首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
6个中国猪地方品种和3个瑞典猪DNA分子系统发育相关关系   总被引:12,自引:0,他引:12  
线粒体DNA遗传多样性用于评价6个中国地方猪种和3个瑞典家猪系统发育关系。采用PCR和序列分析方法得到了来自9个品种140头猪的线粒体中控制区440bp和细胞色素b基因798bp核苷酸序列。系统发育分析结果表明:6个中国地方猪种起源于亚洲野猪。中国地方猪种和欧洲野猪的线粒体DNA核苷酸序列变异发生在413000-875000年以前,而亚洲紧猪的变异仅发生在7000-156000上以前,由于2000年以前或18世纪初中国猪种导入欧洲家猪,因此瑞典家猪既属于欧洲类也属于亚洲类。  相似文献   

2.
Iberian pigs and wild boars are the source of highly priced meat and dry-cured products. Iberian maternal origin is mandatory for labeled Iberian products, making necessary the authentication of their maternal breed origin. Discrimination between wild and domestic pig maternal origin may be useful to distinguish labeled wild boar meat obtained from hunting or farming. In order to detect useful polymorphisms to trace Iberian, Duroc and wild boar maternal lineages, we herein investigated the complete porcine mitochondrial DNA (mtDNA) using three complementary approaches. Near-complete mtDNA sequences (16989 bp), excluding the minisatellite present in the displacement loop region (D-loop), were successfully determined in six Iberian pigs, two Duroc and six European wild boars. To complete the mtDNA analysis, the D-loop minisatellite region was also analyzed in the same set of samples by amplification and capillary electrophoresis detection. Finally, the frequencies of Asian and European Cytochrome B (Cyt B) haplotypes were estimated in Iberian (n = 96) and Duroc (n = 125) breeds. Comparison of near-complete mtDNA sequences revealed a total of 57 substitutions and two Indels. Out of them, 32 polymorphisms were potential Iberian markers, 10 potential Duroc markers and 16 potential wild boar markers. Fourteen potential markers (five Iberian and nine Duroc), were selected to be genotyped in 96 Iberian and 91 Duroc samples. Five wild boar potential markers were selected and tested in samples of wild boars (73) and domestic pigs including: 96 Iberian, 16 Duroc, 16 Large White and 16 Landrace. Genotyping results showed three linked markers (m.7998C>T, m.9111T>C, m.14719A>G) absent in Duroc and present in Iberian pigs with a frequency 0.72. Six markers (m.8158C>T, m.8297T>C, m.9230G>A, m.11859A>G, m.13955T>C, m.16933T>C), three of them linked, were absent in Iberian pigs and present in Duroc with a joint frequency of almost 0.50. Finally three linked markers (m.7188G>A, m.9224T>C, m.15823A>G) were solely detected in wild boars with a frequency 0.22. The D-loop minisatellite results showed overlapping ranges of fragment sizes and suggested heteroplasmy, a result that nullify the use of this region for the development of breed diagnostic markers. The Cyt B haplotype results showed the presence of European haplotypes in Iberian while one of the Asian haplotypes was detected in Duroc with a frequency 0.22, linked to the Duroc marker m.9230G>A. Our results are valuable to resolve the problems of Iberian and wild boar maternal origin determination but additional markers are required to achieve totally useful genetic tests.  相似文献   

