首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
H. Y. Mohan Ram  Sunanda Rao 《Planta》1982,155(6):521-523
Nodal explants of submerged shoots ofLimnophila indica (L.) Druce were cultured in Nitsch's liquid medium containing abscisic acid (ABA, 10-9-10-6 M). At 10-7 and 10-6 M, ABA induced typical aerial leaves (entire, ovate, opposite-decussately arranged) even under submerged conditions and completely suppressed the development of water leaves (pinnately dissected and whorled). Flowers that invariably arise from aerial shoots were induced precociously by ABA even on submerged nodes.Abbreviation ABA abscisic acid  相似文献   

2.
Nuphar lutea is an amphibious plant with submerged and aerial foliage, which raises the question how do both leaf types perform photosynthetically in two different environments. We found that the aerial leaves function like terrestrial sun-leaves in that their photosynthetic capability was high and saturated under high irradiance (ca. 1,500 μmol photons m−2 s−1). We show that stomatal opening and Rubisco activity in these leaves co-limited photosynthesis at saturating irradiance fluctuating in a daily rhythm. In the morning, sunlight stimulated stomatal opening, Rubisco synthesis, and the neutralization of a night-accumulated Rubisco inhibitor. Consequently, the light-saturated quantum efficiency and rate of photosynthesis increased 10-fold by midday. During the afternoon, gradual closure of the stomata and a decrease in Rubisco content reduced the light-saturated photosynthetic rate. However, at limited irradiance, stomatal behavior and Rubisco content had only a marginal effect on the photosynthetic rate, which did not change during the day. In contrast to the aerial leaves, the photosynthesis rate of the submerged leaves, adapted to a shaded environment, was saturated under lower irradiance. The light-saturated quantum efficiency of these leaves was much lower and did not change during the day. Due to their low photosynthetic affinity for CO2 (35 μM) and inability to utilize other inorganic carbon species, their photosynthetic rate at air-equilibrated water was CO2-limited. These results reveal differences in the photosynthetic performance of the two types of Nuphar leaves and unravel how photosynthetic daily rhythm in the aerial leaves is controlled.  相似文献   

3.
Absorption or screening of ultraviolet-B (UV-B) radiation by the epidermis may be an important protective method by which plants avoid damage upon exposure to potentially harmful UV-B radiation. In the present study we examined the relationships among epidermal screening effectiveness, concentration of UV-absorbing compounds, epidermal anatomy and growth responses in seedlings of loblolly pine (Pinus taeda L.) and sweetgum (Liquidambar styraciflua L.). Seedlings of each species were grown in a greenhouse at the University of Maryland under either no UV-B radiation or daily supplemental UV-B radiation levels of 4, 8 or 11 kJ m?2 of biologically effective UV-B (UV-BBE) radiation. Loblolly pine seedlings were subsequently grown in the field under either ambient or supplemental levels of UV-B radiation. At the conclusion of the growing season, measurements of epidermal UV-B screening effectiveness were made with a fiber-optic microprobe. In loblolly pine, less than 0.5% of incident UV-B radiation was transmitted through the epidermis of fascicle needles and about 1% was transmitted in primary needles. In contrast, epidermal transmittance in sweetgum ranged from about 20% in leaves not preconditioned to UV-B exposure, to about 10% in leaves grown under UV-B radiation. The concentration of UV-absorbing compounds was unaffected by UV-B exposure, but generally increased with leaf age. Increases in epidermal thickness were observed in response to UV-B treatment in loblolly pine, and this accounted for over half of the variability in UV-B screening effectiveness. In spite of the low levels of UV-B penetration into the mesophyll, delays in leaf development (both species) and final needle size (loblolly pine) were observed. Seedling biomass was reduced by supplemental UV-B radiation in loblolly pine. We hypothesize that the UV-induced growth reductions were manifested by changes in either epidermal anatomy or epidermal secondary chemistry that might negatively impact cell elongation.  相似文献   

