首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conversion of glycerol to 1,3-propanediol (1,3-PDO) is an attractive option to increase the economic efficiency of the biofuel industry. A bacterial strain that produced 1,3-PDO in the presence of glycerol was isolated from thin stillage, the fermentation residue of bioethanol production. This 1,3-PDO-producing organism was identified as Lactobacillus panis through biochemical characteristics and by 16S rRNA sequencing. Characterization of the L. panis strain hereafter designated as PM1 revealed it was an aerotolerant acidophilic anaerobe able to grow over a wide range of temperatures; tolerant to high concentrations of sodium chloride, ethanol, acetic acid, and lactic acid; and resistant to many common antibiotics. L. panis PM1 could utilize glucose, lactose, galactose, maltose, xylose, and arabinose, but could not grow on sucrose or fructose. Production of 1,3-PDO by L. panis PM1 occurred only when glucose was available as the carbon source in the absence of oxygen. These metabolic characteristics strongly suggested NADH recycling for glucose metabolism is achieved through 1,3-PDO production by this strain. These characteristics classified L. panis PM1 within the group III heterofermentative lactic acid bacteria, which includes the well-characterized 1,3-PDO-producing strain, Lactobacillus reuteri. Metabolite production profiles showed that L. panis PM1 produced considerable amounts of succinic acid (~11–12 mM) from normal MRS medium, which distinguishes this strain from L. reuteri strains.  相似文献   

2.
The effects of lactic and acetic acids on ethanol production by Saccharomyces cerevisiae in corn mash, as influenced by pH and dissolved solids concentration, were examined. The lactic and acetic acid concentrations utilized were 0, 0.5, 1.0, 2.0, 3.0 and 4.0% w/v, and 0, 0.1, 0.2, 0.4, 0.8 and 1.6% w/v, respectively. Corn mashes (20, 25 and 30% dry solids) were adjusted to the following pH levels after lactic or acetic acid addition: 4.0, 4.5, 5.0 or 5.5 prior to yeast inoculation. Lactic acid did not completely inhibit ethanol production by the yeast. However, lactic acid at 4% w/v decreased (P<0.05) final ethanol concentration in all mashes at all pH levels. In 30% solids mash set at pH ≤5, lactic acid at 3% w/v reduced (P<0.05) ethanol production. In contrast, inhibition by acetic acid increased as the concentration of solids in the mash increased and the pH of the medium declined. Ethanol production was completely inhibited in all mashes set at pH 4 in the presence of acetic acid at concentrations ≥0.8% w/v. In 30% solids mash set at pH 4, final ethanol levels decreased (P<0.01) with only 0.1% w/v acetic acid. These results suggest that the inhibitory effects of lactic acid and acetic acid on ethanol production in corn mash fermentation when set at a pH of 5.0–5.5 are not as great as that reported thus far using laboratory media.  相似文献   

3.
Drought is one of the major problems worldwide. The search for new and efficient microorganisms, from unexplored environments, to be used in association with plants to alleviate the negative effects imposed by water stress, is an interesting alternative. Thus, cacti-associated bacteria from the Brazilian semi-arid region were isolated based on their ability to grow in medium with reduced water availability. Strains were tested for the production of exopolysaccharides (EPS), as well as in vitro plant growth promotion traits. A great proportion of the isolates belong to the genus Bacillus. From a total of forty-eight bacteria, 65% were able to grow in medium with reduced water availability (0.919Aw), exopolysaccharide production was observed for 65% of the strains. The production of indole acetic acid (IAA) exceeding 51 μg mL?1 was observed for 4% and the high solubilization of Ca–P was verified for 6% of the isolates. No strain was able to produce hydrogen cyanide (HCN), 71% produced ammonia and 79% showed a halo of carboxymethyl cellulose (CMC) degradation. Zea mays L. growth promotion under water stress (30% of field capacity) was achieved by two strains of Bacillus spp. This is the first report to describe cacti-associated bacteria from Brazilian semi-arid with plant growth-promoting abilities.  相似文献   

