首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present study was to determine the immunoreactivity of vascular endothelial growth factor (VEGF-A) and its two receptors, viz., Flt-1 (fms-like tyrosine kinase) and Flk-1 (fetal liver kinase), on the surface of endothelial cells of the uterine artery and its branches and of the arcuate arteries in the area of the uterine broad ligament during various phases of the estrous cycle in the pig. We also investigated their expression to determine whether this was phase-related. The highest immunoreactivity for VEGF-A was observed in the uterine artery and arcuate arteries at the early luteal phase and in the branches of the uterine artery during the follicular phase of the estrous cycle. The strongest immunostaining intensity of Flt-1 was found in the uterine artery and its branches at the follicular phase and in arcuate arteries at the mid-luteal phase, whereas Flk-1 immunostaining was at its highest in the uterine artery at the mid-luteal phase and in the branches of the uterine artery and arcuate arteries at the follicular phase. Additionally, VEGF-A expression was assessed by semi-quantitative Western blot analysis, which revealed significantly higher levels of VEGF-A protein during the early luteal and the follicular phase of the estrous cycle (P < 0.001). The phase-related differences in the immunoreactivity and expression of VEGF-A and VEGF receptors suggest that these factors are hormone-dependent during the estrous cycle in the pig.  相似文献   

2.
Prostacyclin (PGI(2)) is a potent vasodilator, the level of which is increased during pregnancy, and is the main eicosanoid of which production is elevated in the endothelium and vascular smooth muscle (VSM) of both uterine and omental (systemic) arteries. We tested the hypothesis that during physiologic states that have high uterine blood flow, such as pregnancy and the follicular phase of the ovarian cycle (versus luteal phase and ovariectomized ewes), there is an increased level of prostacyclin synthase (PGIS) expression in ovine uterine and omental artery endothelium and VSM. To investigate this, the cellular localization and PGIS protein expression level in uterine and systemic arteries was examined by immunohistochemistry as well as by Western immunoblot analysis of endothelial-isolated protein and denuded vessels (VSM). Whole uterine, but not omental (systemic), arteries from the pregnant ewes showed an increase (P < 0.001) in PGIS expression. Further localization of PGIS protein by immunohistochemistry and quantification by Western analysis showed PGIS to be somewhat higher in the uterine artery VSM (69 +/- 7%) than endothelium (31 +/- 7%). PGIS protein levels in uterine and omental artery endothelial isolated protein were not altered by ovariectomy or the ovarian cycle, although they were both significantly elevated by pregnancy. Uterine and omental artery VSM PGIS expression levels also were not altered by ovariectomy or the ovarian cycle, whereas PGIS expression, in uterine but not omental artery VSM showed a significant elevation during pregnancy. Thus, the rise in PGI(2) production by uterine arteries observed in ovine pregnancy is paralleled by an elevation in PGIS expression in both endothelium and VSM, whereas those seen in omental arteries is associated with increases in endothelial PGIS.  相似文献   

3.
During ovine pregnancy, when both estrogen and progesterone are elevated, prostacyclin (PGI2) production by uterine arteries and the key enzymes for PGI2 production, phospholipase A2 (cPLA2), cyclooxygenase 1 (COX-1), and prostacyclin synthetase (PGIS), are increased. This study was conducted to determine whether exogenous estradiol-17beta (E2beta) with or without progesterone (P4) treatment would increase cPLA2, COX-1, and PGIS protein expression in ovine uterine, mammary, and systemic (renal, mental, and coronary) arteries. Nonpregnant ovariectomized sheep received vehicle (n = 10), P(4) (0.9-g controlled internal drug release vaginal implants; n = 13), E2beta (5 microg/kg bolus followed by 6 microg x kg(-1) x day(-1); n = 10), or P4 + E2beta (n = 12). Arteries were procured on Day 10, and cPLA2, COX-1, and PGIS protein were measured by Western immunoblot analysis in endothelial isolated proteins and vascular smooth muscle (VSM). The levels of cPLA2 was increased in uterine artery endothelium in ewes treated with P4 + E2beta but was not altered by any steroid treatment in renal, coronary, mammary, or omental artery endothelium or in VSM of any evaluated artery. Similarly, COX-1 was increased in uterine artery endothelium with P4 + E2beta but was not significantly altered by treatment in other endothelium or VSM. E2beta treatment increased PGIS protein in uterine and renal artery endothelium but did not alter PGIS in other endothelial tissue. P4 increased PGIS expression in the uterine, mammary, omental, and renal artery VSM, and E2beta increased PGIS expression in the uterine and omental artery VSM. Both E2beta and P4 treatments differentially alter protein expression of the key enzymes involved in PGI2 production in different artery types and may play an important role in the control of blood flow redistribution during hormone replacement therapy.  相似文献   