4.
We examined, under laboratory conditions, the influence of temperature (2 °C vs. 10 °C) on the physiological responses of two aquatic bryophytes from a mountain stream to artificially enhanced UV-B radiation for 82 d. These organisms may be exposed naturally to relatively low temperatures and high levels of UV-B radiation, and this combination is believed to increase the adverse effects of UV-B radiation. In the moss Fontinalis antipyretica, UV-B-treated samples showed severe physiological damages, including significant decreases in chlorophyll (Chl) and carotenoid (Car) contents, Chl a/b and Chl/phaeopigment ratios, Chl a fluorescence parameters Fv/Fm and PS2, electron transport rate (ETRmax), and growth. In the liverwort Jungermannia cordifolia, UV-B radiation hardly caused any physiological change except for growth reduction. Thus, this liverwort seemed to be more tolerant to UV-B radiation than the moss under the specific experimental conditions used, maybe partly due to the accumulation of UV-B absorbing compounds. The influence of temperature on the effects of UV-B radiation depended on the species: the higher the UV-B tolerance, the lower the influence of temperature. Also, different physiological variables showed varied responses to this influence. Particularly, the lower temperature used in our study enhanced the adverse effects of UV-B radiation on important physiological variables such as Fv/Fm, growth, and Chl/phaeopigment ratios in the UV-B-sensitive F. antipyretica, but not in the more UV-B-tolerant J. cordifolia. Thus, the adverse effects of cold and UV-B radiation were apparently additive in the moss, but this additiveness was lacking in the liverwort. The Principal Components Analyses (PCA) conducted for both species with the physiological data obtained after 36 and 82 d of culture confirmed the above results. Under natural conditions, the relatively high water temperatures in summer might facilitate the acclimation of aquatic bryophytes from mountain streams to high levels of UV-B radiation. This may be relevant to predict the consequences of concomitant global warming and increasing UV-B radiation.  相似文献   

5.
The amphibious plant species of intermittent aquatic habitats thrive both submerged and emerged. In order to outline the adaptive characters of these two life forms photochemical efficiency of photosystem 2, leaf contents of chlorophyll (Chl) a and b, carotenoids (Car), anthocyanins (Ant), and UV-B absorbing compounds (UV-B abs), and root aerenchyma and arbuscular mycorrhizal (AM) colonisation were studied in Glyceria fluitans, Gratiola officinalis, Ranunculus lingua, Teucrium scordium, Sium latifolium, Sparganium emersum, and Veronica anagallis-aquatica. Water level fluctuations did not exert a severe effect on photon harvesting efficiency. Submerged specimens had higher contents of Car and Ant whereas higher contents of UV-B abs were found in emerged specimens indicating efficient protection against the harmful effects of solar radiation. Roots of all species studied had extensive aerenchyma and were colonised by AM fungi, which were significantly more abundant in emerged specimens. This is the first report on AM symbiosis in S. latifolium and S. emersum.  相似文献   

6.
杜珲  张小萍  曾波 《生态学报》2016,36(23):7562-7569
溶氧是水环境中一个重要的环境因子,为了探讨水中的溶氧含量水平是否会对陆生植物的耐淹能力造成影响,研究了陆生植物喜旱莲子草(Alternanthera philoxeroides)和牛鞭草(Hemarthria altissima)在遭受不同溶氧含量水体完全淹没后的生长表现、存活情况和非结构碳水化合物的变化。实验结果表明:(1)水体中的溶氧含量显著影响了处于完全水淹环境中的喜旱莲子草和牛鞭草的存活。受高溶氧水体完全水淹的喜旱莲子草和牛鞭草主茎的完好程度和存活叶的数量均显著高于遭受低溶氧水体完全水淹的喜旱莲子草和牛鞭草,喜旱莲子草和牛鞭草在高溶氧水体完全水淹后的生物量比低溶氧水体完全水淹后要高;(2)水体中的溶氧含量显著影响了处于完全水淹环境中的喜旱莲子草和牛鞭草的生长,受高溶氧水体完全水淹的喜旱莲子草主茎伸长生长和不定根生长显著强于受低溶氧水体完全水淹的喜旱莲子草,在不定根的生长上牛鞭草也具有同样的表现。(3)高溶氧水环境有利于减小被完全淹没的喜旱莲子草和牛鞭草的碳水化合物消耗,两种植物在受高溶氧完全水淹后体内具有的非结构性碳水化合物含量均比受低溶氧完全水淹后高。(4)喜旱莲子草比牛鞭草能更好地耐受完全水淹,当处于低溶氧完全水淹时表现得更为明显,本研究表明入侵物种喜旱莲子草比本地物种牛鞭草具有更强的环境适应能力和水淹耐受能力。  相似文献   

