首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biological treatment is an emerging and prevalent technology for treating off-gases from wastewater treatment plants. The most commonly reported odorous compound in off-gases is hydrogen sulfide (H2S), which has a very low odor threshold. A self-designed, bench-scale, cross-flow horizontal biotrickling filter (HBF) operated with bacteria immobilized activated carbon (termed biological activated carbon—BAC), was applied for the treatment of H2S. A mixed culture of sulfide-oxidizing bacteria dominated by Acidithiobacillus thiooxidans acclimated from activated sludge was used as bacterial seed and the biofilm was developed by culturing the bacteria in the presence of carbon pellets in mineral medium. HBF performance was evaluated systematically over 120 days, depending on a series of changing factors including inlet H2S concentration, gas retention time (GRT), pH of recirculation solution, upset and recovery, sulfate accumulation, pressure drop, gas-liquid ratio, and shock loading. The biotrickling filter system can operate at high efficiency from the first day of operation. At a volumetric loading of 900 m3 m–3 h–1 (at 92 ppmv H2S inlet concentration), the BAC exhibited maximum elimination capacity (113 g H2S/m–3 h–1) and a removal efficiency of 96% was observed. If the inlet concentration was kept at around 20 ppmv, high H2S removal (over 98%) was achieved at a GRT of 4 s, a value comparable with those currently reported for biotrickling filters. The bacterial population in the acidic biofilter demonstrated capacity for removal of H2S over a broad pH range (pH 1–7). A preliminary investigation into the different effects of bacterial biodegradation and carbon adsorption on system performance was also conducted. This study shows the HBF to be a feasible and economic alternative to physical and chemical treatments for the removal of H2S.  相似文献   

2.
A biofiltration system with sulfur oxidizing bacteria immobilized on granular activated carbon (GAC) as packing materials had a good potential when used to eliminate H(2)S. The sulfur oxidizing bacteria were stimulated from concentrated latex wastewater with sulfur supplement under aerobic condition. Afterward, it was immobilized on GAC to test the performance of cell-immobilized GAC biofilter. In this study, the effect of inlet H(2)S concentration, H(2)S gas flow rate, air gas flow rate and long-term operation on the H(2)S removal efficiency was investigated. In addition, the comparative performance of sulfide oxidizing bacterium immobilized on GAC (biofilter A) and GAC without cell immobilization (biofilter B) systems was studied. It was found that the efficiency of the H(2)S removal was more than 98% even at high concentrations (200-4000 ppm) and the maximum elimination capacity was about 125 g H(2)S/m(3)of GAC/h in the biofilter A. However, the H(2)S flow rate of 15-35 l/h into both biofilters had little influence on the efficiency of H(2)S removal. Moreover, an air flow rate of 5.86 l/h gave complete removal of H(2)S (100%) in biofilter A. During the long-term operation, the complete H(2)S removal was achieved after 3-days operation in biofilter A and remained stable up to 60-days.  相似文献   

3.
Bacteria associated with H2S oxidization were isolated from a peat biofilter to which various concentrations of H2S gas were supplied. After acclimation of the peat, a facultative autotrophic bacterium, Thiobacillus itnermedius, was primarily responsible for H2S oxidation. The cell number isolates increased at above pH 3, but decreased when pH fell below 3, in which range breakthrough of H2S was finally observed. When pH was controlled at around 3, constant removal of H2S continued without a decline of the cell number. The specific H2S uptake rate of the autotrophic bacterium was determined as 1.4 × 10−13 g-H2S-S/h/cells. The cell number of the bacteria during steady state H2S removal was proportional to the inlet H2S concentration, verifying the kinetic equation derived previously.  相似文献   

4.
A newly isolated autotrophic bacterium, Thiobacillus thioparus DW44, which is capable of degrading sulfur-containing gases, was inoculated into a pilot-scale peat biofilter to treat the exhaust gas from a night soil treatment plant. Hydrogen sulfide (H2S), methanethiol (MT), dimethyl sulfide (DMS) and dimethyl disulfide (DMDS) in the exhaust gas were efficiently removed for six months. Average removal ratios were 99.8% for H2S, 99.0% for MT, 89.5% for DMS and 98.1% for DMDS at a space velocity of 46 h−1 during the period of operation. No acclimation period was needed to reach such a high efficiency in the removal of the gases, indicating that the ability of this bacterium to remove these gases was occurred immediately after its inoculation to the peat. Ammonia (NH3) in the exhaust gas was neutralized with SO42−, which is the final product of the oxidation of H2S, MT, DMS and DMDS by the bacterium. No remarkable decline of pH, which often causes a deterioration in bacterial activity, was observed, mainly because of the reaction of SO42− with NH3. This study is the first report on the application of an isolated microorganism to a practical deodorizing system. The inoculation of T. thioparus DW44 into the pilot-scale peat biofilter could overcome such disadvantages of the conventional peat biofilter as a long acclimation period to reach a constant gas removability and the low removability of DMS, and resulted in enhanced removal efficiency of malodorous gases.  相似文献   