4.
Uterine artery endothelial production of the potent vasodilator, prostacyclin, is greater in pregnant versus nonpregnant sheep and in whole uterine artery from intact versus ovariectomized ewes. We hypothesized that uterine artery cyclooxygenase (COX)-1 and/or COX-2 expression would be elevated during pregnancy (high estrogen and progesterone) and the follicular phase of the ovarian cycle (high estrogen/low progesterone) as compared to that in luteal phase (low estrogen/high progesterone) or in ovariectomized (low estrogen and progesterone) ewes. Uterine and systemic (omental) arteries were obtained from nonpregnant luteal-phase (LUT; n = 10), follicular-phase (FOL; n = 11), and ovariectomized (OVEX; n = 10) sheep, as well as from pregnant sheep (110-130 days gestation; term = 145 +/- 3 days; n = 12). Endothelial and vascular smooth muscle (VSM) COX-1 protein levels and uterine artery endothelial cell COX-1 mRNA levels were compared. Using immunohistochemistry and Western analysis, the primary location of COX-1 protein was the endothelium; that is, we observed 2.2-fold higher COX-1 protein levels in intact versus endothelium-denuded uterine artery and a 6.1-fold higher expression in the endothelium versus VSM (P < 0.05). COX-2 protein expression was not detectable in either uterine artery endothelium or VSM. COX-1 protein levels were observed to be higher (1.5-fold those of LUT) in uterine artery endothelium from FOL versus either OVEX or LUT nonpregnant ewes (P < 0.05), with substantially higher COX-1 levels seen in pregnancy (4.8-fold those of LUT). Increases in uterine artery endothelial COX-1 protein were highly correlated to increases in the level of COX-1 mRNA (r(2) = 0.66; P < 0.01) for all treatment groups (n = 6-8 per group), suggesting that increased COX-1 protein levels are regulated at the level of increased COX-1 mRNA. No change in COX-1 expression was observed between groups in a systemic (omental) artery. In conclusion, COX-1 expression is specifically up-regulated in the uterine artery endothelium during high uterine blood flow states such as the follicular phase and, in particular, pregnancy.  相似文献   

5.
Prostaglandin-endoperoxide synthase (PTGS) (also known as cyclooxygenase) converts arachidonic acid into several prostaglandins, many of which have roles in vasodilation and vasoconstriction under normal and pathological conditions. There are two isoforms of PTGS: PTGS-1 and PTGS-2; PTGS-1 is constitutively expressed in many tissues and is believed to be involved in the homeostatic maintenance of the body. In contrast, PTGS-2 is believed to have a "differentiative" role in the cells and is highly inducible during inflammation and in response to lipopolysaccharide (LPS). Endothelial cells as well as vascular smooth muscle cells can be a source of PTGS within the artery. The objective of this study was to determine the cell population(s) in uterine arteries that respond to LPS with an increase in PTGS-2 protein expression. Uterine arteries collected from ewes during the follicular (Day 0, Day 0 = estrus, n = 4) or luteal (Day 10, n = 4) phase were treated in vitro with LPS as intact artery segments, cut-open artery segments, or cut-open and denuded (endothelial cells absent) artery segments. After 24 h of LPS treatment, intact, cut-open, and denuded uterine artery segments were collected into homogenization buffer for determination of PTGS-2 protein levels by Western blot analysis. The culture medium was collected and used for detection of 6-keto-prostaglandin F(1alpha) (6-keto-PGF(1alpha)), the stable metabolite of prostacyclin, using an enzyme immunoassay. In addition, the location of PTGS-2 after LPS treatment was analyzed by immunohistochemistry in intact artery segments. Denuded arteries (endothelium absent) did not show increases in PTGS-2 protein in the homogenates or 6-keto-PGF(1alpha) in the culture medium after LPS exposure. In contrast, cut uterine arteries responded to LPS stimulation with a significant increase in PTGS-2 protein in homogenates and 6-keto-PGF(1alpha) in culture medium. Immunohistochemical staining for PTGS-2 was associated with both endothelial cells and vascular smooth muscle cells. These results suggest that while both endothelial cells and vascular smooth muscle cells are associated with PTGS-2, after LPS exposure it is the endothelial cells that are essential in uterine artery increases in PTGS-2 and prostacyclin in response to LPS stimulation.  相似文献   

