首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Studying plant responses to environmental variables is an elemental key to understand the functioning of arid ecosystems. We selected four dominant species of the two main life forms. The species selected were two evergreen shrubs: Larrea divaricata and Chuquiraga avellanedae and two perennial grasses: Nassella tenuis and Pappostipa speciosa. We registered leaf/shoot growth, leaf production and environmental variables (precipitation, air temperature, and volumetric soil water content at two depths) during summer-autumn and winter-spring periods. Multiple regressions were used to test the predictive power of the environmental variables. During the summer-autumn period, the strongest predictors of leaf/shoot growth and leaf production were the soil water content of the upper layer and air temperature while during the winter-spring period, the strongest predictor was air temperature. In conclusion, we found that the leaf/shoot growth and leaf production were associated with current environmental conditions, specially to soil water content and air temperature.  相似文献   

3.
The objective of this study was to investigate the variation in leaf litterfall patterns of desert plant species in relation to the intra- and interannual variation of precipitation. We collected the leaf litterfall of 12 representative species of the dominant life forms in the arid Patagonian Monte (evergreen shrubs, deciduous shrubs, and perennial grasses) at monthly intervals during three consecutive years. All shrub species showed a marked seasonality in the pattern of leaf litterfall, but the date of the peak of leaf litterfall differed among them. The peak of leaf litterfall in three deciduous and three evergreen shrubs occurred in summer months while in one deciduous shrub and in two other evergreen shrubs the peak of leaf litterfall was in autumn and winter, respectively. In contrast, the leaf litterfall of perennial grasses occurred through the year without a seasonal pattern. In most shrub species, increasing annual precipitation was related to increasing leaf litterfall and the peak of leaf litterfall was positively related to precipitation events occurred some months before, during winter. Moreover, the magnitude of responses in terms of variation in leaf litterfall in relation to interannual variation of precipitation was not the same for all species. Evergreen shrubs showed lower responses than deciduous species. These differences in leaf litterfall patterns were consistent with differences in leaf traits. In conclusion, we found new evidence of species-specific responses of leaf litterfall patterns to precipitation, suggesting that other factors than precipitation may control leaf litterfall in desert plants.  相似文献   

4.
One strategy of plant survival during post-fire succession is to persist and regenerate by recruiting new individuals from a fire-resistant seed bank. The heat, smoke, and charcoal released during plant combustion may act (individually or in combination) as a cue for post-fire seed germination. Fabiana imbricata is a shrub that forms persistent seed banks in the northwestern Patagonian grasslands and shows a high recruitment from seeds during post-fire succession. Mathematical models showed that this species is advancing over the grasslands in response to fires. To corroborate these findings, we studied the role of fire on F. imbricata seed germination. In order to achieve this, a factorial experiment was designed in laboratory conditions to study the effect of heat, charcoal, smoke, scarification, and their interactions on F. imbricata seed germination. Seeds treated with the higher temperatures required a longer period of time to germinate, thus, significantly affecting the mean germination time. Total germination percentages in F. imbricata were significantly enhanced by smoke and scarification, but the interaction of heat, smoke, and scarification was more important than the effect of each fire factor alone. The positive response to fire cues exhibited by F. imbricata indicates that this species would have an adaptive advantage to colonize these grasslands if fire frequency increased, as predicted for this environment. Hence, fire will contribute to the grassland encroachment by this species and, therefore, to the loss of biodiversity and productivity of northwestern Patagonian grasslands.  相似文献   