5.
In this study, 16S rRNA- and rDNA-based denaturing gradient gel electrophoresis (DGGE) were used to study the temporal and spatial evolution of the microbial communities in a compost biofilter removing H2S and in a control biofilter without H2S loading. During the first 81 days of the experiment, the H2S removal efficiencies always exceeded 93% at loading rates between 4.1 and 30 g m−3 h−1. Afterwards, the H2S removal efficiency decreased to values between 44 and 71%. RNA-based DGGE analysis showed that H2S loading to the biofilter increased the stability of the active microbial community but decreased the activity-based diversity and evenness. The most intense band in both the RNA- and DNA-based DGGE patterns of the H2S-degrading biofilter represented the sulfur oxidizing bacterium Thiobacillus thioparus. This suggested that T. thioparus constituted a major part of the bacterial community and was an important primary degrader in the H2S-degrading biofilter. The decreasing H2S removal efficiencies near the end of the experiment were not accompanied by a substantial change of the DGGE patterns. Therefore, the decreased H2S removal was probably not caused by a failing microbiology but rather by a decrease of the mass transfer of substrates after agglutination of the compost particles.  相似文献   

6.
Biofiltration is an efficient biotechnological process used for waste gas abatement in various industrial processes. It offers low operating and capital costs and produces minimal secondary waste streams. The objective of this study was to evaluate the performance of a pilot scale biofilter in terms of pollutants’ removal efficiencies and the bacterial dynamics under different inlet concentrations of H2S. The treatment of odourous pollutants by biofiltration was investigated at a municipal wastewater treatment plant (WWTP) (Charguia, Tunis, Tunisia). Sampling and analyses were conducted for 150 days. Inlet H2S concentration recorded was between 200 and 1300 mg H2S.m−3. Removal efficiencies reached 99% for the majority of the running time at an empty bed retention time (EBRT) of 60 s. Heterotrophic bacteria were found to be the dominant microorganisms in the biofilter. The bacteria were identified as the members of the genus Bacillus, Pseudomonas and xanthomonadacea bacterium. The polymerase chain reaction-single stranded conformation polymorphism (PCR-SSCP) method showed that bacterial community profiles changed with the H2S inlet concentration. Our results indicated that the biofilter system, containing peat as the packing material, was proved able to remove H2S from the WWTP odourous pollutants.  相似文献   

7.
Many industrial activities produce H2S, which is toxic at high levels and odorous at even very low levels. Chemolithotrophic sulfur-oxidizing bacteria are often used in its remediation. Recently, we have reported that many heterotrophic bacteria can use sulfide:quinone oxidoreductase and persulfide dioxygenase to oxidize H2S to thiosulfate and sulfite. These bacteria may also potentially be used in H2S biotreatment. Here we report how various heterotrophic bacteria with these enzymes were cultured with organic compounds and the cells were able to rapidly oxidize H2S to zero-valence sulfur and thiosulfate, causing no apparent acidification. Some also converted the produced thiosulfate to tetrathionate. The rates of sulfide oxidation by some of the tested bacteria in suspension, ranging from 8 to 50 µmol min?1 g?1 of cell dry weight at pH 7.4, sufficient for H2S biotreatment. The immobilized bacteria removed H2S as efficiently as the bacteria in suspension, and the inclusion of Fe3O4 nanoparticles during immobilization resulted in increased efficiency for sulfide removal, in part due to chemical oxidation H2S by Fe3O4. Thus, heterotrophic bacteria may be used for H2S biotreatment under aerobic conditions.  相似文献   