6.
Endometrial tissue homogenates obtained at luteal and follicular stages of the estrous cycle were determined for prostaglandin E(2) and progesterone contents by EIA and RIA, respectively. In Experiment 1, the concentrations and changes of PGE(2) in uterine tissues collected by biopsy before slaughfter and subsequent samples collected at 30, 60 and 90 min after slaughter were measured. No significant differences were observed in the concentration of PGE(2) preslaughter or at 30 and 60 min post slaughter. However, there was a significant decrease (P<0.01) in PGE(2) concentration 90 min post slaughter. In Experiment 2, the concentrations of PGE(2) in the ipsilateral and contralateral horns in relation to corpus luteum function were compared. A significant (P<0.05) interaction was found between stages of estrous cycle (luteal vs follicular) based on CL progesterone content, and type of uterine horn (ipsilateral vs contralateral) on uterine PGE(2) levels. The PGE(2) concentration was significantly higher (P<0.01) at luteal phase than at follicular phase. During the luteal phase PGE(2) concentrations in tissues of the uterine horn ipsilateral to the corpus luteum was significantly higher (P<0.01) than the contralateral horn. The PGE(2) concentration was low and did not differ significantly between horns during follicular phase. A parallel increase (luteal: high) and decrease (follicular: low) in PGE(2) and progesterone concentrations were observed. Correlations were observed for CL progesterone and uterine PGE(2) concentrations as well as for PGE(2) and progesterone concentrations in uterine tissues (r=0.70 and r=0.60, respectively). The results show that the increase in PGE(2) concentrations in uterine tissues coincides with the high uterine progesterone concentrations during luteal phase.  相似文献   

7.
Application of the ram effect during the breeding season has been previously disregarded because the ewe reproductive axis is powerfully inhibited by luteal phase progesterone concentrations. However, anovulatory ewes treated with exogenous progestagens respond to ram introduction with an increase in LH concentrations. We therefore tested whether cyclic ewes would respond to ram introduction with an increase in pulsatile LH secretion at all stages of the estrous cycle. We did two experiments using genotypes native to temperate or Mediterranean regions. In Experiment 1 (UK), 12 randomly cycling, North of England Mule ewes were introduced to rams midway through a frequent blood-sampling regime. Ewes in the early (EL; n=3) [corrected] and late luteal (LL; n=6) phase responded to ram introduction with an increase in LH pulse frequency and mean and basal concentration [corrected] of LH (at least P<0.05). In Experiment 2 (Australia), the cycles of 32 Merino ewes were synchronised using intravaginal progestagen pessaries. Pessary insertion was staggered to produce eight ewes at each stage of the estrous cycle: follicular (F), early luteal (EL), mid-luteal (ML) and late luteal (LL). In all stages of the cycle, ewes responded to ram introduction with an increase in LH pulse frequency (P<0.01); EL, ML and LL ewes also had an increase in mean LH concentration (P<0.05). In conclusion, ram introduction to cyclic ewes stimulated an increase in pulsatile LH secretion, independent of ewe genotype or stage of the estrous cycle.  相似文献   