7.
This study reports epidermal UV-transmittance in field-grown leaves of ecotypes of six species at three sites along a latitudinal UV-B gradient from Arctic Svalbard, via southern Norway to the French Alps for the years 1999–2001. Unexpectedly, Arctic populations had just as high epidermal UV-screening as alpine populations from lower latitudes. Dryas octopetala was the only species that significantly increased epidermal screening with increasing natural UV-B. Most species, however, showed clear differences in transmittance between years.Under controlled conditions in a growthroom, no ecotypic differences with respect to epidermal UV-B screening were found in Arctic and alpine ecotypes of Oxyria digyna, either in the absence or presence of UV-B radiation. Furthermore, UV-B transmittance in the absence of UV-B radiation in the growthroom was as low (5–6%) as in field-grown plants, indicating a high constitutive screening. Analysis of UV-B-absorbing phenolic compounds in O. digyna displayed no difference between the French Alps and Svalbard ecotypes, while the S. Norway ecotype contained significantly higher amounts of screening compounds. The qualitative analysis showed that the French Alps ecotype had a different composition of flavonoids compared with the two others, and that the ratio between di- and monohydroxylated flavonoids increased from south to north.  相似文献   

8.
9.
Luronium natans (L.) Raf. (Floating Water-plantain) is an endangered amphibious freshwater species endemic to Europe. We examined the plasticity in carbon acquisition and photosynthesis in L. natans to assess if lack of plasticity could contribute to explain the low competitive ability of the species. The plasticity of photosynthesis in submerged leaves towards inorganic carbon availability was examined and the photosynthesis of submerged, floating and aerial leaves was contrasted. L. natans was shown to be plastic in inorganic carbon uptake, as it was able to effectively acclimate to changed concentrations of free-CO2. The photosynthetic apparatus was down-regulated in plants grown at high CO2. Chlorophyll concentration, Rubisco activity and maximum photosynthesis were significantly lower in submerged leaves of plants grown at high CO2 (200 μM free-CO2) compared to plants grown at low CO2 (18 μM free-CO2). Furthermore, bicarbonate utilization was down-regulated in response to high CO2. Carbon acquisition of submerged, floating and aerial leaves of L. natans differed significantly. The aerial leaves were superior in photosynthesising in air and, surprisingly, the floating leaves had the highest rates of photosynthesis in water. The study did not support the hypothesis that the low competitive ability of L. natans is caused by inefficient photosynthesis or a lack of plasticity in photosynthesis. However, the somewhat low photosynthetic performance of the submerged leaves may be a contributing factor.  相似文献   

10.
To assess the natural range in habitat parameters of the once common rich-fen bryophyte Scorpidium scorpioides, water chemistry and vegetation were studied in different regions characteristic of its NW-European distribution area: the Netherlands, Ireland, Denmark and Fennoscandia. Scorpidium scorpioides was found in an environment with circumneutral pH. The variation in solute content and composition was large and nutrient (N and P) concentrations ranged from zero to values indicative of more eutrophic conditions. Six different vegetation types with S. scorpioides were distinguished, resembling Caricion davallianae, Caricion curto-nigrae and Hydrocotylo-Baldellion communities. Type of substrate and solute levels were strongly correlated with the first ordination axis (DCA) and nutrient status and geographic position with the second axis. Habitat and vegetation characteristics in Dutch rich-fens with S. scorpioides indicated that mineral status was higher than in Fennoscandia and Ireland; solute-poor habitats with S. scorpioides have disappeared from the Netherlands. Trophic status was higher in the Netherlands than in Fennoscandia, but in some cases lower than in Ireland. Acidification and eutrophication may have played a role in the decrease of the species in the Netherlands. However, the wide ecological ranges suggest that the decrease of S. scorpioides is not a physiological effect of unsuitable environmental conditions per se.  相似文献   

11.

