首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesenchymal stem cells (MSCs) offer promise as therapeutic aid in the repair of tendon and ligament injuries in race horses. Fetal adnexa is considered as an ideal source of MSCs due to many advantages, including non-invasive nature of isolation procedures and availability of large tissue mass for harvesting the cells. However, MSCs isolated from equine fetal adnexa have not been fully characterized due to lack of species-specific markers. Therefore, this study was carried out to isolate MSCs from equine umbilical cord blood (UCB) and characterize them using cross-reactive markers. The plastic-adherent cells could be isolated from 13 out of 20 (65 %) UCB samples. The UCB derived cells proliferated till passage 20 with average cell doubling time of 46.40 ± 2.86 h. These cells expressed mesenchymal surface markers but did not express haematopoietic/leucocytic markers by RT-PCR and immunocytochemistry. The phenotypic expression of CD29, CD44, CD73 and CD90 was shown by 96.36 ± 1.28, 93.40 ± 0.70, 73.23 ± 1.29 and 46.75 ± 3.95 % cells, respectively in flow cytometry, whereas, reactivity against the haematopoietic antigens CD34 and CD45 was observed only in 2.4 ± 0.20 and 0.1 ± 0.0 % of cells, respectively. Osteogenic and chondrogenic differentiation could be achieved using established methods, whereas the optimum adipogenic differentiation was achieved after supplementing media with 15 % rabbit serum and 20 ng/ml of recombinant human insulin. In this study, we optimized methodology for isolation, cultural characterization, differentiation and immunophenotyping of MSCs from equine UCB. Protocols and markers used in this study can be employed for unequivocal characterization of equine MSCs.  相似文献   

2.
Mesenchymal stem cells (MSCs) reside in almost all of the body tissues, where they undergo self-renewal and multi-lineage differentiation. MSCs derived from different tissues share many similarities but also show some differences in term of biological properties. We aim to search for significant differences among various sources of MSCs and to explore their implications in physiopathology and clinical translation. We compared the phenotype and biological properties among different MSCs isolated from human term placental chorionic villi (CV), umbilical cord (UC), adult bone marrow (BM) and adipose (AD). We found that CD106 (VCAM-1) was expressed highest on the CV-MSCs, moderately on BM-MSCs, lightly on UC-MSCs and absent on AD-MSCs. CV-MSCs also showed unique immune-associated gene expression and immunomodulation. We thus separated CD106+cells and CD106cells from CV-MSCs and compared their biological activities. Both two subpopulations were capable of osteogenic and adipogenic differentiation while CD106+CV-MSCs were more effective to modulate T helper subsets but possessed decreased colony formation capacity. In addition, CD106+CV-MSCs expressed more cytokines than CD106CV-MSCs. These data demonstrate that CD106 identifies a subpopulation of CV-MSCs with unique immunoregulatory activity and reveal a previously unrecognized mechanism underlying immunomodulation of MSCs.  相似文献   

3.
4.
The Wharton’s Jelly (WJ) of the umbilical cord (UC) is an excellent source of mesenchymal stem cells (MSCs) with a range of potential therapeutic applications. The present study was conducted to demonstrate the efficiency of the protocols used by Biogenea-Cellgenea Ltd. for isolation and expansion of WJ MSCs from donors across Greece. Umbilical cord samples were collected from 599 females following childbirth and processed for WJ MSC isolation. Stem cells were expanded using DMEM-based media and cell counts and overall viability figures derived using Trypan blue exclusion. To investigate the application of isolation and expansion protocols on samples received 1, 2, 3, 4 and 5 d after their collection, ten fresh samples were processed at these time intervals and evaluated. The cellular yield of most WJ samples was 1.1–5.0?×?106 cells at 21–30 d after processing. As culture time increased, cell counts decreased. Statistical analysis of mean cell counts showed a significant reduction after 21 d. Finally, we demonstrate for the first time that it is possible to obtain satisfactory cell numbers from samples processed 1, 2, 3, 4 and even 5 d after collection. We have derived favourable data on the protocols used at Biogenea-Cellgenea Ltd. to isolate and culture MSCs from the WJ. Protocol choice is crucial when handling large numbers of samples on a daily basis and should be made to ensure the best possible outcome.  相似文献   