5.
Abiotic factors are often thought to be the predominant forces shaping desert plant communities. But both positive and negative interactions between plants are frequently observed in deserts, and it is an open question whether they can strongly affect the spatial structure of a desert community. The goal of this study was to answer this question for a plant community in the North American Mojave Desert. Two semi-shrub species, Ambrosia dumosa and Acamptopappus sphaerocephalus, were the focus of this study. At the study site, seedlings emerged predominantly on the northern side of shrubs, indicating positive effects of canopy shading on emergence, but survival of Ambrosia seedlings was much higher in open areas than at the edge of conspecific shrubs. Negative intraspecific interactions also affected Ambrosia shrubs, which did not increase in size over a 4-year period unless the nearest conspecific neighbor had been removed. These negative intraspecific interactions among different life stages of Ambrosia appear to contribute to spatial segregation observed among shrubs of this species. In contrast, Acamptopappus shrubs and their seedlings were aggregated with Ambrosia shrubs, and occurred more often on the northern side of Ambrosia than expected by chance. Removal of Ambrosia neighbors positively affected growth of Acamptopappus, but only when the neighbor was removed on the northern side. For Acamptopappus, an Ambrosia neighbor on the southern side may have some positive effects, which appear to neutralize the negative effects found for northern neighbors. These positive effects were likely at least partly due to shading. Removal of Ambrosia neighbors negatively affected predawn xylem pressure potentials of Acamptopappus, but this effect was only found during one growing season and was briefly reversed during the next. In summary, negative intraspecific interactions appear to cause spatial segregation of Ambrosia shrubs, while a combination of positive and negative interactions apparently contribute to the directional association between Ambrosia and Acamptopappus. Thus plant interactions in this desert appear to shape community structure in at least two dimensions by influencing the distances and in which directions to their neighbors plants can grow and survive.  相似文献   

6.
We assessed leafing patterns (rate, timing, and duration of leafing) and leaf traits (leaf longevity, leaf mass per area and leaf-chemistry) in four co-occurring evergreen shrubs of the genus Larrea and Chuquiraga (each having two species) in the arid Patagonian Monte of Argentina. We asked whether species with leaves well-defended against water shortage (high LMA, leaf longevity, and lignin concentration, and low N concentration) have lower leaf production, duration of the leafing period, and inter-annual variation of leafing than species with the opposite traits. We observed two distinctive leafing patterns each related to one genus. Chuquiraga species produced new leaves concentrated in a massive short leafing event (5–48 days) while new leaves of Larrea species emerged gradually (128–258 days). Observed leafing patterns were consistent with simultaneous and successive leafing types previously described for woody plants. The peak of leaf production occurred earlier in Chuquiraga species (mid September) than in Larrea species (mid October–late November). Moreover, Chuquiraga species displayed leaves with the longest leaf lifespan, while leaves of Larrea species had the lowest LMA and the highest N and soluble phenolics concentrations. We also observed that only the leaf production of Larrea species increased in humid years. We concluded that co-occurring evergreen species in the Patagonian Monte displayed different leafing patterns, which were associated with some relevant leaf traits acting as plant defenses against water stress and herbivores. Differences in leafing patterns could provide evidence of ecological differentiation among coexisting species of the same life form.  相似文献   

7.
Alan P. Smith 《Oecologia》1979,40(2):203-205
Summary Analysis of spacing patterns in a monospecific stand of Croton menthodarus Benth. (Euphorbiaceae) suggests the presence of intraspecific competition. Analysis of the coefficient of variation for crown diameters suggests that increased plant density results in mortality of smallest individuals.  相似文献   

8.
The distribution of plants is associated with their different patterns of response to their environment. Mediterranean plants have evolved a number of morphological and physiological adaptations that determine their ability to survive and grow, being an effective water uptake and use important factors for drought resistance. In this article, we evaluated interspecific differences in morphology, biomass allocation, and architectural traits and their relationship with water use strategies in seedlings of seven co-occurring Mediterranean species (Anthyllis cytisoides L., Genista scorpius L. DC., Myrtus communis L., Pistacia lentiscus L., Rosmarinus officinalis L., Spartium junceum L. and Ulex parviflorus Pourr.). The results showed that morphological root features vary among species and they are significantly correlated with root hydraulic conductance and leaf gas exchange variables. Species with high specific root length (SRL) showed a low hydraulic conductance per root length (K RRL) but high specific hydraulic conductance (K As). M. communis and P. lentiscus showed the most contrasting water use patterns with respect to the other species studied. The results are not affected when considering phylogenetic relatedness. Thus, the variability observed in root hydraulic properties and leaf gas exchange suggests important mechanisms for understanding species coexistence in water-limited ecosystems.  相似文献   