3.
The near-complete pig mtDNA genome sequence (15,997 bp) was determined from two domestic pigs (one Chinese Meishan and one Swedish Landrace) and two European wild boars. The sequences were analyzed together with a previously published sequence representing a Swedish domestic pig. The sequences formed three distinct clades, denoted A, E1, and E2, with considerable sequence divergence between them (0.8–1.2%). The results confirm our previous study (based on the sequence of the cytochrome B gene and the control region only) and provide compelling evidence that domestication of pigs must have occurred from both an Asian and a European subspecies of the wild boar. We estimated the time since the divergence of clade A (found in Chinese Meishan pigs) and E1 (found in European domestic pigs) at about 900,000 years before present, long before domestication about 9000 years ago. The pattern of nucleotide substitutions among the sequences was in good agreement with previous interspecific comparisons of mammalian mtDNA; the lowest substitution rates were observed at nonsynonymous sites in protein-coding genes, in the tRNA and rRNA genes, while the highest rates were observed at synonymous sites and in the control region. The presence of Asian clade A in some major European breeds (Large White and Landrace) most likely reflects the documented introgression of Asian germplasm into European stocks during the 18th and 19th centuries. The coexistence of such divergent mtDNA haplotypes for 100+ generations is expected to lead to the presence of recombinant haplotypes if paternal transmission and recombination occur at a low frequency. We found no evidence of such recombination events in the limited sample studied so far. Received: 19 April 2000; Accepted: 15 November 2000  相似文献   

4.
Wild boars from Western Europe have a 2n = 36 karyotype, in contrast to a karyotype of 2n = 38 in wild boars from Central Europe and Asia and in all domestic pigs. The phylogenetic status of this wild boar population is unclear, and it is not known if it has contributed to pig domestication. We have now sequenced the mtDNA control region from 30 European wild boars (22 with a confirmed 2n = 36 karyotype) and six Asian wild boars (two Hainan and four Dongbei wild boars) to address this question. The results revealed a close genetic relationship between mtDNA haplotypes from wild boars with 2n = 36 to those from domestic pigs with 2n = 38. Thus, we cannot exclude the possibility that wild boars with 2n = 36 may have contributed to pig domestication despite the karyotype difference. One of the European wild boars carried an Asian mtDNA haplotype, and this most likely reflects gene flow from domestic pigs to European wild boars. However, this gene flow does not appear to be extensive because the frequency of Asian haplotypes detected among European wild boars (c. 3%) were 10-fold lower than among European domestic pigs (c. 30%). Previous studies of mtDNA haplotypes have indicated that pig populations in Europe and Asia have experienced a population expansion, but it is not clear if the expansion occurred before or after domestication. The results of the present study are consistent with an expansion that primarily occurred prior to domestication because the mtDNA haplotypes found in European and Asian wild boars did not form their own clusters but were intermingled with haplotypes found in domestic pigs, indicating that they originated from the same population expansion.  相似文献   

5.
Mitochondrial DNA (mtDNA) diversity in European and Asian pigs was assessed using 1536 samples representing 45 European and 21 Chinese breeds. Diagnostic nucleotide differences in the cytochrome b (Cytb) gene between the European and Asian mtDNA variants were determined by pyrosequencing as a rapid screening method. Subsequently, 637bp of the hypervariable control region was sequenced to further characterize mtDNA diversity. All sequences belonged to the D1 and D2 clusters of pig mtDNA originating from ancestral wild boar populations in Europe and Asia, respectively. The average frequency of Asian mtDNA haplotypes was 29% across European breeds, but varied from 0 to 100% within individual breeds. A neighbour-joining (NJ) tree of control region sequences showed that European and Asian haplotypes form distinct clusters consistent with the independent domestication of pigs in Asia and Europe. The Asian haplotypes found in the European pigs were identical or closely related to those found in domestic pigs from Southeast China. The star-like pattern detected by network analysis for both the European and Asian haplotypes was consistent with a previous demographic expansion. Mismatch analysis supported this notion and suggested that the expansion was initiated before domestication.  相似文献   