8.
Uterine blood flow (UBF) and uterine artery endothelial nitric oxide synthase (eNOS) expression are greatest during the follicular vs. luteal phase. 17 beta-Estradiol (E(2)beta) increases UBF and elevates eNOS in ovine uterine but not systemic arteries; progesterone (P(4)) effects on E(2)beta changes of eNOS remain unclear. Nonpregnant ovariectomized sheep received either vehicle (n = 10), P(4) (0.9 g Controlled Internal Drug Release vaginal implants; n = 13), E(2)beta (5 microg/kg bolus + 6 microg x kg(-1) x day(-1); n = 10), or P(4) + E(2)beta (n = 12). Reproductive (uterine/mammary) and nonreproductive (omental/renal) artery endothelial proteins were procured on day 10, and eNOS was measured by Western analysis. P(4) and E(2)beta alone and in combination increased (P < 0.05) eNOS expression in uterine artery endothelium (vehicle = 100 +/- 16%, P(4) = 251 +/- 59%, E(2)beta = 566 +/- 147%, P(4) + E(2)beta = 772 +/- 211% of vehicle). Neither omental, renal, nor mammary artery eNOS was altered, demonstrating the local nature of steroid-induced maintenance of uterine arterial eNOS. In the myometrial microvasculature, eNOS was increased slightly (P = 0.06) with E(2)beta and significantly with P(4) + E(2)beta. Systemic NO(x) was increased with P(4) and P(4) + E(2)beta, but not E(2)beta, suggesting differential regulation of eNOS expression and activity, since P(4) increased eNOS in uterine artery endothelium while E(2)beta and the combination further increased eNOS protein.  相似文献   

9.
Cryostat sections of arterial and venous vessels from various size branches of the uterine artery and utero-ovarian vein of the pig mesometrium in different phases of the estrous cycle were stained immunohistochemically for endothelial nitric oxide synthase (eNOS), endothelin-1 (ET-1) and endothelin B receptor (ETB-R) using ABC method. Immunoreactivity was evaluated according to 6-point scale under light microscope. The differences in immunostaining intensity in the endothelium of the vessels studied at various levels of mesometrium suggest a correlation of eNOS, ET-1 and ETB-R expression with the estrous cycle. In the follicular phase, the highest eNOS immunoreactivity was noticed in arcuate arteries and veins, while immunoreaction of ET-1 was much lower, just as ETB-R. On the other hand, the highest ET-1 immunoreactivity was observed during first 2 days afterovulation, while ETB-R showed low immunoreactivity level during the whole luteal phase. Vessels from the middle part of mesometrium (I degrees and II degrees branches) and large vascular trunks revealed similar staining for eNOS during the cycle as compared to arcuate arteries. Those vessels showed very high immunoreactivity levels for ET-I and ETB-R during first 2 days after ovulation. Our results suggest that during the estrus eNOS, ET-I and ETB-R play a significant role in the regulatory process of blood flow through the mesometrial vessels, that are connected to the uterine horn.  相似文献   

10.
The objective of this experiment was to assess the relationship between electrical resistance of the vaginal mucosa and serum concentrations of estradiol (E2) and progesterone (P4) during the estrous cycle in ewes. Vaginal impedance was recorded daily using a 2-electrode impedometer in 10 nonprolific Western white-faced and 7 prolific Finn ewes, during the mid-breeding season (October to December). Transrectal ultrasonography of ovaries was performed once a day to confirm ovulation and monitor follicle growth (follicles > or =3 mm in diameter) and development of corpora lutea (CL). Jugular blood samples were collected daily for radioimmunoassay (RIA) of estradiol and progesterone. In all ewes, a decline in vaginal impedance (to <40 ohms) was closely associated with the onset of behavioral estrus. In both breeds of sheep, there was no significant correlation between daily serum concentrations of estradiol and vaginal impedance throughout the estrous cycle. Daily serum concentrations of progesterone and the E2:P4 ratio were correlated with vaginal impedance during the period of luteolysis and follicular phase in both breeds (Western white-faced ewes: r = 0.62, P = 0.0002 and r = -0.56, P = 0.0002; Finn ewes: r = 0.61, P = 0.001 and r = -0.45, P = 0.03, respectively) and early in the cycle (Days 0 to 2, Day 0 = day of ovulation) in white-faced ewes (r = 0.61, P = 0.0003 and r = -0.36, P = 0.052, respectively) but not during the remaining portion of the luteal phase in either breed. In conclusion, vaginal mucous impedance appears to be primarily controlled by progesterone, but it also changes in response to shifts in the E2:P4 ratio when progesterone concentrations are low. Impedometric characteristics of the vaginal mucosa in cyclic ewes are an indicator of serum concentrations of progesterone and E2:P4 ratios during the terminal stage of the estrous cycle.  相似文献   