8.
Ethylene Removal by a Biofilter with Immobilized Bacteria   总被引:1,自引:1,他引:1       下载免费PDF全文
A biofilter which eliminated ethylene (C2H4) from the high parts-per-million range to levels near the limit for plant hormonal activity (0.01 to 0.1 ppm) was developed. Isolated ethylene-oxidizing bacteria were immobilized on peat-soil in a biofilter (687 cm3) and subjected to an atmospheric gas flow (73.3 ml min−1) with 2 or 117 ppm of C2H4. Ethylene was eliminated to a minimum level of 0.017 ppm after operation with 2.05 ppm of C2H4 for 16 days. Also, the inlet C2H4 concentration of 117 ppm was reduced to <0.04 ppm. During operation with 2 and 117 ppm of C2H4, an increase in the C2H4 removal rate was observed, which was attributed to proliferation of the immobilized bacteria, notably in the first 0- to 5-cm segment of the biofilter. The maximal C2H4 elimination capacity of the biofilter was 21 g of C2H4 m−3 day−1 during operation with 117 ppm of C2H4 in the inlet gas. However, for the first 0- to 5-cm segment of the biofilter, an elimination capacity of 146 g of C2H4 m−3 day−1 was calculated. Transition of the biofilter temperature from 21 to 10°C caused a 1.6-fold reduction in the C2H4 removal rate, which was reversed during operation for 18 days. Batch experiments with inoculated peat-soil demonstrated that C2H4 removal still occurred after storage at 2, 8, and 20°C for 2, 3, and 4 weeks. However, the C2H4 removal rate decreased with increasing storage time and was reduced by ca. 50% after storage for 2 weeks at all three temperatures. The biofilter could be a suitable tool for C2H4 removal in, e.g., horticultural storage facilities, since it (i) removed C2H4 to 0.017 ppm, (ii) had a good operational stability, and (iii) operated efficiently at 10°C.  相似文献   

9.
A laboratory scale bioreactor has been designed and set up in order to degrade hydrogen sulfide from an air stream. The reactor is a vertical column of 7 litre capacity and 1 meter in height. It is divided into three modules and each module is filled with pellets of agricultural residues as packing bed material. The gas stream fed into the reactor through the upper inlet consists of a mixture of hydrogen sulfide and humidified air. The hydrogen sulfide content in the inlet gas stream was increased in stages until the degradation efficiency was below 90%. The parameters to be controlled in order to reach continuous and stable operation were temperature, moisture content and the percentage of the compound to be degraded at the inlet and outlet gas streams (removal or elimination efficiency). When the H2S mass loading rate was between 10 and 40 g m-3h-1, the removal efficiency was greater than 90%. The support material had a good physical performance throughout operation time, which is evidence that this material is suitable for biofiltration purposes.  相似文献   

10.
This paper reports on the experimental investigation carried out to evaluate the physical optimal conditions in a packed absorption column to remove odorous chemical of hydrogen sulfide gas (H2S). H2S is a highly undesirable contaminant that is most commonly from environmental treatment facilities. Natural second metabolites extracted from conifer trees were used to remove H2S via chemical neutralization. The absorbent of natural second metabolites achieved a removal efficiency of 62% by itself. However, the removal efficiency was increased to 96% using complex absorbent mixed with 1.0% of an amine chemical. The liquid mass transfer coefficient was used to determine the conditions for the optimal removal efficiency using the convective flow rate, temperature, and pH. The results show that an aqueous solution containing natural second metabolites might be a good absorbent in a column packed with Raschig rings for the biological removal of H2S.  相似文献   

11.
Four bacteria isolated from peat biofilters, Thiobacillus thioparus DW44, Thiobacillus sp. HA43, Xanthomonas sp. DY44 and Hyphomicrobium sp. I55, were selected to enhance the removal ratios of hydrogen sulfide (H2S), methanethiol (MT) and dimethyl sulfide (DMS) in a mixed gas system. Two bacteria, DW44 and I55, which degrade H2S, MT, DMS and dimethyl disulfide (DMDS), were mixed with DY44 or HA43 which degrade only H2S and MT. Although DMS removal was significantly inhibited by the presence of H2S and MT in a peat biofilter inoculated with the single bacterium, enhanced removability of H2S, MT and DMS was observed by mixing Hyphomicrobium sp. I55 either with Thiobacillus sp. HA43 or Xanthomonas sp. DY44. The removal rate (g-S-kg-dry peat−1·d−1) by I55 after 8 d was 0.664 in total sulfur load, 0.827 g-S·kg-dry g-S·-kg-dry peat−1·d−1, but the rates by the mixed cultures of I55 plus HA43, and I55 plus DY44 were 0.760 and 0.801, respectively. In particular, DMS removability in mixed gases by a mixed culture of I55 and DY44 was almost equivalent to that by I55 when only DMS was supplied, suggesting that removal of H2S and MT, which inhibited DMS removal, was preferentially conducted by DY44 and led to improved DMS removability by I55.  相似文献   