4.
Lactic acid bacteria that accumulated gamma-aminobutyric acid (GABA) in culture medium were screened to identify strains with high GABA-producing ability. One strain, MS, which was isolated from kimchi, showed the highest GABA-producing ability among the screened strains. MS was identified as Lactobacillus buchneri based on Gram-staining, metabolic characteristics, and 16S rDNA sequence determination. Optimum culture conditions for GABA production were determined: MRS broth containing 5% MSG, 1% NaCl, and 1% glucose, at an initial pH of 5.0, the incubation temperature at 30 degrees C for 36 h. Under these conditions, MS produced GABA at a concentration of 251 mM with a 94% GABA conversion rate. Moreover, culture extracts of Lb. buchneri MS partially or completely protected neuronal cells against neurotoxicant-induced cell death.  相似文献   

5.
Using a series of pH controlled batch fermentations operated in a fed-batch mode and adaptation and selection techniques where pH and acetic acid provided the selective pressures, we isolated a culture of Clostridium thermoaceticum that can grow and produce acetic acid at pH 4.5. At pH 4.5 the fastest mass doubling time was 36 h, and the highest acetic acid concentration reached was 4.5 g/liter. Generally, as the pH was decreased from 6.0 and the initial acetic acid concentration increased, the mass doubling time increased, and the final acetic acid concentration decreased. These observations can be explained in terms of inhibition by the free acetic acid concentration at a given pH, relative to the total acetic acid concentration (free acid plus acetate ion). We have thus reached one of the criteria determined by us to be required for an economically viable fermentation acetic acid process, i.e., pH 4.5. A second requirement for a mass doubling time of about 7 h (0.1/h dilution rate) can probably be reached by selection in continuous culture. The final requirement for an acetic acid concentration of 50 g/liter will be the most difficult to achieve in view of the organism's sensitivity to low concentrations of free acetic acid.  相似文献   

6.
The decarboxylation of phthalic acids was studied with Bacillus sp. strain FO, a marine mixed culture ON-7, and Pseudomonas testosteroni. The mixed culture ON-7, when grown anaerobically on phthalate but incubated aerobically with chloramphenicol, quantitatively converted phthalic acid to benzoic acid. Substituted phthalic acids were also decarboxylated: 4,5-dihydroxyphthalic acid to protocatechuic acid; 4-hydroxyphthalic and 4-chlorophthalic acids to 3-hydroxybenzoic and 3-chlorobenzoic acids, respectively; and 3-fluorophthalic acid to 2-and 3-fluorobenzoic acids. Bacillus sp. strain FO gave similar results except that 4,5-dihydroxyphthalic acid was not metabolized, and both 3- and 4-hydroxybenzoic acids were produced from 4-hydroxyphthalic acid. P. testosteroni decarboxylated 4-hydroxyphthalate (to 3-hydroxybenzoate) and 4,5-dihydroxyphthalate but not phthalic acid and halogenated phthalates. Thus, P. testosteroni and the mixed culture ON-7 possessed 4,5-dihydroxyphthalic acid decarboxylase, previously described in P. testosteroni, that metabolized 4,5-dihydroxyphthalic acid and specifically decarboxylated 4-hydroxyphthalic acid to 3-hydroxybenzoic acid. The mixed culture ON-7 and Bacillus sp. strain FO also possessed a novel decarboxylase that metabolized phthalic acid and halogenated phthalates, but not 4,5-dihydroxyphthalate, and randomly decarboxylated 4-hydroxyphthalic acid. The decarboxylation of phthalic acid is suggested to involve an initial reduction to 1,2-dihydrophthalic acid followed by oxidative decarboxylation to benzoic acid.  相似文献   