11.
The mechanism governing the number of follicle-stimulating hormone (FSH) peaks and emerging follicular waves in ruminants remains unknown. The main purpose of the present study was to examine the relationships between progesterone (P(4)) levels, circulating concentrations of FSH and antral follicular development throughout the interovulatory interval in sheep. We retrospectively analyzed and compared daily serum concentrations of (P4), FSH and estradiol (E2) obtained in cyclic (November-December) Western White Face ewes (Columbia×Rambouillet) that had 3 (n=10) or 4 (n=19) follicular waves per estrous cycle. Follicular growth was monitored in all animals by daily transrectal ultrasonography. Mean P(4) concentrations were greater (p<0.05) in sheep with 4 waves per cycle compared to their counterparts with 3 waves of follicular growth. The ewes with 3 waves exceeded (p<0.05) animals with 4 follicular waves in mean serum FSH concentrations on days 0-2, 6, 7, 9-11, 14 and 15 post-ovulation. Animals with 4 follicular waves exceeded (p<0.05) the ewes with 3 waves in mean serum E(2)> concentrations on days - 1, 2 and 10 of the estrous cycle studied (day 0=ovulation). The present results are supportive of the notion that luteal P(4) is an important endocrine signal, which controls the periodicity of FSH peaks and the number of emerging follicular waves in cyclic ewes.  相似文献   

12.
Pregnancy is a time of greatly increased uterine blood flow to meet the needs of the growing fetus. Increased uterine blood flow is also observed in the follicular phase of the ovarian cycle. Simultaneous fura-2 and 4,5-diaminofluoresceine (DAF-2) imaging reveals that cells of the uterine artery endothelium (UA Endo) from follicular phase ewes produce marginally more nitric oxide (NO) in response to ATP than those from luteal phase. However, this is paralleled by changes in NO in response to ionomycin, suggesting this is solely due to higher levels of endothelial nitric oxide synthase (eNOS) protein in the follicular phase. In contrast, UA Endo from pregnant ewes (P-UA Endo) produces substantially more NO (4.62-fold initial maximum rate, 2.56-fold overall NO production) in response to ATP, beyond that attributed to eNOS levels alone (2.07-fold initial maximum rate, 1.93-fold overall with ionomycin). The ATP-stimulated intracellular free calcium concentration ([Ca(2+)](i)) response in individual cells of P-UA Endo comprises an initial peak followed by transient [Ca(2+)](i) bursts that are limited in the luteal phase, not altered in the follicular phase, but are sustained in pregnancy and observed in more cells. Thus pregnancy adaptation of UA Endo NO output occurs beyond the level of eNOS expression and likely through associated [Ca(2+)](i) cell signaling changes. Preeclampsia is a condition of a lack of UA Endo adaptation and poor NO production/vasodilation and is associated with elevated placental VEGF(165). While treatment of luteal NP-UA Endo and P-UA Endo with VEGF(165) acutely stimulates a very modest [Ca(2+)](i) and NO response, subsequent stimulation of the same vessel with ATP results in a blunted [Ca(2+)](i) and an associated NO response, with P-UA Endo reverting to the response of luteal NP-UA Endo. This demonstrates the importance of adaptation of cell signaling over eNOS expression in pregnancy adaptation of uterine endothelial function and further implicates VEGF in the pathophysiology of preeclampsia.  相似文献   

13.
In ewes during the breeding season, estradiol (E) and progesterone (P) synergistically regulate pulsatile luteinizing hormone (LH) secretion. E primarily inhibits LH pulse amplitude and P inhibits LH pulse frequency. To determine if endogenous opioid peptides (EOP) mediate these negative feedback effects, we administered the long-acting opioid antagonist WIN 44,441-3 (WIN) to intact ewes during the luteal and follicular phases of the estrous cycle and to ovariectomized ewes treated with no steroids, E, P, or E plus P. Steroid levels were maintained at levels seen during the estrous cycle by Silastic implants placed shortly after surgery. WIN increased LH pulse frequency, but not amplitude, in luteal phase ewes. In contrast, during the follicular phase, LH pulse amplitude was increased by WIN and pulse frequency was unchanged. Neither LH pulse frequency nor pulse amplitude was affected by WIN in long-term ovariectomized ewes untreated with steroids. In contrast, WIN slightly increased LH pulse frequency in short-term ovariectomized ewes. WIN also increased LH pulse frequency in ovariectomized ewes treated with P or E plus P. WIN did not affect pulse frequency but did increase LH pulse amplitude in E-treated ewes. These results support the hypothesis that EOP participate in the negative feedback effects of E and P on pulsatile LH secretion during the breeding season and that the inhibitory effects of EOP may persist for some time after ovariectomy.  相似文献   