9.
Sun  Yanfei  Zhang  Yuqing  Feng  Wei  Qin  Shugao  Liu  Zhen 《Plant and Soil》2019,435(1-2):81-93
Plant and Soil - Revegetation with xeric shrubs is a widely applied measure for restoring degraded ecosystems in the deserts of northern China. However, knowledge on the soil fungal assemblages in...  相似文献   

10.
Low and highly variable precipitation pulses exert a strong selective pressure on plant traits and this might provide axes of ecological differentiation among plant species in arid ecosystems. We asked whether aridity contributes to maintain high diversity of species and morphotypes in shrub canopies. We selected eleven study sites evenly distributed across a 400-km transect in northern Patagonia, Argentina. Precipitation is low and highly variable within and between years but almost homogeneous across the transect (125–150 mm). Mean annual temperature varied, however, ranging from 8 °C (west) to 13.5 °C (east) creating a west–east gradient of aridity (aridity index from 3.7 to 7.3, respectively). Sheep grazing commenced in the early 1900s at a similar intensity across the transect. We recorded the richness and cover of shrubs by species and by morphotypes (drought deciduous tall shrubs, evergreen tall shrubs, medium shrubs, and dwarf shrubs), and further calculated the species and morphotype Shannon diversity index at each site. We assessed the presence of spiny leaves, leaf pubescence, thorny stems, and photosynthetic stems in shrub species of all morphotypes and collected green leaves of the dominant shrub species (more than 80% of the total shrub cover) to assess the leaf area, leaf mass per unit area, N-, lignin- and soluble phenolic-concentrations per species at each site. Richness and diversity of shrub species and morphotypes were positively associated with aridity. The richness and diversity of shrub species with pubescent leaves and thorny stems, and nitrogen concentration in green leaves of dominant shrubs increased with increasing aridity. We conclude that our findings on increased diversification in life history traits, species and morhotypes in shrub canopies with increasing aridity support the hypothesis that variability in aridity provides axes of ecological differentiation among shrub species facilitating their coexistence.  相似文献   

11.
12.
Abstract Sprouting vigour is determined by the plant amount of reserves and intrinsic growth rate of plants. While the first factor has been well studied, the second is far less understood. Although a higher growth rate would imply a higher sprouting vigour, fast‐growing species may have less below‐ground reserves, and thus, a lower sprouting potential. The relative importance of both opposite effects was little explored in the literature. To analyse the influence of growth rate on sprouting vigour, one growth season after a fire we measured plant height of the old (pre‐fire) and new (post‐fire) tissue in 194 individuals of 14 woody species from a woodland in central Argentina. We calculated a mean value of pre‐ and post‐fire height for each species, and obtained from a database potential height at maturity, wood density (WD) and specific leaf area (SLA), as surrogates of intrinsic growth rate. We performed a forward stepwise multiple regression using WD and SLA, together with mean pre‐fire height or potential height as independent variables, and mean post‐fire height (as an indicator of resprout vigour) as the dependent variable. Interactions were also tested. Pre‐fire height, WD and their interaction term were the variables that best explained post‐fire height. We also analysed the relationship between pre‐ and post‐fire size for each species independently by fitting hyperbolic functions. Then we correlated both parameters of the functions to species characteristics (WD, SLA, potential height and mean pre‐fire height). Both parameters of the hyperbolic functions were significantly correlated only with WD, but not with the other species characteristics. All results together indicate that species with low WD (i.e. high potential growth rate) regrow more vigorously than species with high WD when pre‐fire individuals were tall. In contrast, when pre‐fire individuals were small, WD had no influence on sprout vigour. A trade‐off between allocation of biomass to underground reserves and shoot growth seems to be responsible for the patterns obtained. For small individuals, below‐ground reserves seem to play a more important role than inherent growth rate (here measured through WD) in determining the sprouting vigour, while for large individuals, growth rate seems more important than reserves.  相似文献   