6.
Mitochondrial Genetic Variation in Chinese Pigs and Wild Boars   总被引:7,自引:0,他引:7  
Huang YF  Shi XW  Zhang YP 《Biochemical genetics》1999,37(11-12):335-343
The mitochondrial DNAs (mtDNAs) from 30 pig breeds (29 Chinese native breeds and 1 European breed) and wild boars were investigated for restriction fragment length polymorphisms (RFLPs) to determine the phylogenetic relationships and genetic diversity among pig breeds and wild boars. Of the 24 enzymes used, 8 (AvaI, BclI, BglII, EcoRI, EcoRV, ScaI, StuI, and XbaI) detected polymorphisms. By combining the cleavage patterns for each enzyme, 108 individuals were sorted into eight mtDNA mitotypes. There are two haplotype lineages in domestic pigs, i.e., Chinese and European lineages. The pairwise nucleotide sequence divergence was calculated to be 0.56% between Chinese pigs and European pigs, suggesting that they might have diverged from a common ancestor approximately 280,000 years ago. The wild boars showed more extensive genetic variation, four mitotypes were detected in six wild boars. In addition, one of the Zhejiang wild boars was found to share the same mitotype with Chinese native pigs. A UPGMA tree based on genetic distance among mitotypes indicated that mtDNAs of Chinese pigs and European pigs are clearly divided into two clusters, and Chinese wild boars are more closely related to the Chinese pigs. Our results provide molecular evidence to support the previous hypothesis that pigs may be derived from two maternal origins, Asian and European wild boars. Chinese native pig breeds may have a single origin.  相似文献   

7.
We completed phylogenetic analysis of the major non-coding region of the mitochondrial DNA (mtDNA) from 159 animals of eight Euro-American and six East Asian domesticated pig breeds and 164 Japanese and five European wild boars. A total of 62 mtDNA haplotypes were detected. Alignment of these regions revealed nucleotide variations (including gaps) at 73 positions, including 58 sites with transition nucleotide substitutions, and two transversion substitutions. Phylogenetic analysis of the sequences could not organize domestic pig breeds into discrete clusters. In addition, many of the haplotypes found in members of diverged clustering groups were found primarily in Euro-American pig breeds, indicating extensive introgression of Asian domestic pigs into European breeds. Furthermore, phylogenetic analysis allocated the DNA sequences of non-coding regions into two different groups, and the deepest branchpoint of this porcine phylogeny corresponded to 86 000-136 000 years before present. This time of divergence would predate the historical period when the pig is thought to have been domesticated from the wild boar.  相似文献   

8.
Mitochondrial DNA has been widely used to perform phylogenetic studies in different animal species. In pigs, genetic variability at the cytochrome B gene and the D-loop region has been used as a tool to dissect the genetic relationships between different breeds and populations. In this work, we analysed four SNP at the cytochrome B gene to infer the Asian (A1 and A2 haplotypes) or European (E1 and E2 haplotypes) origins of several European standard and local pig breeds. We found a mixture of Asian and European haplotypes in the Canarian Black pig (E1, A1 and A2), German Piétrain (E1, A1 and A2), Belgian Piétrain (E1, A1), Large White (E1 and A1) and Landrace (E1 and A1) breeds. In contrast, the Iberian (Guadyerbas, Ervideira, Caldeira, Campanario, Puebla and Torbiscal strains) and the Majorcan Black pig breeds only displayed the E1 haplotype. Our results show that the introgression of Chinese pig breeds affected most of the major European standard breeds, which harbour Asian haplotypes at diverse frequencies (15–56%). In contrast, isolated local Spanish breeds, such as the Iberian and Majorcan Black pig, only display European cytochrome B haplotypes, a feature that evidences that they were not crossed with other Chinese or European commercial populations. These findings illustrate how geographical confinement spared several local Spanish breeds from the extensive introgression event that took place during the 18th and 19th centuries in Europe.  相似文献   

9.
The time since the divergence of European and East Asian domestic pigs and wild boars has been estimated in several phylogenetic analyses, generally based on partial mitochondrial sequences or on a small number of complete mtDNA sequences. In the present study, we obtained a refined estimate of this divergence time based on a set of 32 near‐complete mtDNA sequences from wild and domestic pigs of European and Asian types, including 14 new and 18 previously published sequences. A weighted average for different functional mtDNA components resulted in an estimate of 746 000 YBP for the divergence of Asian‐type from European‐type pigs. In addition, our data allowed us to estimate a divergence time between wild and domestic European pigs of 8500 YBP. However, it must be considered cautiously, as most of the estimated values of this sequence divergence were not different from zero, and isolation between wild and domestic pigs has never been complete.  相似文献   

