首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Protein sorting upon exit from the endoplasmic reticulum   总被引:18,自引:0,他引:18  
Muñiz M  Morsomme P  Riezman H 《Cell》2001,104(2):313-320
It is currently thought that all secretory proteins travel together to the Golgi apparatus where they are sorted to different destinations. However, the specific requirements for transport of GPI-anchored proteins from the endoplasmic reticulum to the Golgi apparatus in yeast could be explained if protein sorting occurs earlier in the pathway. Using an in vitro assay that reconstitutes a single round of budding from the endoplasmic reticulum, we found that GPI-anchored proteins and other secretory proteins exit the endoplasmic reticulum in distinct vesicles. Therefore, GPI-anchored proteins are sorted from other proteins, in particular other plasma membrane proteins, at an early stage of the secretory pathway. These results have wide implications for the mechanism of protein exit from the endoplasmic reticulum.  相似文献   

3.
Two different proteins precipitable with antiserum to albumin exist in liver. One is albumin, the other is precursor albumin. Liver cells in suspension contain mainly precursor, but secrete only albumin. In subcellular fractions isolated from liver homogenate, 95.3% of anti-albumin precipitable protein in the rough endoplasmic reticulum, 51.4% in the smooth endoplasmic reticulum, 33.5% in the Golgi apparatus and 0% in the supernatant fraction was precursor albumin. The results suggest that albumin precursor is synthesized in the rough endoplasmic reticulum and converted into albumin in the smooth endoplasmic reticulum and the Golgi apparatus.  相似文献   

4.
D.A. Brodie 《Tissue & cell》1982,14(2):263-271
Exposure of insect fat body to treatments which disrupt microtubules (colchicine, vinblastine sulfate and cold treatment) blocks intracellular transport between the Golgi complex and the plasma membrane but does not affect Golgi complex bead rings or transport from rough endoplasmic reticulum to the Golgi complex. Drugs which disrupt microfilaments (cytochalasins B and D) do not affect the bead rings or intracellular transport of secretory proteins at any level. Thus, intracellular transport between the rough endoplasmic reticulum and the Golgi complex and the arrangement of the beads in rings are both independent of the cytoskeleton. The ring arrangement is presumably maintained by interconnection(s) with rough endoplasmic reticulum membrane.  相似文献   

5.
We investigated the relative distributional persistence of Golgi 'matrix' proteins and glycosyltransferases to an endoplasmic reticulum exit block induced by expression of a GDP-restricted Sar1p. HeLa cells were microinjected with plasmid encoding the GDP-restricted mutant (T39N) of Sar1p to block endoplasmic reticulum exit and then scored for the distribution of GM130 (Golgi m atrix protein of 130  kDa), a cis located golgin; p27, a member of the p24 family of proteins; giantin, a protein that interacts indirectly with GM130; and the Golgi glycosyltransferase, N-acetylgalactosaminyltransferase-2 (GalNAcT2). All of these proteins lost their compact, juxtanuclear distribution and displayed characteristics of endoplasmic reticulum/cytoplasmic accumulation with the same dependence on plasmid concentration. The kinetics of redistribution of GM130 and GalNAcT2 were identical. Expression of Sar1pT39N displaced the COPII coat protein Sec13p from endoplasmic reticulum exit sites consistent with disruption of these sites. This occurred without disturbing the overall distribution of endoplasmic reticulum membrane. Furthermore, the reassembly of a juxtanuclear Golgi matrix as assayed by the distribution of GM130 following washout of the Golgi disrupting drug, brefeldin A, was blocked by microinjected Sar1pT39N plasmids. We conclude that the persistence, i.e. stability and maintenance, of Golgi matrix distribution and its reassembly following drug disruption are exquisitely dependent on Sar1p activity.  相似文献   