13.
14.
Abstract Sprouting vigour is determined by the plant amount of reserves and intrinsic growth rate of plants. While the first factor has been well studied, the second is far less understood. Although a higher growth rate would imply a higher sprouting vigour, fast‐growing species may have less below‐ground reserves, and thus, a lower sprouting potential. The relative importance of both opposite effects was little explored in the literature. To analyse the influence of growth rate on sprouting vigour, one growth season after a fire we measured plant height of the old (pre‐fire) and new (post‐fire) tissue in 194 individuals of 14 woody species from a woodland in central Argentina. We calculated a mean value of pre‐ and post‐fire height for each species, and obtained from a data‐base potential height at maturity, wood density (WD) and specific leaf area (SLA), as surrogates of intrinsic growth rate. We performed a forward stepwise multiple regression using WD and SLA, together with mean pre‐fire height or potential height as independent variables, and mean post‐fire height (as an indicator of resprout vigour) as the dependent variable. Interactions were also tested. Pre‐fire height, WD and their interaction term were the variables that best explained post‐fire height. We also analysed the relationship between pre‐ and post‐fire size for each species independently by fitting hyperbolic functions. Then we correlated both parameters of the functions to species characteristics (WD, SLA, potential height and mean pre‐fire height). Both parameters of the hyperbolic functions were significantly correlated only with WD, but not with the other species characteristics. All results together indicate that species with low WD (i.e. high potential growth rate) regrow more vigorously than species with high WD when pre‐fire individuals were tall. In contrast, when pre‐fire individuals were small, WD had no influence on sprout vigour. A trade‐off between allocation of biomass to underground reserves and shoot growth seems to be responsible for the patterns obtained. For small individuals, below‐ground reserves seem to play a more important role than inherent growth rate (here measured through WD) in determining the sprouting vigour, while for large individuals, growth rate seems more important than reserves.  相似文献   

15.
Summary Canopy development and photosynthetic rate were measured at monthly intervals over a period of one year in 19 shrub and subshrub species of the Mojave and upper Sonoran Deserts. Thirteen of these species realized a substantial fraction of their total net carbon assimilation via twig photosynthesis. The twig contribution to whole plant yearly carbon gain reached a maximum of 83% in species such as Thamnosma montana, Salizaria mexicana, and Baccharis brachyphylla. This large contribution by twigs was due to both low levels of leaf production and the greater longevity of twig tissues. In some other species, however, leaf and twig organs had similar lifespans. During the year of this study (which had an unusually warm, mild winter), no species showed a pattern of winter deciduousness. The reduction in total photosynthetic area between maximal spring canopy development and mid August summer dormancy ranged from 32 to 94%. Some herbaceous perennial species died back to the ground, but none of the woody shrubs were totally without green canopy area at any time of the year. No species studied were capable of high rates of photosynthesis at low plant water potentials in July and August, but, in those species which maintained a substantial canopy area through the drought period, previously stressed tissues showed substantial recovery after fall rains. Photosynthetic rate was significantly correlated with both plant water potential and tissue nitrogen content over the entire year, but only weakly so. This is due in part to the winter months when plant water potentials and tissue nitrogen contents were high, but photosynthetic rates were often low.  相似文献   

16.
Drought is an increasingly common phenomenon in drylands as a consequence of climate change. We used 311 sites across a broad range of environmental conditions in Patagonian rangelands to evaluate how drought severity and temperature (abiotic factors) and vegetation structure (biotic factors) modulate the impact of a drought event on the annual integral of normalized difference vegetation index (NDVI-I), our surrogate of ecosystem functioning. We found that NDVI-I decreases were larger with both increasing drought severity and temperature. Plant species richness (SR) and shrub cover (SC) attenuated the effects of drought on NDVI-I. Grass cover did not affect the impacts of drought on NDVI-I. Our results suggest that warming and species loss, two important imprints of global environmental change, could increase the vulnerability of Patagonian ecosystems to drought. Therefore, maintaining SR through appropriate grazing management can attenuate the adverse effects of climate change on ecosystem functioning.  相似文献   