12.
Based on an experimental database consisting of 194 daily cases, artificial neural networks were used to model the removal efficiency of a biofilter for treating hydrogen sulphide (H2S). In this work, the removal efficiency of the reactor was considered as a function of the changes in the air flow and concentration of H2S entering the biofilter. In order to obtain true representative values, the removal efficiencies (outputs) were measured 24 h after each input was changed. A MLP (multilayer perceptron 2-2-1) model with two input variables (unit flow and concentration of the contaminant fed into the biofilter) rendered good prediction values with a determination coefficient of 0.92 for the removal efficiency within the range studied. This means that the MLP model can explain 92% of the overall variability detected in the biofilter corresponding to a wide range of operating conditions.  相似文献   

13.
A continuous-upflow biofilter packed with sponge iron was constructed for nitrate removal under an anaerobic atmosphere. Microbacterium sp. W5, a nitrate reducing and Fe(II) oxidizing strain, was added to the biofilter as an inoculum. The best results were achieved when NO3 ?-N concentration was 30 mg/L and Fe2+ was 800 mg/L. Nitrite in influent would inhibit nitrate removal and aqueous Fe2+ resulted in encrustation. Fe(II)EDTA would prevent cells from encrustation and the maximum nitrogen removal efficiency was about 90 % with Fe(II)EDTA level of 1100 mg/L. Nitrate reduction followed first-order reaction kinetics. Characteristics of biofilms were analyzed by X-ray fluorescence spectroscopy.  相似文献   

14.
The formation of many important sediment‐hosted uranium ore deposits is thought to have resulted from the reduction of relatively soluble uranyl ion—U(VI)—to insoluble uranium (IV) oxides and silicates by aqueous sulfide species. This study focused on the influence that the sulfate‐reducing bacteria Desulfovibrio desulfuricans (ATCC 7757) has on this process. Preliminary studies showed that bacterial growth was not inhibited by concentrations of uranyl ion up to 100 mg U per liter. More detailed studies showed that sulfate‐reducing bacteria have an influence on uranyl ion removal beyond the simple production of the aqueous sulfide reductant. Comparative studies of bacterial cultures containing high densities of the sulfate reducers with bacterial cell‐free but otherwise identical media showed that the bacteria themselves enhance uranium removal from solution. At pH 8.0, no reaction was observed in H2S‐bearing cell‐free media, whereas at the same H2S concentration, the uranyl ion decreased markedly in the presence of the bacteria. At pH 7.0, some uranium removal occurred in the absence of bacteria, but it was much more rapid in their presence. We postulate that these effects are due to the ability of bacterial cell walls to adsorb uranium. Adsorption to surfaces is known from independent studies to enhance uranium reduction, and evidently this two‐step adsorption‐reduction mechanism is occurring in our experiments. We conclude that sulfate‐reducing and other bacteria may play a significant role in the geochemical cycling of uranium.  相似文献   

15.
16.
Thiobacillus sp. HA43 as a dominant strain was isolated from a H2S-acclimated peat biofilter seeded with aerobically-digested sludge of night soil. Strain IIA43 degraded both H2S and methanethiol (MT) without lag-time, but degraded neither dimethy sulphide (DMS) nor dimethyl disulphide (DMDS). The removal characteristics for sulphur compounds (H2S, MT, DMS and DMDS) by strain HA43 well reflected the removal behaviour of the H2S-acclimated peat biofilter where this strain was isolated. The specific H2S and MT uptake rates of strain HA43 in batch culture were determined as 1.22 × 10−12 and 8.53 × 10−14 g-S·cell−1·h−1, respectively. The maximum removal rates (Vm = g-S·kg-dry peat−1·d−1) for H2S and MT by peat biofilter inoculated by strain HA43 were obtained as follows: Vm(H2S)− 11.3, Vm(MT) = 0.21 in sterilized peat; Vm(H2S) = 12.4, Vm(MT)− 0.27 in non-sterilized peat; Vm(H2S) = 33.0, Vm(MT) = 0.27 in peat with aerobically-digested sludge of night soil. The peat biofilter inoculated with strain HA43 enhanced the maximum removal rate for H2S 6-fold compared with the biofilter without strain HA43.  相似文献   

