomes associated with mesosomes. As a function of time the DNA migrates towards the nucleoids. Transport of DNA is completed within 15 to 60 min after termination of DNA uptake. During its migration the DNA continues to be associated with mesosomes, presumably with nuclear mesosomes. DNA initially associated with plasma membrane mesosomes of the tip zones is probably transported first towards the middle zones peripherally and from there towards the nucleoids.  相似文献   

17.
The sedimentation of DNA-nuclear protein complexes in 1.9 M salt-neutral sucrose gradients (nucleoid sedimentation) was used to examine the effects of the DNA intercalator 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA) on mouse leukemia cell DNA. Mild detergent cell lysis and neutral pH make nucleoid sedimentation an extremely gentle, but sensitive, method to detect DNA scission. DNA breaks reduce the compaction of nucleoids and slow their sedimentation. Nucleoids from m-AMSA-treated cells sedimented as did those from untreated cells, indicating no detectable m-AMSA-dependent alterations in compaction despite an apparent underlying DNA break frequency of approximately 3 per 10(6) nucleotides, as measured by alkaline elution with proteinase. Mild proteinase digestion of cell lysates prior to nucleoid sedimentation unmasked some, but not all, of the underlying breaks. The frequency of DNA-protein cross-links in nucleoids from cells treated with m-AMSA was comparable to the single-strand break frequency produced by m-AMSA in whole cells. These results indicate that m-AMSA-induced DNA-protein cross-links conceal DNA breaks so as to prevent swiveling around the breaks within the nucleoids. This unique sort of DNA scission is consistent with the involvement of topoisomerases in the DNA breaks elicited by intercalators in mammalian cells.  相似文献   

18.
Chilled B16CL4 mouse melanoma cells in phosphate-buffered saline were exposed to ionizing radiation before or after harvesting by gently scraping with a rubber policeman. Cells irradiated when attached had fewer DNA strand breaks than cells that were irradiated in suspension. Dose-response studies indicate that the rate of induction of DNA strand breaks by ionizing radiation is 1.5-fold greater in suspended cells. Irradiation after release of the cells by trypsinization also results in more breaks than irradiation when attached, but this method of harvest is not as damaging as release by rubber policeman. Strand breaks in unirradiated cells are unaffected by the method of cell harvest. These studies suggest that, in radiation studies, care should be exercised to avoid the introduction of artifacts resulting from the methods used to harvest and irradiate cells.  相似文献   

19.
金黄滴虫细胞在用DNA特异的荧光染料DAPI处理后,在荧光显微镜下细胞核和叶绿体拟核均散发蓝色荧光,穗晰可见。每一叶绿体有一拟核,拟核沿叶绿体的周缘排列,形状相当于叶绿体的轮廓,成不规则的两叶形环。环的全长约在20—30υm之间。 拟核环大多是单线的,有些拟核环出现或短或长的双线部分,有时甚至几乎整个拟核环都可变为双线。这表明拟核环通过“纵裂”而形成双环,在叶绿体分裂时,分别进入两个子叶绿体。这一情况在电镜照片上得到了证实。 叶绿体分裂和细胞分裂之间似乎不存在严格的相关性,这是导致细胞中叶绿体数目多于1个的原因。  相似文献   

20.
By means of electron microscope autoradiography of component cultures of Bacillus subtilis exposed to [(3)H]thymidine-labeled transforming deoxyribonucleic acid competent and noncompetent cells can be distinguished. Competence is not limited to a specific phase of the cell division cycle. With serial section electron microscopy of competent and noncompetent cells, two types of mesosomal structures are observed: mesosomes connected to the plasma membrane only (plasma membrane mesosomes) and mesosomes which are additionally connected to the nuclear bodies (nuclear mesosomes). The two types show different cellular distributions. Especially the number of nuclear mesosomes is higher in competent than in noncompetent cells. This, and the observation that the increase and decrease of competence is correlated with both the number of cells carrying nuclear mesosomes and the number of nuclear mesosomes per cell, suggests that mesosomes are involved in the acquisition of competence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号