7.
In vivo 1H magnetic resonance spectroscopy (MRS) can be used to directly monitor brain ethanol. Previously, studies of human subjects have lead to the suggestion that the ethanol methyl 1H MRS signal intensity relates to tolerance to ethanol’s intoxicating effects. More recently, the ethanol 1H MRS signal intensity has been recognized to vary between brain gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) due to differences in T2 within these environments. The methods presented here extend ethanol MRS techniques to non-human primate subjects. Twelve monkeys were administered ethanol while sedated and positioned within a 3T MRI system. Chemical shift imaging (CSI) measurements were performed following intravenous infusion of 1 g/kg ethanol. Magnetic resonance imaging (MRI) data were also recorded for each monkey to provide volume fractions of GM, WM, and CSF for each CSI spectrum. To estimate co-variance of ethanol MRS intensity with GM, WM, and CSF volume fractions, the relative contribution of each tissue subtype was determined following corrections for radiofrequency pulse profile non-uniformity, chemical shift artifacts, and differences between the point spread function in the CSI data and the imaging data. The ethanol MRS intensity per unit blood ethanol concentration was found to differ between GM, WM, and CSF. Individual differences in MRS intensity were larger in GM than WM. This methodology demonstrates the feasibility of ethanol MRS experiments and analysis in non-human primate subjects, and suggests GM may be a site of significant variation in ethanol MRS intensity between individuals.  相似文献   

8.
Asaia lannaensis sp. nov. was described for two strains isolated from flowers of the spider lily collected in Chiang Mai, Thailand. The isolates produced acetic acid from ethanol on ethanol/calcium carbonate agar, differing from the type strains of Asaia bogorensis, Asaia siamensis, and Asaia krungthepensis, but did not grow in the presence of 0.35% acetic acid (v/v). The new species is the fourth of the genus Asaia, the family Acetobacteraceae.  相似文献   

9.
Rhizobacteria belonging to Bacillus sp. were isolated from the rhizosphere of green gram (Vigna radiata). Seed inoculation with the rhizobacteria showed stunting effect on root growth whereas four Bacillus strains caused stimulation of shoot growth at both 4 and 7 d of observations. Coinoculation of some Bacillus strains with effective Bradyrhizobium strain S24 resulted in enhanced nodulation and plant growth of green gram. The shoot dry mass (ratio to uninoculated control) varied from 1.32 to 6.33 at day 30 and from 1.28 to 3.55 at day 40 of plant growth. Nodule promoting effect after 40 d of plant growth was observed with majority of Bacillus strains except for MRS9 and MRS26. Maximum gains in nodulation, nitrogenase activity and plant growth were observed with Bacillus strains MRS12, MRS18, MRS22 and MRS27 after 40 d of plant growth, suggesting the usefulness of introduced rhizobacteria in improving crop productivity.  相似文献   

10.
【背景】耐受乙酸的乳酸菌是传统谷物醋醋酸发酵过程中产生乳酸及其风味衍生物的重要功能微生物。【目的】从镇江香醋醋醅中分离鉴定具有耐乙酸特性的乳酸菌,并评价不同条件下该菌株的产乳酸能力。【方法】利用4%(体积比)乙酸含量的MRS培养基分离耐乙酸乳酸菌;对其进行16S rRNA基因鉴定、基因组测序、形态观察以及生理生化特性研究;考察不同乙酸浓度、葡萄糖浓度、发酵温度和时间对菌株产乳酸能力的影响。【结果】分离得到一株可耐受6%乙酸的乳杆菌Lactobacillus sp. JN500903;在厌氧静置、接种量5%、乙酸浓度5%、葡萄糖浓度40 g/L、发酵温度37°C、发酵时间10 d条件下,该菌株乳酸产量为16.1 g/L。【结论】乳杆菌JN500903能够耐受6%乙酸浓度,具有在酸性环境下合成乳酸的能力,有一定的应用潜力。  相似文献   

11.
A strain development program was initiated to improve the tolerance of the pentose-fermenting yeast Pachysolen tannophilus to inhibitors in lignocellulosic hydrolysates. Several rounds of UV mutagenesis followed by screening were used to select for mutants of P. tannophilus NRRL Y2460 with improved tolerance to hardwood spent sulfite liquor (HW SSL) and acetic acid in separate selection lines. The wild type (WT) strain grew in 50 % (v/v) HW SSL while third round HW SSL mutants (designated UHW301, UHW302 and UHW303) grew in 60 % (v/v) HW SSL, with two of these isolates (UHW302 and UHW303) being viable and growing, respectively, in 70 % (v/v) HW SSL. In defined liquid media containing acetic acid, the WT strain grew in 0.70 % (w/v) acetic acid, while third round acetic acid mutants (designated UAA301, UAA302 and UAA303) grew in 0.80 % (w/v) acetic acid, with one isolate (UAA302) growing in 0.90 % (w/v) acetic acid. Cross-tolerance of HW SSL-tolerant mutants to acetic acid and vice versa was observed with UHW303 able to grow in 0.90 % (w/v) acetic acid and UAA302 growing in 60 % (v/v) HW SSL. The UV-induced mutants retained the ability to ferment glucose and xylose to ethanol in defined media. These mutants of P. tannophilus are of considerable interest for bioconversion of the sugars in lignocellulosic hydrolysates to ethanol.  相似文献   