6.
The fine structural localization of albumin in rat liver parenchymal cells was determined by an improved immunocytochemical method and serial sectioning. Albumin in the secretory apparatus of the parenchymal cells was present in segments of the rough endoplasmic reticulum, interrupted with negative segments, in transport vesicles, Golgi saccules, finely anastomosed tubules and vesicles on the trans side of the Golgi complex, and in secretion granules. Horizontally sectioned Golgi saccules contained lipoprotein particles on one side and albumin on the other side. After transport, the vesicles that contained albumin fused with the so-called rigid lamellae on the trans-side of the Golgi complex. Ultrathin serial sections revealed no true structural continuity between the endoplasmic reticulum and the cis-aspect of the Golgi complex. We concluded that secretory proteins are transported from the endoplasmic reticulum to the Golgi complex by transport vesicles that bud from the endoplasmic reticulum and fuse with the Golgi saccules. These vesicles fuse regularly with the Golgi saccules on the cis-side and occasionally with tubular elements on the trans-aspect that may belong to the so-called GERL.  相似文献   

7.
In plant cells, the organization of the Golgi apparatus and its interrelationships with the endoplasmic reticulum differ from those in mammalian and yeast cells. Endoplasmic reticulum and Golgi apparatus can now be visualized in plant cells in vivo with green fluorescent protein (GFP) specifically directed to these compartments. This makes it possible to study the dynamics of the membrane transport between these two organelles in the living cells. The GFP approach, in conjunction with a considerable volume of data about proteins participating in the transport between endoplasmic reticulum and Golgi in yeast and mammalian cells and the identification of their putative plant homologues, should allow the establishment of an experimental model in which to test the involvement of the candidate proteins in plants. As a first step towards the development of such a system, we are using Sar1, a small G-protein necessary for vesicle budding from the endoplasmic reticulum. This work has demonstrated that the introduction of Sar1 mutants blocks the transport from endoplasmic reticulum to Golgi in vivo in tobacco leaf epidermal cells and has therefore confirmed the feasibility of this approach to test the function of other proteins that are presumably involved in this step of endomembrane trafficking in plant cells.  相似文献   

8.
In contrast to all other viruses that use the host machinery located in the endoplasmic reticulum and Golgi to glycosylate their glycoproteins, the large dsDNA-containing chlorella viruses encode most, if not all, of the components to glycosylate their major capsid proteins. Furthermore, all experimental results indicate that glycosylation occurs independent of the endoplasmic reticulum and Golgi.  相似文献   

9.
Despite studies of the mechanism underlying the intracellular localization of membrane proteins, the specific mechanisms by which each membrane protein localizes to the endoplasmic reticulum, Golgi apparatus, and plasma membrane in the secretory pathway are unclear. In this study, a discriminant analysis of endoplasmic reticulum, Golgi apparatus and plasma membrane-localized type II membrane proteins was performed using a position-specific scoring matrix derived from the amino acid propensity of the sequences around signal-anchors. The possibility that the sequence around the signal-anchor is a factor for identifying each localization group was evaluated. The discrimination accuracy between the Golgi apparatus and plasma membrane-localized type II membrane proteins was as high as 90%, indicating that, in addition to other factors, the sequence around signal-anchor is an essential component of the selection mechanism for the Golgi and plasma membrane localization. These results may improve the use of membrane proteins for drug delivery and therapeutic applications.  相似文献   

10.
The sites of synthesis of proteins and their subsequent migration in rat liver have been studied during a 75 min period after labeling of liver-slice proteins by exposure to leucine-H3 for 2 min. Incorporation of the label into protein began after 1 min and was maximal by 4 min. Electron microscopic radioautography showed that synthesis of proteins in hepatocytes occurs mainly on ribosomes, particularly those in rough endoplasmic reticulum and, to some extent, in nuclei and mitochondria. Most of the newly formed proteins leave the endoplasmic reticulum in the course of 40 min, and concurrently labeled proteins appear in Golgi bodies, smooth membranes, microbodies, and lysosomes. A likely pathway for the secretion of some or all plasma proteins is from typical rough endoplasmic reticulum to a zone of reticulum which is partially coated with ribosomes, to the Golgi apparatus, and thence to the cell periphery. The formation of protein by reticuloendothelial cells was measured and found to be about 5% of the total protein formed by the liver.  相似文献   

