首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The characteristics of phosphate uptake and photosynthetic capacity were studied in P-limited populations of Euglena gracilis Klebs (Z), using both P-limited batch cultures in stationary phase and cyclostat cultures grown on 14:10 LD. P uptake obeyed Michaelis-Menten kinetics between 0 and 150 μM PO4 under both growth conditions. The value of Vmax was 35% lower in the dark than in the light in the stationary phase cells. The value of K8 was not affected by light conditions, and uptake was completely inhibited in the presence of 1 mm KCN. P uptake (at 2.0 μM PO4) and photosynthetic capacity showed diel periodicity with peak rates occurring just before the beginning of the dark period for P uptake, and 8 h into the light period for photosynthetic capacity. Vmax for P uptake increased by a factor of 1.5 over the light period, whereas K8 remained constant at 1.4 μM PO4. These patterns were displayed by both nondividing stationary phase cells and populations in which less than a third of the cells divided each day, indicating that the rhythmicity is not coupled to cell division.  相似文献   

2.
Rb+ uptake into protoplasts isolated from the mesophyll of Pisum sativum L. cv. Dan has been followed at intervals of a few minutes in the light and in the dark. The progress curve for uptake in the dark decreased in slope after about 7 min; in the light, by contrast, the slope increased. This effect was more pronounced at pH 7 than at pH 5.5. The pH profile for uptake in the dark rose with increasing pH: in the light the profile flattened, or even fell somewhat, between pH 5.5 and pH 6.5, then rose again. In the dark the proton uncoupler carbonyl cyanide m-chlorphenylhydrazone (CCCP) had little or no effect, either at pH 5.5 or at pH 7.4; in the light CCCP was strongly inhibitory, particularly at pH 7.4. Increasing concentrations of CCCP produced progressively more and more severe inhibition in the light, but in the dark produced a slight rise in uptake. The ATPase inhibitors quercetin, rutin and diethyl-stilbestrol, as well as arsenate, all depressed uptake in the light, particularly at higher pH Dark uptake was sensitive only at pH 5.5, not at pH 7.4. In marked contrast to the case of methyl-3 glucose, where protoplasts which were switched from light to dark took up sugar at the accelerated light rate for the first 7 min in the dark, a switch to darkness produced a Rb+ uptake rate below that for protoplasts held continuously in the dark. It is inferred that the mechanism of Rb+ uptake does not involve proton cotransport. Information regarding the membrane potential was obtained by following the distribution of tetraphenyl phosphonium (TPP+) between protoplasts and medium. The potential was more negative in the light than in the dark. It was also more negative at pH 7 than at pH 5 both in the light and in the dark. Treatment with CCCP produced no appreciable depolarization within the first 20 min, indicating thet the CCCP inhibition of Rb+ uptake in the light cannot be ascribed to a reduction in potential. An ATP-fueled K+ porter, or K+-H+ antiporter, seems the most likely explanation. The maintenance of the rising pH profile in the dark, despite the presence of a CCCP concentration which drastically inhibits light uptake, suggests that the profile does not depend on the operation of the proton pump.  相似文献   

3.
A. Steiner    L. Price    K. Mitrakos    W. H. Klein 《Physiologia plantarum》1968,21(4):895-901
Red light effects on the uptake of 14C and of 32P was studied by observing leaf sections from 8-day-old etiolated corn leaves that were placed on various substrates following a brief exposure to red radiant energy. There was a general increase of 14C uptake over dark levels into all metabolite fractions that were prepared. This is in contrast with results obtained previously in which leaf samples were first floated on substrate and then irradiated (Mitrakos et al. 1967, Price et al. 1965). The latter tests resulted in a general decrease in sugar and starch as well as 14C content of all fractions. However, under both types of experimental conditions the red light effect manifested itself as an increase in hexosemonophosphate turn-over rate and accumulation of radioactivity in the cell wall polysaccharide fraction. The present data further substantiate the previous work in that they demonstrate the regulatory influence of the hexose pool size on the intermediary metabolism and the manifestation of the phytochrome responses. From the data thus far obtained it cannot be determined as to whether or not phytochrome mediates by controlling phosphorylating activity or through control of specific enzymatic processes that lead to observable cell wall polysaccharide synthesis and leaf unrolling.  相似文献   