AZA, 5-Acetamido-1,3,4-thiadiazole-2-sulphonamide
CA, carbonic anhydrase
DIC, dissolved inorganic carbon
Hepes, A-(2-hydroxyethyl)-1 piperazine-ethane sulfonic acid
IC, inorganic carbon
PAR, photosynthetic active radiation
PATAg, periodic acid-thiosemicarbazide-silver proteinate
Tris, tris (hydroxymethyl)-aminomethane

The structural and physiological strategies developed by the leaves of the freshwater macrophyte Ranunculus trichophyllus to adapt to submersed life were studied. Photosynthesis is carried out mainly by the epidermis cells of the numerous segments into which the leaf is finely dissected. In these cells, containing most of the chloroplasts, a peculiar organization of the wall has been identified by cytochemical tests. A thin compact outer region covers the cell surface and splits up forming large lacunae between adjacent cells. Below it, a thick and loose inner region rich in hydrophilic pectic acids occurs, which grows in along the cell sides giving rise to wide transfer areas. In this latter cell wall region, in which the cell/environment contact and exchanges are amplified, the systems for inorganic carbon supply to photosynthetic cells operate. The leaves of R. trichophyllus can rely on environmental CO2 and HCO3 as sources of inorganic carbon for photosynthesis. A mechanism for bicarbonate utilization seems to involve its conversion to CO2 by an apoplastic carbonic anhydrase, whose activity gains importance as the availability of environmental CO2 decreases. Interestingly, it has been demonstrated that in this species CO2 can also be obtained from HCO3 by a photodependent increase in plasmamembrane H+-ATPase activity in the transfer areas of the epidermis cells. This is the first time that such a mechanism has been noted in a nonpolar leaf of a submerged macrophyte.  相似文献   

12.
Momokawa N  Kadono Y  Kudoh H 《Annals of botany》2011,108(7):1299-1306

Background and Aims

For heterophyllous amphibious plants that experience fluctuating water levels, it is critical to control leaf development precisely in response to environmental cues that can serve as a quantitative index of water depth. Light quality can serve as such a cue because the ratio of red light relative to far-red light (R/FR) increases and blue-light intensity decreases with increasing water depth. Growth experiments were conducted to examine how R/FR and blue-light intensity alter leaf morphology of a heterophyllous amphibious plant, Rotala hippuris.

Methods

Using combinations of far red (730 nm), red (660 nm) and blue (470 nm) light-emitting diodes (LEDs), growth experiments were used to quantitatively evaluate the effects of the R/FR ratio and blue-light intensity on leaf morphology.

Key Results

Under the natural light regime in an outside growth garden, R. hippuris produced distinct leaves under submerged and aerial conditions. R/FR and blue-light intensity were found to markedly affect heterophyllous leaf formation. Higher and lower R/FR caused leaf characters more typical of submerged and aerial leaves, respectively, in both aerial and submerged conditions, in accordance with natural distribution of leaf types and light under water. High blue light caused a shift of trait values toward those of typical aerial leaves, and the response was most prominent under conditions of R/FR that were expected near the water surface.

Conclusions

R/FR and blue-light intensity provides quantitative cues for R. hippuris to detect water depth and determine the developmental fates of leaves, especially near the water surface. The utilization of these quantitative cues is expected to be important in habitats where plants experience water-level fluctuation.  相似文献   

13.
  • 1 Seeds of Scirpus lacustris and Phragmites australis were germinated in early June, and twenty-four seedlings of each species were subsequently exposed to submerged conditions (eight seedlings at each of the water depths 0.2, 0.4 and 0.8m), in outdoor 500–1 tanks in southern Sweden. Weight and shoot length of the plants were measured in September.
  • 2 The Phragmites seedlings did not show any significant growth when submerged. The Scirpus seedlings, however, developed submerged leaves and exhibited considerable submerged growth. One Scirpus plant, in shallow water (0.2m), had developed an aerial shoot by September. Shoot length of the remaining (submerged) Scirpus plants was positively related to plant weight within water depth treatments, and was higher, in relation to plant weight, in deeper water. Mean weight in September of the submerged Scirpus plants decreased with increased water depth.
  • 3 In south Swedish lakes with a lowered water table, Scirpus often occupies large areas on the lakeward side of the reed belt, which is generally dominated by Phragmites. The differences between the two species, in performance of submerged seedlings, suggest that this zonation may be created through successful submerged seedling establishment of Scirpus on the lakeward side of Phragmites.
  相似文献   

14.
Changes in various components of photosynthetic apparatus during the 4 d dark incubation at 25°C of detached control and ultraviolet-B (UV-B) treatedVigna unguiculata L. leaves were examined. The photosynthetic apparatus was more degraded in younger control seedlings and for a longer time UV-B treated seedlings than in the older or for a shorter time UV-B treated seedlings. This was shown by determining the losses in chlorophyll (Chl) and protein contents, variable fluorescence yield, photosystem (PS) 2, PS1 and ribulose-1,5-bisphosphate carboxylase (RuBPC) activities, and photosynthetic14CO2 fixation. In contrast, the Car/Chl ratio increased during the dark incubation due to less expressed degradation of Car.  相似文献   