11.
UDP-galactose reaches the Golgi lumen through the UDP-galactose transporter (UGT) and is used for the galactosylation of proteins and lipids. Ceramides and diglycerides are galactosylated within the endoplasmic reticulum by the UDP-galactose:ceramide galactosyltransferase. It is not known how UDP-galactose is transported from the cytosol into the endoplasmic reticulum. We transfected ceramide galactosyltransferase cDNA into CHOlec8 cells, which have a defective UGT and no endogenous ceramide galactosyltransferase. Cotransfection with the human UGT1 greatly stimulated synthesis of lactosylceramide in the Golgi and of galactosylceramide in the endoplasmic reticulum. UDP-galactose was directly imported into the endoplasmic reticulum because transfection with UGT significantly enhanced synthesis of galactosylceramide in endoplasmic reticulum membranes. Subcellular fractionation and double label immunofluorescence microscopy showed that a sizeable fraction of ectopically expressed UGT and ceramide galactosyltransferase resided in the endoplasmic reticulum of CHOlec8 cells. The same was observed when UGT was expressed in human intestinal cells that have an endogenous ceramide galactosyltransferase. In contrast, in CHOlec8 singly transfected with UGT 1, the transporter localized exclusively to the Golgi complex. UGT and ceramide galactosyltransferase were entirely detergent soluble and form a complex because they could be coimmunoprecipitated. We conclude that the ceramide galactosyltransferase ensures a supply of UDP-galactose in the endoplasmic reticulum lumen by retaining UGT in a molecular complex.  相似文献   

12.
Golgi Microtubule-Associated Protein (GMAP)-210 is a peripheral coiled-coil protein associated with the cis -Golgi network that interacts with microtubule minus ends. GMAP-210 overexpression has previously been shown to perturb the microtubule network and to induce a dramatic enlargement and fragmentation of the Golgi apparatus (Infante C, Ramos-Morales F, Fedriani C, Bornens M, Rios RM. J Cell Biol 1999; 145: 83–98). We now report that overexpressing GMAP-210 blocks the anterograde transport of both a soluble form of alkaline phosphatase and the hemagglutinin protein of influenza virus, an integral membrane protein, between the endoplasmic reticulum and the cis /medial (mannosidase II-positive) Golgi compartment. Retrograde transport of the Shiga toxin B-subunit is also blocked between the Golgi apparatus and the endoplasmic reticulum. As a consequence, the B-subunit accumulates in compartments positive for GMAP-210. Ultrastructural analysis revealed that, under these conditions, the Golgi complex is totally disassembled and Golgi proteins as well as proteins of the intermediate compartment are found in vesicle clusters distributed throughout the cell. The role of GMAP-210 on membrane processes at the interface between the endoplasmic reticulum and the Golgi apparatus is discussed in the light of the property of this protein to bind CGN membranes and microtubules.  相似文献   