4.
Summary The binding and uptake of nick-translated 32P-labeled pBR322 by Anacystis nidulans 6301 have been characterized. Both processes were considerably enhanced in permeaplasts compared to cells. The breakdown of labeled DNA was not correlated with binding or uptake by permeaplasts or cells. Uptake of DNA by permeaplasts was unaffected by: Mg2+ or Ca2+, light, or inhibitors of photophosphorylation such as valinomycin or gramicidin D in the presence or absence of NH4Cl. ATP at 2.5–10 mM inhibited both binding and uptake of labeled DNA by permeaplasts of A. nidulans whereas the ATP analog adenyl-5-yl imido-diphosphate was non-inhibitory in the same concentration range. In contrast to transformation of A. nidulans 6301 cells to ampicillin-resistance by pBR322, transformation to kanamycin-resistance by the plasmid pHUB4 was considerably enhanced in the dark. The transformation efficiency for permeaplasts by the plasmid pCH1 was 59% and 8% in the dark and light, respectively, whereas transformation of permeaplasts by pBR322 at an efficiency of 16% was absolutely light-dependent.  相似文献   

5.
In a previous study, we characterized Cd–Hg interactions for uptake in human intestinal Caco-2 cells. We pursued our investigations on metal uptake from metal mixtures, focusing on the effects of Hg on cellular homeostasis. A 4-fold higher equilibrium accumulation value of 0.3 μmol/L 203Hg was measured in the presence of 100 μmol/L unlabeled Hg in the serum-free exposure medium without modification in the initial uptake rate. This phenomenon was eliminated at 4C. Mercury induced an increase in tritiated water and [3H]mannitol uptakes for exposure times greater than 20 min. Incubations for 20 min and 30 min with 100 μmol/L Hg and 2 mmol/L N-ethylmaleimide (NEM) resulted in a 34% and 50% reductions in cellular thiol staining, respectively, with additive effects. Lactate dehydrogenase leakage and live/dead assays confirmed the maintenance of cell membrane integrity in Hg- or NEM-treated cells. We conclude that Hg may alter membrane permeability and increase cell volume without any loss in cell viability. This phenomenon is sensitive to temperature and could involve Hg interaction with membrane thiols, possibly related to solute transport. During metal uptake from metal mixtures, Hg may thus promote the uptake of other toxic metals by increasing cell volume and consequently cell capacity. Deceased 25 March 2004  相似文献   

6.
Chlamydomonas reinhardii Dangeard was grown in continuous culture under P limitation at a range of dilution rates. Carbon uptake measurements were performed using double isotope (12C/14C) techniques and the fluxes of carbon in the light and dark were analysed over the range of growth rates. 14C uptake was shown to be equal to gross photosynthesis only at maximum relative growth rates; at low relative growth rates 14C uptake approximated net photosynthesis. The altered pattern of C uptake was found to be due to the suppression of dark respiration in the light and the release of 14C02 from respiratory pathways at low relative growth rates. Metabolic channelling of 14C from photosynthetic pathways to respiratory pathways occurred at low growth rates as the specific activity of the respired CO2 reached 45% of the input gas mixture. These data are discussed in the light of the controversy concerning the measurement of gross and net photosynthesis in natural populations and in the light of models of 14C uptake in single celled algae. Existing models are shown to be adequate for high relative growth rates but not for low relative growth rates under P limitation.  相似文献   