14.
The effects on spontaneous ovulation associated with the unilateral or bilateral sectioning of the superior ovarian nerves (SON) were analyzed in guinea pigs at different time intervals of the estrous cycle. Day 1 of the estrous cycle was defined as the day when the animal presents complete loss of the vaginal membrane (open vagina). Subsequent phases of the cycle were determined by counting the days after Day 1. All animals were autopsied on the fifth day of the estrous cycle after surgery. Sectioning the right, left, or both SONs on day 5 (early luteal phase) resulted in a significant increase in the number of fresh corpora lutea. Ovulation increased significantly when the left SON (L-SON) was sectioned during late follicular phase (day 1) and medium luteal phase (day 8). When surgery was performed on days 1 or 8, neither sectioning the right SON (R-SON) nor sectioning the SON bilaterally had an apparent effect on ovulation rates. Similarly, ovulation rates were not affected when unilateral (right or left) or bilateral sectioning of the SON was performed during late luteal phase two (day 12). Unilateral or bilateral sectioning of the SON performed during the early luteal phase (day 5) was associated with a significant decrease in uterine weight. A comparable effect was observed when the L-SON was sectioned during late follicular phase (day 1), or medium luteal phase (day 8). No effects on uterine weight were observed when unilateral or bilateral sectioning of the SON was performed during late luteal phase. Our results suggest that in the guinea pig the SON modulates ovulation, and that the degree of modulation varies along the estrous cycle. The strongest influence of the SONs on ovulation occurs during early luteal phase, and decrease thereafter, being absent by late luteal phase. In addition, sectioning the left or the right SON caused different responses by the ovaries of adult guinea pigs. This paper discusses the mechanisms by which ovulation increased when the SON was surgically cut.  相似文献   

15.
In three experiments, we examined endogenous opioid inhibition of luteinizing hormone (LH) secretion during the bovine estrous cycle. An increase in serum LH in response to the opioid antagonist naloxone (Na; 1 mg/kg i.v.) was the criterion for opioid inhibition. Estrous cycles were synchronized via prostaglandin administration. In Experiment 1, mean serum LH was not different during the luteal phase in yearling heifers (n = 6/group) at Hour 1 after Nal (2.1 ng/ml) compared to controls (1.8 ng/ml). However, LH peak amplitude was increased (p less than 0.05) in the Nal compared to the control group. Serum LH was increased (p less than 0.01) during the follicular phase in heifers at Hour 1 post-Nal compared to controls (4.7 and 3.5 ng/ml, respectively). Again, Nal administration was followed by increased (p less than 0.05) LH pulse amplitude compared to control. In Experiment 2, no effect of Nal upon serum LH was detected in cows (n = 9) during proestrus, metestrus, midluteal and late luteal portions of the estrous cycle. In Experiment 3, the LH response to Nal was examined simultaneously in yearling heifers and cows (n = 5/group) during the luteal and follicular phases. Serum LH increased (p less than 0.001) during Hour 1 post-Nal in heifers compared to cows during the follicular (3.4 vs. 1.7 ng/ml) but not during the luteal phase. LH pulse amplitude also increased (p less than 0.05) during Hour 1 post-Nal in heifers compared to cows during the luteal (2.5 vs. 1.1 ng/nl and follicular (2.5 vs. 1.3 ng/ml) phases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Nitric oxide (NO), a highly reactive free radical is involved in vasodilation, neurotransmission, hormone secretion, and reproduction. Since all known nitric oxide synthase (NOS) isoforms possess NADPH-diaphorase (NADPH-d) activity, NADPH-d histochemistry was used as a commonly accepted procedure for NOS identification. The aim of our study was to determine the cellular localization of NADPH-d, eNOS, and iNOS in the porcine uterus and the correlation between NADPH-d and NOS activity in the early, middle, late luteal, and follicular phase of the estrous cycle. Light-microscopic observations of the sections revealed the differential expression of the NADPH-d in the analyzed stages of the estrous cycle. The most intense staining was observed in the luminal epithelium in the late luteal phase and in some groups of the endometrial glands in all studied stages. Positive reaction was also found in the endothelial cells of blood vessels and in the myometrium itself. Immunostaining for eNOS was observed in the luminal and glandular epithelium in all studied stages, but no clear fluctuations were observed. The endothelium of both endometrial and myometrial blood vessels displayed pronounced eNOS immunostaining. Strong iNOS staining was observed in the luminal epithelium in the late luteal and follicular phase and in selected groups of endometrial glands. Thus, only NADPH-d and iNOS undergo cyclic changes in the studied stages of the estrous cycle. The differential expression of NADPH-d/NOS in the porcine uterine horn during the estrous cycle suggests a role for NO in modulating uterine function.  相似文献   