12.
Six strains of Clostridium thermocellum isolated from various environments were characterized as to growth rate, production of reducing sugars, ethanol, and acetic acid from cellulose, base composition of DNA, and the abilities to adapt to ethanol and to grow at 45°C. Five of the six new isolates produced 7 to 15% more ethanol and two produced about 45% more reducing sugars than a standard reference strain. One strain (MC-6) adapted more readily to growth in 2% ethanol than the others.  相似文献   

13.
With respect to counting rate and stability, the standard toluene/Triton X-100 (2:1, v/v) scintillation system was neither adequate for assaying trichloro[14C]acetic acid in ethanol solution or in ethanol extracts from shoots and roots of wheat seedlings, nor appropriate for counting [14C]dicamba in ethanol extracts from roots of barley and oats seedlings. The counting rates decreased rapidly during the first 10 hr, followed by a further decline at slower rates. The addition of NCS (3.3%, v/v) made the system suitable for measuring a number of 14C-labeled compounds (3-amino-s-triazole, 2,4-dichlorophenoxyacetic acid, 3,6-dichloro-o-anisic acid, [(4-chloro-o-tolyl)oxy]acetic acid, and trichloroacetic acid) either dissolved in ethanol or extracted from seedlings of cereal crops.  相似文献   

14.
The products of glucose fermentation were studied in 87 strains of the genus Chlorella. Lactic acid, acetic acid, formic acid, glycerol, ethanol, H2 and CO2 were identified. The lactic acid was shown to be D(minus)lactic acid. The pattern of fermentation produces is species-specific and can therefore be used as a taxonomic character. Lactic acid was found in C. fusca (varieties vacuolata, fusca, and rubescens), C. zofingiensis, C. vulgaris (var. vulgaris and f.tertia), and C. protothecoides. Formic acid and H2 appeared in those species which contain hydrogenase. Rather large amounts of glycerol were produced only by the most salt-tolerant species C. luteoviridis, C. saccharophila, and C. protothecoides.  相似文献   

15.
Several strains belonging to the genus Bifidobacterium were tested to determine their abilities to produce succinic acid. Bifidobacterium longum strain BB536 and Bifidobacterium animalis subsp. lactis strain Bb 12 were kinetically analyzed in detail using in vitro fermentations to obtain more insight into the metabolism and production of succinic acid by bifidobacteria. Changes in end product formation in strains of Bifidobacterium could be related to the specific rate of sugar consumption. When the specific sugar consumption rate increased, relatively more lactic acid and less acetic acid, formic acid, and ethanol were produced, and vice versa. All Bifidobacterium strains tested produced small amounts of succinic acid; the concentrations were not more than a few millimolar. Succinic acid production was found to be associated with growth and stopped when the energy source was depleted. The production of succinic acid contributed to regeneration of a small part of the NAD+, in addition to the regeneration through the production of lactic acid and ethanol.  相似文献   