7.
Uptake of radioactive uracil by light-dark synchronized Cblorella fusca Shihira and Krauss was studied. For the characterization of the uptake system autospores were used and the following results obtained. Autospores kept in the dark accumulated uracil against a concentration gradient in a process having an observed activation energy of 10 keal/mol in the 10–40°C interval. Addition of glucose to the reaction suspension did not affect the uptake, but, 100 γM dinitrophenol inhibited the process by 90%. Abrupt changes in rate were found upon changing the conditions from light to dark and vice versa, and the rates measured in light were about 2.5 times larger than those found in the dark. Initial rates measured in the dark followed saturation kineties with half maximal rate found at 0.25 γM uracil, and with an apparent maximal rate of 1.7.10-10 mol/10 min . 107 cells. The effect of 14 pyrimidines on uptake was tested, and it was found that uracils which were substituted in the 5′ or 5′+ 6′ positions were strongly inhibitory. Of these, thymine and dihydrouracil were tested and shown to inhibit uracil uptake competitively. Initial uptake rates, measured in the dark with 1.0 γM uracil, were recorded at intervals during the 24 h synchronous cycle. The uptake rate per ml culture was constant during the first 9 h, thereafter increasing to reach a peak value at 14 h. This peak was followed by a strong increase from 18 h onwards, this increase being concomitant with the sporulation process, and closely followed its time course.  相似文献   

8.
The stimulation of dicotyledonous leaf growth by light depends on increased H+ efflux, to acidify and loosen the cell walls, and is enhanced by K+ uptake. The role of K+ is generally considered to be osmotic for turgor maintenance. In coleoptiles, auxin‐induced cell elongation and wall acidification depend on K+ uptake through tetraethylammonium (TEA)‐sensitive channels (Claussen et al., Planta 201, 227–234, 1997), and auxin stimulates the expression of inward‐rectifying K+ channels ( Philippar et al. 1999) . The role of K+ in growing, leaf mesophyll cells has been investigated in the present study by measuring the consequences of blocking K+ uptake on several growth‐related processes, including solute accumulation, apoplast acidification, and membrane polarization. The results show that light‐stimulated growth and wall acidification of young tobacco leaves is dependent on K+ uptake. Light‐stimulated growth is enhanced three‐fold over dark levels with increasing external K+, and this effect is blocked by the K+ channel blockers, TEA, Ba++ and Cs+. Incubation in 10 mm TEA reduced light‐stimulated growth and K+ uptake by 85%, and completely inhibited light‐stimulated wall acidification and membrane polarization. Although K+ uptake is significantly reduced in the presence of TEA, solute accumulation is increased. We suggest that the primary role of K+ in light‐stimulated leaf growth is to provide electrical counterbalance to H+ efflux, rather than to contribute to solute accumulation and turgor maintenance.  相似文献   

9.
Iron (Fe) is essential for phytoplankton growth and photosynthesis, and is proposed to be an important factor regulating algal blooms under replete major nutrients in coastal environments. Here, Skeletonema costatum, a typical red-tide diatom species, and Chlorella vulgaris, a widely distributed Chlorella, were chosen to examine carbon fixation and Fe uptake by coastal algae under dark and light conditions with different Fe levels. The cellular carbon fixation and intracellular Fe uptake were measured via 14C and 55Fe tracer assay, respectively. Cell growth, cell size, and chlorophyll-α concentration were measured to investigate the algal physiological variation in different treatments. Our results showed that cellular Fe uptake proceeds under dark and the uptake rates were comparable to or even higher than those in the light for both algal species. Fe requirements per unit carbon fixation were also higher in the dark resulting in higher Fe: C ratios. During the experimental period, high Fe addition significantly enhanced cellular carbon fixation and Fe uptake. Compared to C. vulgaris, S. costatum was the common dominant bloom species because of its lower Fe demand but higher Fe uptake rate. This study provides some of the first measurements of Fe quotas in coastal phytoplankton cells, and implies that light and Fe concentrations may influence the phytoplankton community succession when blooms occur in coastal ecosystems.  相似文献   