13.
Summary Membrane-bounded organelles possessing cisternae, i.e., rough endoplasmic reticulum and Golgi apparatus, in immature rat central neurons were examined by quick-freeze and deep-etch techniques to see how their intracisternal structures are organized and how ribosomes are associated with the membrane of the endoplasmic reticulum. Cisternae of endoplasmic reticulum, 60–100 nm wide, were bridged with randomly-distributed strands (trabecular strands, 12.5 nm in mean diameter). Luminal surfaces of cisternae of the endoplasmic reticulum were decorated with various-sized globular particles, some as small as intramembrane particles, and others as large as granules formed by soluble proteins seen in the cytoplasm. A closer examination revealed much thinner strands (3.3. nm in mean diameter). Such thin strands were short, usually winding toward the luminal surface, and sometimes touching the luminal surface with one end. Ribosomes appeared to be embedded into the entire thickness of cross-fractured membranes of endoplasmic reticulum, that is, their internal portions appeared to be situated at almost the same level as the cisternal luminal surface. From the internal portion of ribosomes, single thin strands occasionally protruded into the lumen, suggesting that these thin strands were newly synthesized polypeptides. A horizontal separation within ribosomes appeared to occur at the same level as the hydrophobic middle of the membrane of the endoplasmic reticulum. Interiors of the Golgi apparatus cisternae, which were much narrower than cisternae of endoplasmic reticulum, were similarly bridged with trabecular strands, but the Golgi trabecular strands were thinner and more frequent. Their cisternal lumina were also dotted with globular particles. No identifiable profiles corresponding to the thin strands in the endoplasmic reticulum were observed. Golgi cisternae showed a heterogeneous distribution of membrane granularity; the membrane in narrow cisternal space was granule-rich, while that in expanded space was granule-poor, suggesting a functional compartmentalization of the Golgi cisternae.  相似文献   

14.
The monovalent ionophore monensin inhibits the secretion of both procollagen and fibronectin from human fibroblasts in culture. The distribution of these proteins in control and inhibited (5 x 10(-7) M monensin) cells has been studied by immunofluorescence microscopy. In control cells, both antigens are present throughout the cytoplasm and in specific deposits in a region adjacent to the nucleus, which we identify as a Golgi zone by electron microscopy. Treatment of cells with monensin causes intracellular accumulation of procollagen and fibronectin, initially in the juxta-nuclear region and also subsequently in peripheral regions. Electron microscope studies reveal that in such cells the juxta-nuclear Golgi zone becomes filled with a new population of smooth-membraned vacuoles and that normal Golgi complexes are not found. Immunocytochemically detected procollagen and fibronectin are localized in the region of these vacuoles, whereas more peripheral deposits correspond to the dilated cisternae of rough endoplasmic reticulum, which are also caused by monensin. Procollagen and fibronectin are often codistributed in these peripheral deposits. Accumulation of exportable proteins in Golgi-related vacuoles is consistent with previous analyses of the monensin effect. The subsequent development of dilated rough endoplasmic reticulum also containing accumulated proteins may indicate that there is an additional blockade at the exit from the endoplasmic reticulum, or that the synthesized proteins exceed the capacity of the Golgi compartment and that their accumulation extends into the endoplasmic reticulum.  相似文献   

15.
The eukaryotic endoplasmic reticulum operates multiple quality control mechanisms to ensure that only properly folded proteins are exported to their final destinations via the secretory pathway and those that are not are destroyed via the degradation pathway. However, molecular mechanisms underlying such regulated exportation to these distinct routes are unknown. In this article, we report the role of Drosophila arf72A--the fly homologue of the mammalian Arl1 - in the quality checks of proteins and in the autosomal-dominant retinopathy. ARF72A localizes to the Golgi membranes of Drosophila photoreceptor cells, consistent with mammalian Arl1 localization in cell culture systems. A loss of arf72A function changes the membrane character of the endoplasmic reticulum and shifts the membrane balance between the endoplasmic reticulum and the Golgi complex toward the Golgi complex, resulting in over-proliferated Golgi complexes and accelerated protein secretion. Interestingly, our study indicated that more ARF72A localized on the endoplasmic reticulum in the ninaE(D1) photoreceptor cell, a Drosophila model of autosomal-dominant retinitis pigmentosa, compared to that in the wild-type. In addition, arf72A loss was shown to rescue the ninaE(D1)-related membrane accumulation and the rhodopsin maturation defect, and suppress ninaE(D1)-triggered retinal degeneration, indicating that rhodopsin accumulated in the endoplasmic reticulum bypasses the quality checks. While previous studies of ARF small GTPases have focused on their roles in vesicular budding and transport between the specific organelles, our findings establish an additional function of arf72A in the quality check machinery of the endoplasmic reticulum distinguishing the cargoes for secretion from those for degradation.  相似文献   