17.
Hydrogen sulfide (H2S) is a major malodorous compound emitted from wastewater treatment plants. In this study, the performance of three pilot-scale immobilized-cell biotrickling filters (BTFs) spacked with combinations of bamboo charcoal and ceramsite in different ratios was investigated in terms of H2S removal. Extensive tests were performed to determine the removal characteristics, pressure drops, metabolic products, and removal kinetics of the BTFs. The BTFs were operated in continuous mode at low loading rates varying from 0.59 to 5.00 g H2S m−3 h−1 with an empty bed retention time (EBRT) of 25 s. The removal efficiency (RE) for each BTF was >99% in the steady-state period, and high standards were met for the exhaust gas. It was found that a multilayer BTF had a slight advantage over a perfectly mixed BTF for the removal of H2S. Furthermore, an impressive amount >97% of the H2S was eliminated by 10% of packing materials near the inlet of the BTF. The modified Michaelis–Menten equation was adopted to describe the characteristics of the BTF, and Ks and Vm values for the BTF with pure bamboo charcoal packing material were 3.68 ppmv and 4.26 g H2S m−3 h−1, respectively. Both bamboo charcoal and ceramsite demonstrated good performance as packing materials in BTFs for the removal of H2S, and the results of this study could serve as a guide for further design and operation of industrial-scale systems.  相似文献   

18.
The use of support media for the immobilization of microorganisms is widely known to provide a surface for microbial growth and a shelter that protects the microorganisms from inhibitory compounds. In this study, activated carbon is used as a support medium for the immobilization of microorganisms enriched from municipal sewage activated sludge to remove gas-phase hydrogen sulfide (H2S), a major odorous component of waste gas from sewage treatment plants. A series of designed experiments is used to examine the effect on bacteria-immobilized activated carbon (termed biocarbon) due to physical adsorption, chemical reaction, and microbial degradation in the overall removal of H2S. H2S breakthrough tests are conducted with various samples, including microbe-immobilized carbon and Teflon discs, salts-medium-washed carbon, and ultra-pure water-washed carbon. The results show a higher removal capacity for the microbe-immobilized activated carbon compared with the activated carbon control in a batch biofilter column. The increase in removal capacity is attributed to the role played by the immobilized microorganisms in metabolizing adsorbed sulfur and sulfur compounds on the biocarbon, hence releasing the adsorption sites for further H2S uptake. The advantage for activated carbon serving as the support medium is to adsorb a high initial concentration of substrate and progressively release this for microbial degradation, hence acting as a buffer for the microorganisms. Results obtained from surface area and pore size distribution analyses of the biocarbon show a correlation between the available surface area and pore volume with the extent of microbial immobilization and H2S uptake. The depletion of surface area and pore volume is seen as one of the factors which cause the onset of column breakthrough. Microbial growth retardation is due to the accumulation of metabolic products (i.e., sulfuric acid); and a lack of water and nutrient salts in the batch biofilter are other possible causes of column breakthrough.  相似文献   

19.
The treatment of odorous pollutants by microorganisms on packed waste straw and cortex was investigated at the wastewater treatment plant of the Shanghai petrochemical factory. The removal efficiency of H2S, NH3 and VOCs (volatile organic compounds) reached 98%, 91% and 90%, respectively after operation for one month at an empty bed retention time (EBRT) of 120 s. The heterotrophic bacteria were found to be the dominant microorganism in the biofilter, while fungi and actinomycetes were also present. The bacteria were mostly identified as the members of the genus Bacillus (62.5% of cultured bacteria). The single strand conformation polymorphism (SSCP) results revealed that the genus Bacillus and Pseudomonas were the predominant bacteria. The microbial diversity gradually increased as the treatment progressed, which indicated that the microbial community in the biofilter became more stable upon pollutant removal. The scanning electron microscopy (SEM) was performed to evaluate the microorganism growth on the media. It was found that the waste straw and cortex were suitable for microorganism attachment and growth, and may have potential application in odor treatment.  相似文献   

20.
Phosphogypsum (CaSO4), a primary by-product of phosphoric acid production, is accumulated in large stockpiles and occupies vast areas of land. It poses a severe threat to the quality of water and land in countries producing phosphoric acid. In this study, the potential of sulfate-reducing bacteria for biodegradation of this sulfur-rich industrial solid waste was assessed. The effect of phosphogypsum concentration, carbon and nitrogen sources, temperature, pH and stirring on the growth of sulfate-reducing bacteria was investigated. Growth of sulfate-reducing bacteria was monitored by measuring sulfide production. Phosphogypsum was shown to be a good source of sulfate, albeit that the addition of organic carbon was necessary for bacterial growth. Biogenic sulfide production occurred with phosphogypsum up to a concentration of 40 g L−1, above which no growth of sulfate-reducing bacteria was observed. Optimal growth was obtained at 10 g L−1 phosphogypsum. Both the gas mixture H2/CO2 and lactate supported high amounts of H2S formation (19 and 11 mM, respectively). The best source of nitrogen for sulfate-reducing bacteria was yeast extract, followed by ammonium chloride. The presence of nitrate had an inhibitory effect on the process of sulfate reduction. Stirring the culture at 150 rpm slightly stimulated H2S formation, probably by improving sulfate solubility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号