10.
Fixation of 14CO2 by synchronized cultures of Ankistrodesmus braunii was highest for young growing cells, low for mature cells, and lowest for dividing cells. The amount of 14C excreted during photosynthesis followed the same trend. Cells at the end of the growing phase, after 10 hours of a 16-hour light phase, excreted nearly 35% of the total 14C fixed as one product, glycolate. Dividing cells from the dark phase, when tested in the light, excreted only 4% as much glycolate-14C as the young growing cells. Dividing cells also excreted as much mesotartrate as glycolate and also some isocitrate lactone and an unidentified acid. None of these excreted acids were found inside the cells in significant amounts. Methods for isolation and identification of the excreted acids are present. With 14C-labeled algae, it was shown that the excretion of glycolate was light-dependent and inhibited by 1,1-dimethyl-3-(p-chlorophenyl) urea. The excretion of labeled mesotartrate, isocitrate lactone, and an unknown acid, but not glycolate, also occurred in the dark. The excreted mesotartrate was predominantly carboxyl-labeled even after long periods of 14CO2 fixation. Since glycolate is known to be uniformly labeled, glycolate could not be the precursor of the carboxyl-labeled mesotartrate. The reason for the specific excretion of glycolate, mesotartrate, and isocitrate lactone is not known, but the metabolism of all three acids by the algae may be limited and each can form dilactides or lactones by dehydration. In this context isocitrate lactone was excreted rather than the free acid.  相似文献   

11.
Anacystis nidulans (Richt.) Drouet & Daily (UTEX 625), grown in batch culture with 0.5% CO2 in air, was supplied with chloride labelled with 36Cl in light and dark. Uptake in light was stimulated relative to uptake in darkness. A single transport system for Cl? with an apparent Km for Cl? of 0.14 mM was identified. Chloride in the cells reached a maximum value after 30–50 min at 25 C. At this point the internal Cl? concentration was calculated to be 60-fold the external (0.1 mM) in light and 37-fold in darkness. DCMU (3-[3,4-dichlorophenyl]–1, 1-dime-thylurea), at concentrations which abolished photosynthetic O2 evolution did not inhibit Cl? uptake in light. Carbonyl cyanide m-chlorophenyl hydrazone (CCCP), at uncoupling concentrations for photosynthesis and dark respiration, strongly inhibited Cl? uptake in light and darkness. N,N'-dicyclohexyl carbodiimide (DCCD), an energy transfer inhibitor, inhibited light Cl? uptake more slowly than photosynthesis but had no effect on dark Cl? uptake. It is concluded that Cl? uptake in A. nidulans was active in light and darkness, and that ATP was the probable energy source for transport.  相似文献   

12.
During a 4-week period in late spring 1998 an extensive Prorocentrum minimum (Pavillard) Schiller bloom developed in several tributaries of the Chesapeake Bay. Experiments were carried out in one of these tributaries using 13C and 15N isotopic techniques to characterize C and N uptake as a function of irradiance during the course of this bloom. Uptake rates of N substrates (NO3, NH4+, urea, and an amino acid mixture) and C substrates (bicarbonate and urea) were measured. For each N substrate, short-term uptake rates (0.5 h) were not substantially different over the irradiance range measured, suggesting that N uptake of this dinoflagellate was not strongly light-dependent over this time scale. Dark uptake rates of all N substrates ranged between 35 and 113% of light uptake rates. Over the duration of the P. minimum bloom, however, total ambient N uptake rates increased with increasing natural irradiance. Uptake of bicarbonate showed typical light-dependent photosynthetic characteristics and the measured photosynthetic parameters suggested that at least on the short time scale (0.5 h), P. minimum cells were adapted to high light. Rates of C uptake from the substrate urea were minimal, <1% of total C uptake from photosynthesis, but doubled over the course of the bloom, and like N uptake, were not strongly light-dependent on the short time scale (0.5 h). Significant N dark uptake by P. minimum was likely to have been important by providing N sources over the daily scale to sustain the bloom.  相似文献   