17.
18.
气候变化和人为干扰导致草原荒漠化加剧, 引发了严重的环境问题。因此, 对荒漠草原植物与环境变化关系的研究愈加迫切, 分析比较荒漠草原不同功能型物种叶片经济谱具有重要意义。该研究通过测定内蒙古荒漠草原生态系统不同功能型植物叶片的光合及叶绿素荧光参数、比叶面积和叶片氮素含量, 验证了荒漠草原植物叶片经济谱的存在, 明确了各功能型植物叶片性状间的关系及其在叶片经济谱中的位置。荒漠草原不同功能型植物叶片性状差异明显, 草本植物的比叶面积(SLA)、单位质量叶氮含量(Nmass)分别是灌木的2.39倍和1.20倍; 一年生植物单位面积最大净光合速率(Aarea)、SLA、光合氮利用效率(PNUE)分别是多年生植物的1.93倍、2.13倍和4.24倍; C4植物的AareaSLAPNUE分别是C3植物的2.25倍、1.73倍和3.61倍。除Aarea与单位面积叶氮含量(Narea)、PSII的实际光化学效率(ΦPSII)与SLA之间不存在显著相关关系外, 叶片性状间存在广泛的相关关系, 且均达到极显著水平。这验证了叶片经济谱在内蒙古荒漠草原植物中也同样存在。进一步分析表明, 一年生植物、草本植物、C4植物叶片在叶片经济谱中位于靠近薄叶、光合能力强、寿命短的一端; 而多年生植物、灌木、C3植物叶片靠近厚叶、光合能力弱、寿命长的一端。这说明荒漠草原中不同功能型植物可通过权衡其经济性状间的关系而采取不同的适应策略, 对于荒漠草原生态系统管理具有重要的理论指导意义。  相似文献   

19.
《植物生态学报》2014,38(10):1029
Aims Grassland desertification is being accelerated because of adverse climate change effects and unsustainable land uses, resulting in several major environmental problems. However, there are few studies on the economics spectrum of different plant functional types in desert steppe. The objectives of the current study are to examine the relationships among leaf functional traits of native plant species, to compare the functional traits among different plant functional types, and to determine whether an economic spectrum exists for the majority of species in the desert steppe of Damao Banner, Nei Mongol, China.
Methods Photosynthetic and chlorophyll fluorescence parameters, specific leaf area (SLA), and leaf nitrogen contents across 24 species of different functional types were measured in situ in the desert steppe ecosystem. Non-parametric tests were used to analyze leaf trait differences in plant species of different functional types. Linear regression analysis was used to determine the relationships among leaf traits in different plant species. Finally, a comprehensive analysis on these leaf traits in different plant species was conducted using the principal component analysis. All data analyses were performed using SPSS 16.0 (SPSS, Chicago, USA).
Important findings Significant differences among plant functional types were found in most of the leaf traits. SLA and mass-based nitrogen concentration (Nmass) in grasses were 2.39 and 1.20 folds, respectively, of that in shrubs; area-based photosynthetic capacity (Aarea), SLA, and photosynthetic nitrogen use efficiency (PNUE) in annual species were 1.93, 2.13, and 4.24 folds, respectively, of that in perennial species; and Aarea, SLA, and PNUE in C4 species were 2.25, 1.73, and 3.61 folds, respectively, of that in C3 species. Almost all relationships significantly differed (p < 0.01) among the leaf traits, with exception of the relationships between Aarea and area-based nitrogen concentration (Narea) and between quantum yield of PSII electron transport (ΦPSII) and SLA, implying that an economic spectrum may exist in the desert steppe ecosystem. The relationships of Narea, mass-based photosynthetic capacity (Amass), and PNUE with SLA were most significantly strong (R2 = 0.54, 0.62, 0.60, respectively; p < 0.01). Results in this study suggest that the annuals, grasses, and C4 species might be located at the end of the leaf economic spectrum with high area-based photosynthetic rate, high nitrogen concentration on mass basis, short leaf lifespan, and high SLA; whereas the perennials, shrubs, and C3 species could be located at the another end of the economic spectrum with contrasting traits.  相似文献   

20.
Phenolic acids and flavonoids were characterized by cyclic voltammetry and total antioxidant activity in the reaction with the ABTS cation radical. Anode peak voltages (Eap) and their pH dependences were determined for the studied phenolic acids and flavonoids. The Eap and Trolox equivalent antioxidant capacity (TEAC) values were found to correlate for polyphenols, which react with the ABTS cation radical in two steps. Correlation between the half-wave potential (E1/2) and TEAC was determined for electrochemically irreversible compounds. Mechanisms of the reaction of phenolics on the electrode involving one-and two-electron oxidation are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号