5.
6.
7.
Mesenchymal stem cells (MSCs) is a heterogeneous population. Muse cells is a rare pluripotent subpopulation within MSCs. This study aims to evaluate the pulirpotency and the ability of Muse cells to generate insulin producing cells (IPCs) after in vitro differentiation protocol compared to the non-Muse cells. Muse cells were isolated by FACSAria III cell sorter from adipose-derived MSCs and were evaluated for its pluripotency. Following in vitro differentiation, IPCs derived from Muse and non-Muse cells were evaluated for insulin production. Muse cells comprised 3.2?±?0.7% of MSCs, approximately 82% of Muse cells were positive for anti stage-specific embryonic antigen-3 (SSEA-3). Pluripotent markers were highly expressed in Muse versus non-Muse cells. The percentage of generated IPCs by flow cytometric analysis was higher in Muse cells. Under confocal microscopy, Muse cells expressed insulin and c-peptide while it was undetected in non-Muse cells. Our results introduced Muse cells as a new adult pluripotent subpopulation, which is capable to produce higher number of functional IPCs.  相似文献   

8.
Stem cell niches provide the micro-environment for the development of stem cells. Under our culturing regimen, a kind of osteoclast-centralized structure supports the proliferation of MSCs, derived from human cord blood, once they reside on osteoclasts. MSCs in this structure expressed Oct4 which is a marker of embryonic stem cells. Floating daughter cells of MSCs colony showed abilities to differentiate into osteocyte, adipocyte, and neuronal progenitor cells. Compared with the easy senescence of MSCs without this niche-like structure in vitro, these results suggested that osteoclasts might play an important role the development and maintenance of Umbilical cord blood (UCB)-derived MSCs and might provide a means to expand UCB-MSCs in vitro, more easily, through a stem cell niche-like structure.  相似文献   

9.
Urocortin-1 (UCN) a corticotropin releasing-factor (CRF) related peptide, has been found to be expressed in many different tissues like the central nervous system, the cardiovascular system, adipose tissue, and skeletal muscle. The effects of UCN are mediated via stimulation of CRF-receptors 1 and 2 (CRFR1 and 2, CRFR’s) with a high affinity for CRFR2. It has been shown that the CRF-related peptides and CRFR’s are involved in the regulation of stress-related endocrine, autonomic and behavioural responses. Using immunocytochemistry, immunohistochemistry and RT–PCR, we now can show the differentiation dependent expression of UCN mRNA and peptide in human mesenchymal progenitor cells (MSCs) directed to the osteoblastic phenotype for the first time. UCN expression was down regulated by TGF-beta and BMP-2 in the early proliferation phase of osteoblast development, whereas dexamethasone (dex) minimally induced UCN gene expression during matrix maturation after 24 h stimulation. Stimulation of MSCs for 28 days with ascorbate/beta-glycerophosphate (asc/bGp) induced UCN gene expression at day 14. This effect was prevented when using 1,25-vitamin D3 or dex in addition. There was no obvious correlation to osteocalcin (OCN) gene expression in these experiments. In MSCs from patients with metabolic bone disease (n = 9) UCN gene expression was significantly higher compared to MSCs from normal controls (n = 6). Human MSCs did not express any of the CRFR’s during differentiation to osteoblasts. Our results indicate that UCN is produced during the development of MSCs to osteoblasts and differentially regulated during culture as well as by differentiation factors. The expression is maximal between proliferation and matrix maturation phase. However, UCN does not seem to act on the osteoblast itself as shown by the missing CRFR’s. Our results suggest new perspectives on the role of urocortin in human skeletal tissue in health and disease.  相似文献   

10.
In addition to long-term self-renewal capability, human mesenchymal stem cells (MSCs) possess versatile differentiation potential ranging from mesenchyme-related multipotency to neuroectodermal and endodermal competency. Of particular concern is hepatogenic potential that can be used for liver-directed stem cell therapy and transplantation. In this study, we have investigated whether human umbilical cord blood (UCB)-derived MSCs are also able to differentiate into hepatocyte-like cells. MSCs isolated from UCB were cultured under the pro-hepatogenic condition similar to that for bone marrow (BM)-derived MSCs. Expression of a variety of hepatic lineage markers was analyzed by flow cytometry, RT-PCR, Western blot, and immunofluorescence. The functionality of differentiated cells was assessed by their ability to incorporate DiI-acetylated low-density lipoprotein (DiI-Ac-LDL). As the cells were morphologically transformed into hepatocyte-like cells, they expressed Thy-1, c-Kit, and Flt-3 at the cell surface, as well as albumin, alpha-fetoprotein, and cytokeratin-18 and 19 in the interior. Moreover, about a half of the cells were found to acquire the capability to transport DiI-Ac-LDL. Based on these observations, and taking into account immense advantages of UCB over other stem cell sources, we conclude that UCB-derived MSCs retain hepatogenic potential suitable for cell therapy and transplantation against intractable liver diseases.  相似文献   