13.
The leakage of various inorganic carbon species from air-grown cells of Synechococcus UTEX 625 was investigated after a light to dark transition or during a light period using a mass spectrometer under a wide variety of experimental conditions. Total inorganic carbon efflux and CO2 efflux during the initial period of darkness were measured with or without carbonic anhydrase in the reaction medium respectively. The HCO3? efflux after a light to dark transition was estimated by difference. Carbon dioxide efflux in the light was measured by inhibiting CO2 transport with either Na2S or COS3 or quenching the 13C inorganic carbon transport by the addition of 12C inorganic carbon in excess. In cells in which CO2 fixation was inhibited, when only the HCO3? transport system was fully operative, CO2 effluxed continuously during the light period at a rate equal to about 25% of that in darkness. When only the CO2 transport system was operative, HCO3? effluxed during the light period. The difference between the light and dark efflux rates was consistent with a 0.6 unit decrease in the intracellular pH upon darkening the cells. The permeabilities of the cell for CO2 (2.94 ± 0.14 ± 10?8ms?1; mean ± SE, n=137) and HCO3? (1.4–1.7 ± 10?9 ms?1) were calculated.  相似文献   

14.
1. Planktothrix rubescens is the dominant photoautotrophic organism in Lake Zürich, a prealpine, deep, mesotrophic freshwater lake with an oxic hypolimnion. Over long periods of the year, P. rubescens accumulates at the metalimnion and growth occurs in situ at irradiance near the photosynthesis compensation point. Experiments were conducted to evaluate the contribution of photoheterotrophy, heterotrophy and light‐dependent uptake of nitrogenous organic compounds to the carbon and nitrogen budget of this cyanobacterium under conditions of restricted availability of light quanta. 2. We used both purified natural populations of P. rubescens from the depth of 9 m and an axenic culture grown under low irradiance at 11 μmol m?2 s?1 on a light : dark cycle (10 : 14 h) to determine the uptake rates of various amino acids, urea, glucose, fructose, acetate and inorganic carbon. The components were added to artificial lake water in low amounts that simulated the naturally occurring potential concentrations. 3. The uptake rates of acetate and amino acids (glycine, serine, glutamate and aspartate) were strongly enhanced at low irradiance as compared with the dark. However, no difference was observed in the uptake of arginine, which was taken up at high rates under both treatments. The uptake rates of glucose, fructose and urea were very low under all conditions. Similar results were obtained for both axenic P. rubescens and for purified natural populations of P. rubescens that were separated from bacterioplankton and other phytoplankton. 4. Metalimnetic P. rubescens that was stratified at low irradiance for weeks exhibited much higher uptake rates than filaments that were entrained in the deepening surface mixed layer and experienced higher irradiance. The added organic compounds contributed up to 62% to the total carbon uptake of metalimnetic P. rubescens. On the basis of a molar C : N ratio of 4.9, the nitrogen uptake as organic compounds satisfied up to 84% of the nitrogen demand. 5. The experiments indicate that photoheterotrophy and light‐dependent uptake of nitrogenous organic compounds may contribute significantly to the carbon and nitrogen budget of filaments at low irradiance typical for growth of P. rubescens in the metalimnion and at the bottom of the surface mixed layer.  相似文献   

15.
Summary The coupling of ion transport to energy sources in the light and in the dark in green cells ofAtriplex spongiosa leaves was investigated using light of different qualities, an inhibitor of electron transport (dichlorophenyl dimethyl urea), and an uncoupler (p-CF3O-carbonyl cyanide phenylhydrazone). Two different mechanisms of ion uptake were, distinguished. (1) A light-dependent Cl pump which is linked to light-dependent K+ uptake. The energy for this pump is probably derived from photosynthetic electron transport or from nicotinamide adenine dinucleotide phosphate, reduced form. This mechanism is dichlorophenyl dimethyl urea-sensitive and enhanced by uncouplers. (2) A mechanism independent of light, which operates at the same rate in the light and in the dark. This mechanism is sensitive to uncouplers. It is probably aK–Na exchange mechanism since K+ and Cl uptake and a small net uptake of H+ are balanced by Na+ loss.  相似文献   