15.
Zavala  Jorge A.  Ravetta  Damian A. 《Plant Ecology》2002,161(2):185-191
UV-B radiation is absorbed effectively by nucleic acids and other sensitive targets, potentially causing harmful photochemical effects. Protection against UV-B radiation may be afforded by flavonoids and other phenolics, which absorb strongly in the UV region, but little is known about the role played by other compounds, such as terpenes. Grindelia chiloensis, native of Patagonia (Argentina), can accumulate as much as 25% resin (terpenes) in its leaves. The present investigation was carried out to test the effect of solar UV-B radiation on the allocation of photoassimilates to biomass and terpenes. Exposure to UV-B radiation reduced whole plant biomass, plant height and leaf area, and increased leaf thickness and resin accumulation in Grindelia chiloensis. Higher absorbance was found for refined resin in the UV-B waveband from plants grown under solar UV-B radiation than plants without UV-B radiation. These chemical and structural changes could protect the plant from UV radiation, and may help elucidate the importance of epicuticular resins for a species as G. chiloensis native to an environment with maximum daily integrated values of solar UV-B irradiance.  相似文献   

16.
Plants of Indian mustard (Brassica juncea) were treated with either 50 μM Cd, 250 μM Zn, or 25 μM Cd+125 μM Zn and the progression of chlorosis in the mature leaves monitored. As relative chlorophyll (Chl) contents in the mature leaves decreased to 75, 50, and 25 % relative to controls, both mature and young leaves were harvested and the Chl pools extracted. The metal treatments caused a greater loss of Chl b than Chl a. As mature leaves underwent progressive chlorosis, the young leaves displayed a characteristic over-greening, due largely to increased content of Chl b. However, as the young leaves began to experience chlorosis, a greater loss of Chl b was also observed. Thus during metal induced chlorosis, there is a preferential turnover of the Chl b pool in mature and young leaves.  相似文献   

17.
Šprtová  M.  Špunda  V.  Kalina  J.  Marek  M.V. 《Photosynthetica》2003,41(4):533-543
Cloned saplings of beech (7-y-old) were exposed to enhanced UV-B irradiation (+25 %) continuously over three growing seasons (1999–2001). Analysis of CO2 assimilation, variable chlorophyll (Chl) a fluorescence, and pigment composition was performed in late summer of the third growing season to evaluate the influence of long-term elevated UV-B irradiation. This influence was responsible for the stimulation of the net assimilation rate (P N) over a range of irradiances. The increase in P N was partially connected to increase of the area leaf mass, and thus to the increased leaf thickness. Even a higher degree of UV-B induced stimulation was observed at the level of photosystem 2 (PS2) photochemistry as judged from the irradiance response of electron transport rate and photochemical quenching of Chl a. The remarkably low irradiance-induced non-photochemical quenching of maximum Chl a fluorescence (NPQ) in the UV-B plants over the entire range of applied irradiances was attributed both to the reduced demand on non-radiative dissipation processes and to the considerably reduced contribution of the quenching localised in the inactivated PS2 reaction centres. Neither the content of Chls and total carotenoids expressed per leaf area nor the contents of lutein, neoxanthin, and the pool of xanthophyll cycle pigments (VAZ) were affected under the elevated UV-B. However, the contributions of antheraxanthin (A) and zeaxanthin (Z) to the entire VAZ pool in the dark-adapted UV-B treated plants were 1.61 and 2.14 times higher than in control leaves. Surprisingly, the retained A+Z in UV-B treated plants was not accompanied with long-term down-regulation of the PS2 photochemical efficiency, but it facilitated the non-radiative dissipation of excitation energy within light-harvesting complexes (LHC) of PS2. Thus, in the beech leaves the accumulation of A+Z, induced by other factors than excess irradiance itself, supports the resistance of PS2 against combined effects of high irradiance and elevated UV-B.  相似文献   