11.
The purpose of this study was to examine the telomerase activity, population doubling time (PDT), morphological alterations, and the cell cycle status with activity of senescence-associated-ß-galactosidase in porcine mesenchymal stem cells (MSCs) and fibroblasts during an extended in vitro culture. MSCs and fibroblasts were isolated from bone marrow and ear skin of a miniature pig, respectively, and cultured up to 20 passages. The analysis was carried out in MSCs and fibroblasts at 1, 5, 10, 15, and 20 passages. Relative telomerase activity (RTA) levels were significantly (P < 0.05) higher in MSCs than in fibroblasts at all the passages. The PDT and cellular size slightly increased in MSCs at later passages. In contrast, fibroblasts had significantly (P < 0.05) increased PDT and cellular size, and the morphology revealed senescent-like abnormal type after passage 10. Further, the high incidence of ß-galactosidase stained cells was observed in fibroblasts compared to that of MSCs at passage 15, and cell cycle stage at G0 / G1 phase was significantly (P < 0.05) increased in the fibroblasts at 15 and 20 passages compared to that of MSCs. Based on these observations, we concluded that porcine MSCs possessed more tolerance against senescence and aging compared to fibroblasts following prolonged in vitro culture.  相似文献   

12.
Mesenchymal stem cells (MSCs) can be derived from adult bone marrow, fat and several foetal tissues. In vitro , MSCs have the capacity to differentiate into multiple mesodermal and non-mesodermal cell lineages. Besides, MSCs possess immunosuppressive effects by modulating the immune function of the major cell populations involved in alloantigen recognition and elimination. The intriguing biology of MSCs makes them strong candidates for cell-based therapy against various human diseases. Type 1 diabetes is caused by a cell-mediated autoimmune destruction of pancreatic β-cells. While insulin replacement remains the cornerstone treatment for type 1 diabetes, the transplantation of pancreatic islets of Langerhans provides a cure for this disorder. And yet, islet transplantation is limited by the lack of donor pancreas. Generation of insulin-producing cells (IPCs) from MSCs represents an attractive alternative. On the one hand, MSCs from pancreas, bone marrow, adipose tissue, umbilical cord blood and cord tissue have the potential to differentiate into IPCs by genetic modification and/or defined culture conditions In vitro . On the other hand, MSCs are able to serve as a cellular vehicle for the expression of human insulin gene. Moreover, protein transduction technology could offer a novel approach for generating IPCs from stem cells including MSCs. In this review, we first summarize the current knowledge on the biological characterization of MSCs. Next, we consider MSCs as surrogate β-cell source for islet transplantation, and present some basic requirements for these replacement cells. Finally, MSCs-mediated therapeutic neovascularization in type 1 diabetes is discussed.  相似文献   

13.
Although mesenchymal stem cells (MSCs) promote lung cancer growth in vivo, in vitro studies indicate that they inhibit the proliferation of lung cancer cells. Because malignant tumors contain a heterogeneous cell population with variable capacity for self-renewal, the aim of this study was to determine whether the inconsistencies between in vitro and in vivo studies are a result of differential effects of MSCs on the heterogeneous cell population within lung cancer cell lines. Human MSCs were isolated from the bone marrow, and their cell surface antigen expression and multi-lineage differentiation capacity was examined at passage 10. CD133+ cells were isolated from A549 and H446 cell lines using immunomagnetic separation. The effects of MSCs on the growth and microsphere formation of heterogeneous cell populations within two lung cancer cell lines (A549 and H446) were compared. MSCs inhibited the in vitro proliferation of both cell lines, but significantly accelerated tumor formation and stimulated tumor growth in vivo (P < 0.05). In CD133+ cells isolated from both A549 and H446 cells, co-culture with MSCs for 1–3 days significantly increased their proliferation (P < 0.05). MSCs also significantly increased microsphere formation in both cell lines (P < 0.05). Selective stimulation of CD133+ cell growth may account for the discrepant effects of MSCs on lung cancer progression.  相似文献   