16.
The effect of CO2 on potassium transport by Chlorella fusca   总被引:1,自引:1,他引:0  
Abstract. The effect of CO2 on net K+ uptake by Chlorella fusca grown on high CO2 levels was examined by passing 1.5% CO2 through algal suspensions gassed previously with air or CO2-free air Addition of CO2 in the light caused a large net uptake of K+ (initial velocity 4.2–9.2 mmol s?1 m?3 cells) which decreased the concentration of K+ in the supernatant from 0.1–0.2 mol m?3 to 3–10 mmol m?3. In the dark and in the presence of 30 mmol m?3 DCMU, no effects were found. Measurement or the unidirectional K+ fluxes by using 86Rb+ as a label showed that in the presence of 1.5% CO2, influx of K+ was increased by a factor of 2–4 while efflux was inhibited completely. CO2 hyperpolarized the membrane potential (determined through TPP+ uptake) from –120mV to –130 mV which could not explain the more than 15,000-fold K+ accumulations. In the light, CO2 lowered the intracellular pH (determined with DMO) by 0.5 units. In the dark and in the presence of DCMU only, a small acidification of 0.1 units was found. During the first 15 min after addition of CO2 the malate content of the cells increased from 0.7 to 1.5 mol m?3 packed cells. On the basis of these and earlier results, CO2-induced net K+ uptake is interpreted as a stimulation of an electroneutral ATP-dependent K+/H+ exchange at the plasmalemma. This exchange acts as a ‘pHstat’ by reducing the intracellular acidification caused by production of acidic assimilation products.  相似文献   

17.
SYNOPSIS. Acetate metabolism was studied in 2 strains of the green alga Pandorina morum. Both strains were capable of mixotrophic growth in the light, but only one strain was capable of heterotrophic growth in the dark. 14C-2-acetate uptake by both strains was studied in the light and dark, in the presence and absence of CO2 and 3(3,4-dichlorophenyl)-1,1-dimethylurea (10?5M). The distribution of radioactivity incorporated into the insoluble, aqueous and chloroform soluble fractions of the cells was determined. The strain incapable of heterotrophic growth in the dark was found to incorporate very little acetate in the dark, and its ability to incorporate acetate into the insoluble fraction was severely limited under all conditions. Incorporation into the aqueous and chloroform-soluble fractions in the light was similar in both strains. The reduced incorporation into the insoluble fraction was almost totally the result of limited incorporation of acetate into polysaccharides by the obligate phototrophic strain.  相似文献   

18.
Refixation of xylem sap CO2 in Populus deltoides   总被引:1,自引:0,他引:1  
Vascular plants have respiring tissues which are perfused by the transpiration stream, allowing solubilization of respiratory CO2 in the xylem sap. The transpiration stream could provide a conduit for the internal delivery of respiratory CO2 to leaves. Trees have large amounts of respiring tissues in the root systems and stems, and may have elevated levels of CO2 in the xylem sap which could be delivered to and refixed by the leaves. Xylem sap from the shoots of three Populus deltoides trees had mean dissolved inorganic carbon concentrations (CO2+H2CO3+HCO?3) ranging from 0. 5 to 0. 9 mM. When excised leaves were allowed to transpire 1 mM[14C]NaHCO3, 99. 6% of the label was fixed in the light. Seventy-seven percent of the label was fixed in major veins and the remainder was fixed in the minor veins. Autoradiography confirmed that label was confined to the vasculature. In the dark, approximately 80% of the transpired label escaped the leaf, the remainder was fixed in the major veins, slightly elevating dark respiration measurements. This indicates that the vascular tissue in P. deltoides leaves is supplied with a carbon source distinct from the atmospheric source fixed by interveinal lamina. However, the contribution of CO2 delivered to the leaves in the transpiration stream and fixed in the veins was only 0. 5% of atmospheric CO2 uptake. In the light 90% of the label was found in sugar, starch and protein, a pattern similar to that found for atmospheric uptake of[14C]CO2. Compared with leaves labelled in the light, leaves labelled in the dark had more label in organic acid, amino acid and protein and less label in sugar and starch. After a 5-s pulse the majority of the label fed to petioles in both the light and the dark was found in malate. The majority of the label was found in malate at 120 s in the dark; only 2% of the label was found in phosphorylated compounds at 120 s. The proportion of label found in phosphorylated compounds increased from 17% at 5 s to 80% at 120 s in the light. This suggests that CO2 delivered to leaves in the light via the transpiration stream is fixed in the veins, a small portion through dark fixation into malate, the remainder by C-3 photosynthesis.  相似文献   