10.
In order to elucidate the precise phylogenetic relationships of Korean wild boar (Sus scrofa coreanus), a partial mtDNA D-loop region (1,274 bp, NC_000845 nucleotide positions 16576-1236) was sequenced among 56 Korean wild boars. In total, 25 haplotypes were identified and classified into four distinct subgroups (K1 to K4) based on Bayesian phylogenetic analysis using Markov chain Monte Carlo methods. An extended analysis, adding 139 wild boars sampled worldwide, confirmed that Korean wild boars clearly belong to the Asian wild boar cluster. Unexpectedly, the Myanmarese/Thai wild boar population was detected on the same branch as Korean wild boar subgroups K3 and K4. A parsimonious median-joining network analysis including all Asian wild boar haplotypes again revealed four maternal lineages of Korean wild boars, which corresponded to the four Korean wild boar subgroups identified previously. In an additional analysis, we supplemented the Asian wild boar network with 34 Korean and Chinese domestic pig haplotypes. We found only one haplotype, C31, that was shared by Chinese wild, Chinese domestic and Korean domestic pigs. In contrast to our expectation that Korean wild boars contributed to the gene pool of Korean native pigs, these data clearly suggest that Korean native pigs would be introduced from China after domestication from Chinese wild boars.  相似文献   

11.
Mitochondrial genetic variations were used to investigate the relationships between two Japanese wild boars, Japanese wild boar (Sus scrofa leucomystax) and Ryukyu wild boar (S.s. riukiuanus). Nucleotide sequences of the control (27 haplotypes) and cytochrome b (cyt-b) regions (19 haplotypes) were determined from 59 Japanese wild boars, 13 Ryukyu wild boars and 22 other boars and pigs. From phylogenetic analyses, the mtDNA of Ryukyu wild boar has a distinct lineage from that of Japanese wild boar, which was classified into the Asian pig lineage. This result suggests that the Ryukyu wild boar has a separate origin from the Japanese wild boar.  相似文献   

12.
To distinguish pig-wild boar crossbred Inobuta from Japanese wild boar populations, a genetic method by using mitochondrial DNA (mtDNA) haplotypes and the nuclear glucosephosphate isomerase-processed pseudogene (GPIP) was developed. Sixteen mtDNA haplotypes from 152 wild boars from Kyushu, Shikoku and Honshu islands of Japan were distinct from those from Asian and European domestic pigs. Five alleles of GPIP were classified into two groups: 1). alleles GPIP*1, GPIP*3 and GPIP*3a from Japanese wild boars, Asian wild boars and domestic pigs; 2). alleles GPIP*4 and GPIP*4a from European wild boars and domestic pigs. An extensive genetic survey was done to distinguish the crossbred Inobuta from 60 wild boars hunted on Tsushima Island, Goto Islands, and Nagasaki and Ooita Prefectures. The mtDNA haplotypes from the 60 samples showed Japanese wild boars, but four wild boar samples from Nagasaki Prefecture had the European GPIP allele, GPIP*4. These results showed that nuclear DNA polymorphism analysis is useful, in addition to mtDNA haplotype assay, to detect "Inobuta" having the European genotype from Japanese wild boar populations.  相似文献   

13.
Mitochondrial DNA (mtDNA) control regions from 40 Japanese wild boars were examined by direct sequencing after amplification by PCR. From the DNA sequences obtained, we found eight haplotypes, whose differences arose via transitions. The geographical distribution of these different haplotypes indicated that wild boar populations inhabited limited areas and that there was some restricted gene flow between local populations. Eight mtDNA haplotypes from Eastern and Western domestic pigs and the Ryukyu wild boar were also analyzed as references to those from Japanese wild boars. The cluster analyses of the control-region sequences showed that those from Japanese wild boards belong to the Asian type as do those from Eastern domestic pigs and the Ryukyu wild boar, which differed from the European type (Western domestic pigs).  相似文献   