14.
Mesenchymal stem cells (MSCs) can be obtained from various sources. MSCs from different origins appear to have different preferences for differentiation. In this study, we have compared the in vivo osteogenic potential of adult MSCs from adipose tissue (AT) and bone marrow (BM) with fetal MSCs from umbilical cord (UC) and umbilical cord blood (UCB) by using a rat critical-sized femoral defect model. We have also sought to determine whether pretreatment with an osteogenic medium promotes osteogenesis in MSCs. Study groups were divided as follows: (1) defect only, (2) scaffold only, (3) AT MSCs in scaffolds, (4) BM MSCs in scaffolds, (5) UC MSCs in scaffolds and (6) UCB MSCs in scaffolds. Groups with MSCs were further divided with respect to their pretreatment. At 12 weeks after surgery, in vivo osteogenesis was measured radiographically and by micro-computed tomography (CT). Based on quantitative assessment by micro-CT, no significant difference of the mean bone volume fraction value (BV/TV) was seen between adult MSCs (AT and BM MSCs) and fetal MSCs (UC and UCB MSCs). The mean BV/TVs were significantly higher in non-pretreated BM MSC (14.2±1.4%) and UCB MSC (14.0±1.2%) and pretreated UC MSC (14.8±2.0%) than in those with the scaffold only (11.3±1.3%; P<0.05). In addition, AT (from 10.4±1.2% to 13.1±2.2%) and UC (from 10.3±0.7% to 14.8±2.0%) MSCs from solid tissues showed a significant increase in the mean BV/TV with pretreatment (P<0.05). In contrast, BM MSC (from 14.2±1.4% to 10.9±1.2%) and UCB MSC (from 14.0±1.2% to 11.6±1.0%) from non-solid tissues showed a significant decrease with pretreatment (P<0.05).  相似文献   

15.
16.
Human umbilical cord mesenchymal stem cells (hUCMSCs) are considered to be an ideal replacement for bone marrow MSCs. However, up to date, there is no convenient and efficient method for hUCMSC isolation and culture. The present study was carried out to explore the modified enzyme digestion for hUCMSC in vitro. Conventional enzyme digestion, modified enzyme digestion, and tissue explant were used on hUCMSCs to compare their efficiencies of isolation and culture, to observe primary cell growth and cell subculture. The results show that the cells cultured using the tissue explant method had a longer culture cycle (P < 0.01) and lower yield of primary cells per centimetre of umbilical cord (P < 0.01) compared with the two enzyme digestion methods. Subculture adherence and cell doubling took significantly less time with the tissue explant method (P < 0.05) than with the conventional enzyme digestion method; however, there was no significant difference between the tissue explant method and the modified enzyme digestion method (P > 0.05). Comparing two enzyme digestion methods, the modified method yielded more cells than did the conventional method (P < 0.01), and primary cell adherence took significantly less time with the modified method than with the conventional method (P < 0.05). Cell cycle analysis of the third-generation hUCMSCs cultured by modified enzyme digestion method indicated that most cells were quiescent. Immunofluorescence staining showed that these cells expressed MSC markers CD44 and CD90. And Von Kossa and oil red O staining detection showed that they could be differentiated into osteoblasts and adipocytes with induction medium in vitro. This study suggests that hUCMSC isolation and culture using 0.2 % collagenase II at 37 °C for digestion of 16–20 h is an effective and simple modified enzyme digestion method.  相似文献   