19.
A mass spectrometric 16O2/18O2-isotope technique was used to analyse the rates of gross O2 evolution, net O2 evolution and gross O2 uptake in relation to photon fluence rate by Dunaliella tertiolecta adapted to 0.5, 1.0, 1.5, 2.0 and 2.5 M NaCl at 25°C and pH 7.0.At concentrations of dissolved inorganic carbon saturating for photosynthesis (200 M) gross O2 evolution and net O2 evolution increased with increasing salinity as well as with photon fluence rate. Light compensation was also enhanced with increased salinities. Light saturation of net O2 evolution was reached at about 1000 mol m-2s-1 for all salt concentrations tested. Gross O2 uptake in the light was increased in relation to the NaCl concentration but it was decreased with increasing photon fluence rate for almost all salinities, although an enhanced flow of light generated electrons was simultaneously observed. In addition, a comparison between gross O2 uptake at 1000 mol photons m-2s-1, dark respiration before illumination and immediately after darkening of each experiment showed that gross O2 uptake in the light paralleled but was lower than mitochondrial O2 consumption in the dark.From these results it is suggested that O2 uptake by Dunaliella tertiolecta in the light is mainly influenced by mitochondrial O2 uptake. Therefore, it appears that the light dependent inhibition of gross O2 uptake is caused by a reduction in mitochondrial O2 consumption by light.Abbreviations DCMU 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea - DHAP dihydroxy-acetonephosphate - DIC dissolved inorganic carbon - DRa rate of dark respiration immediately after illumination - DRb rate of dark respiration before illumination - E0 rate of gross oxygen evolution in the light - NET rate of net oxygen evolution in the light - PFR photon fluence rate - RubP rubulose-1,5-bisphosphate - SHAM salicyl hydroxamic acid - U0 rate of gross oxygen uptake in the light  相似文献   

20.
Abstract Growth-chamber cultivated Raphanus plants accumulate nitrate during their vegetative growth. After 25 days of growth at a constant supply to the roots of 1 mol m?3 (NO?3) in a balanced nutrient solution, the oldest leaves (eight-leaf stage) accumulated 2.5% NO?3-nitrogen (NO3-N) in their lamina, and almost 5% NO3-N in their petioles on a dry weight basis. This is equivalent to approximately 190 and 400 mol?3 m?3 concentration of NO?3 in the lamina and the petiole, respectively, as calculated on a total tissue water content basis. Measurements were made of root NO?3 uptake, NO?3 fluxes in the xylem, nitrate uptake by the mesophyll cells, and nitrate reduction as measured by an in vivo test. NO?3 uptake by roots and mesophyll cells was greater in the light than in the dark. The NO?3 concentration in the xylem fluid was constant with leaf age, but showed a distinct daily variation as a result of the independent fluxes of root uptake, transpiration and mesophyll uptake. NO?3 was reduced in the leaf at a higher rate in the light than in the dark. The reduction was inhibited at the high concentrations calculated to exist in the mesophyll vacuoles, but reduction continued at a low rate, even when there was no supply from the incubation medium. Sixty-four per cent of the NO?3 influx was turned into organic nitrogen, with the remaining NO?3 accumulating in both the light and the dark.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号