14.
Mitochondrial DNA (mtDNA) sequences (574 bp) of 30 Vietnamese pigs (large and small) were examined and compared with those of 61 haplotypes from wild boars and domestic pigs from various locations in Asia. The large Vietnamese pigs had genetic links to Ryukyu wild boars in southern Japan. The small Vietnamese pigs were closely related to other East Asian domestic pigs. These results indicate that Vietnamese pigs are genetically diverse and may be descendents of wild and domestic pigs from other regions of Asia.  相似文献   

15.
Ancient DNA (aDNA) provides direct evidence of historical events that have modeled the genome of modern individuals. In livestock, resolving the differences between the effects of initial domestication and of subsequent modern breeding is not straight forward without aDNA data. Here, we have obtained shotgun genome sequence data from a sixteenth century pig from Northeastern Spain (Montsoriu castle), the ancient pig was obtained from an extremely well-preserved and diverse assemblage. In addition, we provide the sequence of three new modern genomes from an Iberian pig, Spanish wild boar and a Guatemalan Creole pig. Comparison with both mitochondrial and autosomal genome data shows that the ancient pig is closely related to extant Iberian pigs and to European wild boar. Although the ancient sample was clearly domestic, admixture with wild boar also occurred, according to the D-statistics. The close relationship between Iberian, European wild boar and the ancient pig confirms that Asian introgression in modern Iberian pigs has not existed or has been negligible. In contrast, the Guatemalan Creole pig clusters apart from the Iberian pig genome, likely due to introgression from international breeds.  相似文献   

16.
Previous mitochondrial DNA (mtDNA) studies have suggested that European and Asian pig populations were derived through multiple domestication events. We investigated whether domestic pig populations were derived from distinct ancestors within their respective regions, using eight domestic breeds (five European and three Asian), and also European and Asian wild boar populations. Genomic analyses utilized 21 microsatellite markers (MS) selected for their distribution across the pig genome in addition to the mtDNA D-loop region. The number of alleles per MS loci ranged from 8 (Sw2008) to 16 (S0097 and S0218). Few significant departures from Hardy–Weinberg equilibrium were detected, suggesting the absence of heterozygote deficiencies. Analyses within populations revealed observed mean heterozygosity from 0.48 (Erhualian) to 0.68 (Dutch WB) and an expected mean heterozygosity from 0.53 (Hampshire) to 0.80 (Japanese WB) with effective alleles ranging from 2.28 (Hampshire) to 3.74 (French WB). Wild boar populations demonstrated a higher level of heterozygosity than domestic breeds. Genetic differentiation estimated by fixation indices (FST) ranged from 0.021 (Yorkshire and Duroc) to 0.410 (Meishan and Hampshire) and was consistent with previous mtDNA analysis. Both phylogenetic and principal component analyses revealed a distinct separation of European and Asian derived populations with tight clustering of the European domestic breeds. Conversely, the use of both MS and mtDNA clarified that the Asian populations were comprised of three groups, one represented by Erhualian and Meishan breed, the second represented by Lanyu pigs and the third represented by the Asian wild boars. The current findings support the hypothesis that Asian domestic populations were derived from multiple Asian ancestral origins whereas the European domestic populations represent a single ancestral European lineage.  相似文献   