18.
The photoprotective function of leaf betacyanin in water-stressed Amaranthus cruentus plants was examined by comparing leaves of two strains which differ significantly in the amount of betacyanin. At 0, 1, and 2 days after the imposed water stress, leaves were subjected to high-light (HL) treatment to assess their photosynthetic capacity and photoinhibition susceptibility. The water stress equally reduced leaf relative water content (RWC), gas-exchange rate and chlorophyll (Chl) contents in both leaves, indicating that the severity of water stress was comparable between the strains. Consequently, the extent of photoinhibition after the HL treatment increased in both strains as water stress developed; however, it was significantly greater in acyanic leaves than in betacyanic leaves, suggesting lower photoinhibition susceptibility in the betacyanic strain. The betacyanic leaves also exhibited approximately 30% higher values for photochemical quenching coefficient (qP) during the period of water stress despite the nonphotochemical quenching coefficient (qN) did not differ significantly between the strains. These results may be partially explained by the increased amount of leaf betacyanin under water stress. Moreover, a decrease in Chl content in betacyanic leaves might have enhanced light screening effect of betacyanin by increasing relative abundance of betacyanin to Chl molecule. In addition, reduced Chl content increased light penetrability of leaves. As a result, the extent of photoinhibition at the deeper tissue was exacerbated and the Chl fluorescence emitted from these tissues was more readily detected, facilitating assessment of photoinhibition at deeper tissues where the effect of betacyanic light screening is considered to be most apparent. Our results demonstrated that leaf betacyanin contributes to total photoprotective capacity of A. cruentus leaves by lowering excitation pressure on photosystem II (PSII) via attenuation of potentially harmful excess incident light under water stress.  相似文献   

19.
St. Lucia is the largest estuary in South Africa with extensive areas of submerged macrophytes that fluctuate rapidly in response to water level and salinity changes. Epiphytes associated with submerged macrophytes were sampled during a severe drought between November 2004 and October 2005 when very low water level and high, variable salinity characterised the estuary. Potamogeton pectinatus and Ruppia cirrhosa were the dominant submerged macrophytes throughout the estuary, with P. pectinatus occurring at relatively low salinity (∼10 ppt) and R. cirrhosa at higher salinity (9–33 ppt). Zostera capensis, normally the other dominant submerged macrophyte, was conspicuously absent under the prevailing conditions. Epiphytic biomass, estimated as chlorophyll a, varied greatly between sites and over the 12 month sampling period, ranging from 10.9 to 71.7 mg Chl a m−2 leaf area for P. pectinatus and 16.9–165.0 mg Chl a m−2 leaf area for R. cirrhosa. Epiphytic biomass was twice as high in the Southern Lake where R. cirrhosa occurred, probably because the dominant epiphytes were macroalgae. An assessment of the diatom species composition of the epiphytic community indicated the dominance of only six species throughout the estuary. Neither epiphytic biomass nor diatom species composition showed strong statistical relationships with the environmental variables measured and it is believed that biological factors may be more important than the physico-chemical environment in determining epiphyte biomass distribution. Because epiphyte biomass is dependent on the presence of host surface area it will only contribute substantially to overall system biomass and productivity when submerged macrophyte area cover is high. In the St. Lucia Estuary this will occur when the water level is high and the upper level of the salinity gradient does not increase above that of seawater.  相似文献   

20.
The tested tree species included pioneer species Acacia mangium, early succession stage species Schima superba, mesophyte intermediate-succession species Machilus chinensis, and shade-tolerant plant or late-succession species Cryptocarya concinna which occur in the lower subtropical forest community. A comparison with the current ambient level of UV-B radiation (UV-B) showed the leaf net photosynthetic rate (P N), transpiration rate (E), and stomatal conductance (g s) of the four species ranged from significantly decreased to no significant change. Additionally, the thickness of palisade and mesophyll in leaves of four tree species were decreased sharply by enhanced UV-B. The thickness of spongy parenchyma in leaves was also decreased except for M. chinensis. UV-B increased the leaf width of A. mangium but its leaf length, leaf thickness, and dry mass per unit area were not affected. Significantly increased stomata width was observed in A. mangium leaf epidermis in response to UV-B. Significantly decreased stomata width and significantly increased stomata density of leaf abaxial epidermis in M. chinensis were also observed. The stomata density of abaxial epidermis of C. concinna was remarkably increased by enhanced UV-B. The height and branch biomass of A. mangium and the height of S. superba were reduced visibly by enhanced UV-B. The four plant species could be classified into three groups of UV-B sensitiveness by hierarchical cluster analysis. A. mangium was sensitive to enhanced UV-B, while C. concinna showed more tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号