16.
A Gram-stain positive, facultative aerobic bacterium, designated as strain GSS03T, was isolated from a paddy field soil. The cells were observed to be endospore forming, rod-shaped and motile with flagella. The organism was found to grow optimally at 35 °C at pH 7.0 and in the presence of 1 % NaCl. The strain was classified as a novel taxon within the genus Bacillus on the basis of phenotypic and phylogenetic analyses. The closest phylogenetic relatives were identified as Bacillus psychrosaccharolyticus DSM 6T (97.61 %), Bacillus muralis DSM 16288T (97.55 %), Bacillus asahii JCM 12112T (97.48 %), Bacillus simplex DSM 1321T (97.48 %) and “Bacillus frigoritolerans” DSM 8801T (97.38 %). The menaquinone was identified as MK-7, the major cellular fatty acid was identified as anteiso-C15:0 and the major cellular polar lipids as phosphatidylethanolamine, phosphatidylmonomethylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and three unknown polar lipids. The DNA G+C content was determined to be 40.2 mol%. The DNA–DNA relatedness with the closest relatives was below 48 %. Therefore, on the basis of all the results, strain GSS03T is considered to represent a novel species within the genus Bacillus, for which the name Bacillus huizhouensis sp. nov. is proposed. The type strain is GSS03T (=KCTC 33172T =CCTCC AB 2013237T).  相似文献   

17.
Zymomonas mobilis can grow and produce ethanol on extracts of apples, oranges, peaches, watermelons, and sugar beets without the addition of any nutrients. The best substrate for growth was watermelon extract. Strain CP4 showed the best growth kinetics on all the extracts tested, but strain NCIB 11163 failed to grow on sugar beet extracts. The highest ethanol production and yield was obtained by strain ATCC 10988 when grown on apple, orange, and watermelon extracts. Isopentanol, acetic acid, and low amounts of histidine were the major by-products produced. Traces of formaldehyde, methanol, phenol, and other higher alcohols were also detected, but H2S was not detectable.  相似文献   

18.
Lactic acid bacteria and bifidobacteria were screened of their ability to ferment fructooligosaccharides (FOS) on MRS agar. Of 28 strains of lactic acid bacteria and bifidobacteria examined, 12 of 16 Lactobacillus strains and 7 of 8 Bifidobacterium strains fermented FOS. Only strains that gave a positive reaction by the agar method reached high cell densities in broth containing FOS.  相似文献   

19.
A Preliminary Investigation into the Role of Yeasts in the Ensiling Process   总被引:1,自引:1,他引:0  
The activities of six unidentified yeasts isolated from silage were monitored in a defined environment prepared to simulate a grass silage. Lactic acid and acetic acid contents of the silages were higher when yeasts were included in the inoculum used and the yeasts appeared to be beneficial to preservation. The yeasts also contributed to the small quantities of ethanol which were detected. Where a yeast was used as the sole inoculum the pH of the silage remained high, but lactic acid and acetic acid as well as ethanol were present in the resulting silages.  相似文献   

20.
The phenotypic and genotypic diversity of the plant growth promoting Bacillus genus have been widely investigated in the rhizosphere of various agricultural crops. However, to our knowledge this is the first report on the Bacillus species isolated from the rhizosphere of Calendula officinalis. 15 % of the isolated bacteria were screened for their important antifungal activity against Fusarium oxysporum, Botrytis cinerea, Aspergillus niger, Cladosporium cucumerinium and Alternaria alternata. The bacteria identification based on 16S r-RNA and gyrase-A genes analysis, revealed strains closely related to Bacillus amyloliquefaciens, B. velezensis, B. subtilis sub sp spizezenii and Paenibacillus polymyxa species. The electro-spray mass spectrometry coupled to liquid chromatography (ESI-LC MS) analysis showed that most of the Bacillus isolates produced the three lipopeptides families. However, the P. polymyxa (18SRTS) didn’t produce any type of lipopeptides. All the tested Bacillus isolates produced cellulase but the protease activity was observed only in the B. amyloliquefaciens species (9SRTS). The Salkowsky colorimetric test showed that the screened bacteria synthesized 6–52 μg/ml of indole 3 acetic acid. These bacteria produced siderophores with more than 10 mm wide orange zones on chromazurol S. The greenhouse experiment using a naturally infested soil with Sclerotonia sclerotiorum showed that the B. amyloliquefaciens (9SRTS) had no significant (P > 0.05) effect on the pre-germination of the chickpea seeds. However, it increased the size of the chickpea plants and reduced the stem rot disease (P < 0.05).These results suggested that the Bacillus strains isolated in this work may be further used as bioinoculants to improve the production of C. officinalis and other crop systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号