17.
Up to date, the scarcity of publicly available complete mitochondrial sequences for European wild pigs hampers deeper understanding about the genetic changes following domestication. Here, we have assembled 26 de novo mtDNA sequences of European wild boars from next generation sequencing (NGS) data and downloaded 174 complete mtDNA sequences to assess the genetic relationship, nucleotide diversity, and selection. The Bayesian consensus tree reveals the clear divergence between the European and Asian clade and a very small portion (10 out of 200 samples) of maternal introgression. The overall nucleotides diversities of the mtDNA sequences have been reduced following domestication. Interestingly, the selection efficiencies in both European and Asian domestic pigs are reduced, probably caused by changes in both selection constraints and maternal population size following domestication. This study suggests that de novo assembled mitogenomes can be a great boon to uncover the genetic turnover following domestication. Further investigation is warranted to include more samples from the ever-increasing amounts of NGS data to help us to better understand the process of domestication.  相似文献   

18.
Restriction endonuclease cleavage patterns of mitochondrial DNA (mtDNA) in pigs were analyzed using 18 enzymes which recognize six nucleotides and 1 four-nucleotide-recognizing enzyme. Pigs including Taiwan native breeds and miniature strains maintained in Japan were examined in this study; four commercial breeds of pigs and Japanese wild boars have been investigated earlier [Watanabe, T., et al. (1985). Biochem. Genet. 23:105]. mtDNA polymorphisms were observed in the cleavage patterns of five restriction enzymes, Bg1II, EcoRV, ScaI, StuI, and TaqI. The results support the previous hypothesis that pigs must be derived from two different maternal origins, European and Asian wild boars, and that a breed, Large White, arises from both European and Asian pigs. Two HindIII cleavage fragments were cloned into the HindIII site of M13mp10 and were partially sequenced by the dideoxynucleotide-chain termination method. Furthermore, DraI and StuI cleavage sites were newly determined on the restriction endonuclease map. On the basis of these results, the restriction endonuclease cleavage map of pig mtDNA was rewritten. Comparing sequence data of pig mtDNA at 237 positions with those of cow, human, mouse, and rat mtDNA, the sequence difference, silent and replacement changes, and transitions and transversions among mammalian species were estimated. The relationships among them are discussed.  相似文献   

19.
TYR基因外显子1的序列变异   总被引:7,自引:1,他引:6  
韩洪金  吴桂生  史宪伟  张亚平 《遗传》2005,27(5):719-723
为了分析家猪与野猪的遗传多样性及起源,测定了来自12个中国地方家猪品种、3个欧洲引进猪品种以及8个中国野猪和2个越南野猪共36个个体的酪氨酸酶基因(TYR)外显子1的序列,共检出6个单核苷酸多态性位点(SNPs),且这6个位点的变异均为同义突变,根据这些变异可将酪氨酸酶基因DNA序列归结为4种单倍型。结合已发表的数据,构建了简约中介网络图。 在网络图中,单倍型TYR*2主要为欧洲家猪与欧洲野猪和三条亚洲家猪染色体。大部分亚洲家猪和野猪共享单倍型TYR*1,表明这是一个亚洲类型的单倍型;同时也有部分欧洲家猪与野猪携带这一单倍型。 而单倍型TYR*3和TYR*4为本研究检测到的稀有单倍型,这两种单倍型主要由中国家猪与亚洲野猪组成。这种网络图结构支持家猪的欧洲和亚洲独立起源学说,同时也表明相当部分的欧洲家猪品种受到亚洲猪的基因渗透,而少量中国家猪和日本野猪也受到了欧洲猪的基因渗透。  相似文献   

20.
We have studied the cytochrome B gene and control region DNA variability in 14 wild boars from the Primorsky Region, in the far east corner of Russia. Variability was low (π = 0.00248 overall) compared with the usual estimates in these loci, indicating that this is a rather closed population. Seven haplotypes were found, and one was identical to a Chinese wild boar. Phylogeographically, the sequences clustered among several Asian clades, primarily Chinese domestic pigs and Japanese and Chinese wild boars, and are positioned within the D2 clade reported by Larson et al. [ Science 307 , 2005; 1618 ]. Although North Korean pigs should be studied, our data suggest that the Primorsky mtDNA signature is absent from domestic pigs. Sequences are available through GenBank identifiers HM010461 – HM010488 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号