17.
There are controversial reports about cardiac differentiation potential of mesenchymal stem cells (MSCs), and there is still no well-defined protocol for the induction of cardiac differentiation. The effects of retinoic acid (RA) and dimethyl sulfoxide (DMSO) on the proliferation and differentiation of human fetal liver-derived MSCs (HFMSCs) as well as the pluripotent state induced by 5-azacytidine (5-aza) in vitro were investigated. MSCs were isolated from fetal livers and cultured in accordance with previous reports. Cells were plated and were treated for 24 h by the combination of 5-aza, RA and DMSO in different doses. Different culture conditions were tested in our study, including temperature, oxygen content and medium. Three weeks later, cells were harvested for the certification of cardiac differentiation as well as the pluripotency, which indicated by cardiac markers and Oct4. It was found that the cardiac differentiation was only induced when HFMSCs were treated in the following conditions: in high-dose combination (5-aza 50 μM + RA 10?1 μM + DMSO 1 %) in cardiac differentiation medium at 37 °C and 20 % O2. The results of immunohistochemistry and quantitative RT-PCR showed that about 40 % of the cells positively expressed Nkx2.5, desmin and cardiac troponin I, as well as Oct4. No beating cells were observed during the period. The combined treatment with RA, DMSO and 5-aza in high-dose could promote HFMSCs to differentiate into cardiomyocyte-like cells and possibly through the change of their pluripotent state.  相似文献   

18.
Umbilical cord (UC) is a rich source of rapidly proliferating mesenchymal stem cells (MSCs) that are easily cultured on a large-scale. Clinical applications of UC–MSCs include graft-versus-host disease, and diabetes mellitus types 1 and 2. UC–MSCs should be isolated and proliferated according to good manufacturing practice (GMP) with animal component-free medium, quality assurance, and quality control for their use in clinical applications. This study developed a GMP standard protocol for UC-MSC isolation and culture. UC blood and UC were collected from the same donors. Blood vasculature was removed from UC. UC blood was used as a source of activated platelet rich plasma (aPRP). Small fragments (1–2 mm2) of UC membrane and Wharton’s jelly were cut and cultured in DMEM/F12 medium containing 1 % antibiotic–antimycotic, aPRP (2.5, 5, 7.5 and 10 %) at 37 °C in 5 % CO2. The MSC properties of UC–MSCs at passage 5 such as osteoblast, chondroblast and adipocyte differentiation, and markers including CD13, CD14, CD29, CD34, CD44, CD45, CD73, CD90, CD105, and HLA-DR were confirmed. UC–MSCs also were analyzed for karyotype, expression of tumorigenesis related genes, cell cycle, doubling time as well as in vivo tumor formation in NOD/SCID mice. Control cells consisted of UC–MSCs cultured in DMEM/F12 plus 1 % antibiotic–antimycotic, and 10 % fetal bovine serum (FBS). All UC-MSC (n = 30) samples were successfully cultured in medium containing 7.5 and 10 % aPRP, 92 % of samples grew in 5.0 % aPRP, 86 % of samples in 2.5 % aPRP, and 72 % grew in 10 % FBS. UC–MSCs in these four groups exhibited similar marker profiles. Moreover, the proliferation rates in medium with PRP, especially 7.5 and 10 %, were significantly quicker compared with 2.5 and 5 % aPRP or 10 % FBS. These cells maintained a normal karyotype for 15 sub-cultures, and differentiated into osteoblasts, chondroblasts, and adipocytes. The analysis of pluripotent cell markers showed UC–MSCs maintained the expression of the oncogenes Nanog and Oct4 after long term culture but failed to transfer tumors in NOD/SCID mice. Replacing FBS with aPRP in the culture medium for UC tissues allowed the successful isolation of UC–MSCs that satisfy the minimum standards for clinical applications.  相似文献   

19.
Mobilized peripheral blood (MPB) bone marrow cells possess the potential to differentiate into a variety of mesenchymal tissue types and offer a source of easy access for obtaining stem cells for the development of experimental models with applications in tissue engineering. In the present work, we aimed to isolate by magnetic activated cell sorting CD90+ cells from MPB by means of the administration of Granulocyte-Colony Stimulating Factor and to evaluate cell proliferation capacity, after thawing of the in vitro culture of this population of mesenchymal stem cells (MSCs) in sheep. We obtained a median of 8.2 ± 0.6 million of CD90+ cells from the 20-mL MPB sample. After thawing, at day 15 under in vitro culture, the mean CD90+ cells determined by flow cytometry was 92.92 ± 1.29 % and cell duplication time determined by crystal violet staining was 47.59 h. This study describes for the first time the isolation, characterization, and post-in vitro culture thawing of CD90+ MSCs from mobilized peripheral blood in sheep. This population can be considered as a source of MSCs for experimental models in tissue engineering research.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号