16.
Eukaryotic cells use a variety of strategies to inherit the Golgi apparatus. During vertebrate mitosis, the Golgi reorganizes dramatically in a process that seems to be driven by the reversible fragmentation of existing Golgi structures and the temporary redistribution of Golgi components to the endoplasmic reticulum. Several proteins that participate in vertebrate Golgi inheritance have been identified, but their detailed functions remain unknown. A comparison between vertebrates and other eukaryotes reveals common mechanisms of Golgi inheritance. In many cell types, Golgi stacks undergo fission early in mitosis. Some cells exhibit a further Golgi breakdown that is probably due to a mitotic inhibition of membrane traffic. In all eukaryotes examined, Golgi inheritance involves either the partitioning of pre-existing Golgi elements between the daughter cells or the emergence of new Golgi structures from the endoplasmic reticulum, or some combination of these two pathways.  相似文献   

17.
In primary cultures of new-born rat liver tissue, albumin and frbrinogen, two proteins normally synthesized by the liver and secreted into plasma were demonstrated by specific antibodies labelled with peroxidase in about 50 and 70% of the hepatocytes; these proteins were not demonstrated in the other types of cells, in particular fibroblasts, present in primary cultures. These two proteins were detected on the ribosomes of the rough endoplasmic reticulum and were also present in the lumina of the rough and smooth endoplasmic reticulum and in the Golgi apparatus. It is concluded that
1. 1. In primary cultures of liver tissue, only the hepatocytes synthesize albumin and fibrinogen.
2. 2. Proliferating cultured hepatocytes are able to synthesize albumin and fibrinogen.
3. 3. The presence of detectable albumin and fibrinogen in the lumina of the rough and smooth endoplasmic reticulum and in the Golgi apparatus in hepatocytes of primary cultures and their absence in the lumina of the rough and smooth endoplasmic reticulum and in the Golgi apparatus in the hepatocytes of adult rat liver might indicate an alteration in the translocation of albumin and fibrinogen through these organelles in cultured hepatocytes.
  相似文献   

18.
The endoplasmic reticulum and Golgi apparatus play key roles in regulating the folding, assembly, and transport of newly synthesized proteins along the secretory pathway. We find that the divalent cation manganese disrupts the Golgi apparatus and endoplasmic reticulum (ER). The Golgi apparatus is fragmented into smaller dispersed structures upon manganese treatment. Golgi residents, such as TGN46, beta1,4-galactosyltransferase, giantin, and GM130, are still segregated and partitioned correctly into smaller stacked fragments in manganese-treated cells. The mesh-like ER network is substantially affected and peripheral ER elements are collapsed. These effects are consistent with manganese-mediated inhibition of motor proteins that link membrane organelles along the secretory pathway to the cytoskeleton. This divalent cation thus represents a new tool for studying protein secretion and membrane dynamics along the secretory pathway.  相似文献   

19.
In animal cells, the Golgi complex undergoes reversible disassembly during mitosis. The disassembly/reassembly process has been intensively studied in order to understand the mechanisms that govern organelle assembly and inheritance during cell division. A long-standing controversy in the field has been whether formation of Golgi structure is template-mediated or self-organizes from components of the endoplasmic reticulum. A recent study1 however, has demonstrated that a subset of proteins that form a putative Golgi matrix can be inherited during cell division in the absence of membrane input from the endoplasmic reticulum. The outcome of this study suggests that a templating mechanism for the formation of Golgi structure may exist. This study has important implications for understanding mechanisms that govern Golgi biogenesis.  相似文献   

20.
In the last eighteen months, it has become clear that some classes of proteins are actively recruited into endoplasmic reticulum export carriers, whereas others are exported as bulk-flow cargo. Subsequent transport to the Golgi is mediated by tubulovesicular membranes. The anterograde membrane flow is compensated for by a retrograde pathway, which, in addition to the recycling of membrane and proteins to the endoplasmic reticulum, may play a role in anterograde cargo concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号