17.
The circulating concentrations of progesterone, FSH, and follistatin across the estrous cycle and gestation were compared in Australian merino sheep that were homozygous for the Booroola gene, FecB, or were noncarriers. The Booroola phenotype is due to a point mutation in the bone morphogenetic protein receptor 1B. Progesterone concentrations began to rise earlier and were higher in the Booroola ewes than in the noncarriers on most days of the luteal phase but not during the follicular phase of the cycle. Follistatin concentrations remained unchanged across the estrous cycle in both groups of ewes, with no differences between genotypes. FSH concentrations were higher in Booroola ewes than in noncarrier ewes on most days of the estrous cycle, with a significantly higher and broader peak of FSH around the time of estrus. Progesterone concentrations were significantly higher in early and midgestation in Booroola ewes but were lower toward the end of gestation than those in noncarriers. FSH declined in both groups across gestation, with lower concentrations of FSH in Booroola ewes during midgestation. Follistatin remained unchanged across gestation in Booroola ewes and noncarrier ewes with a twin pregnancy but declined across gestation in noncarrier ewes with a singleton pregnancy. These results suggest that follistatin concentration is not regulated by the FecB gene during the estrous cycle and pregnancy but is influenced by the number of fetuses. However, the FecB gene appears to positively affect both progesterone and FSH during the estrous cycle and across pregnancy, which suggests that bone morphogenetic proteins play an important role in the regulation of both hormones.  相似文献   

18.
Scottish Blackface ewes in high body condition (mean score = 2.86) had a higher mean ovulation rate (1.8 v. 0.9; P < 0.05) and more large (⪖ 4 mm diameter) follicles (4.6 v 2.2; P < 0.05) than ewes in low condition (mean score = 1.84) but similar numbers of small (1–4 mm diameter) follicles (6.3 v 6.0; NS). There was little difference in LH profiles with body condition but FSH and prolactin concentrations were significantly greater, during both luteal and follicular phases of the cycle, in ewes in high condition.Despite the relationships between body condition and ovulation rate and between condition and hormone concentrations, within the high condition groups, there was no significant difference in FSH levels with ovulation rate. Prolactin levels were higher in ewes with a single ovulation than in ewes with two or three ovulations. There was a trend towards a higher mean LH pulse frequency in the luteal phase and a higher mean LH pulse amplitude in the follicular phase in ewes with multiple ovulations compared with ewes with a single ovulation. During oestrus, only circulating prolactin concentrations differed with body condition, being significantly higher in ewes in high condition, but mean LH concentrations were higher and FSH concentrations lower in ewes with multiple ovulations. Subsequent luteal function, as measured by circulating progesterone concentrations, was normal in all ewes. It is concluded that body condition affected the size of the large follicle (⪖ 4 mm diameter) population through changes in FSH and possibly pulsatile LH secretion and prolactin secretion during the luteal and follicular phases of the cycle and that the number of follicles that were potentially ovulatory was probably determined during the luteal phase of the cycle. However, their ability to undergo the final stages of development and to ovulate may be related to the amount of LH secreted during the follicular phase.  相似文献   

19.
A sustained volley of high-frequency pulses of GnRH secretion is a fundamental step in the sequence of neuroendocrine events leading to ovulation during the breeding season of sheep. In the present study, the pattern of GnRH secretion into pituitary portal blood was examined in ewes during both the breeding and anestrous seasons, with a focus on determining whether the absence of ovulation during the nonbreeding season is associated with the lack of a sustained increase in pulsatile GnRH release. During the breeding season, separate groups (n = 5) of ovary-intact ewes were sampled during the midluteal phase of the estrous cycle and following the withdrawal of progesterone (removal of progesterone implants) to synchronize onset of the follicular phase. During the nonbreeding season, another two groups (n = 5) were sampled either in the absence of hormonal treatments or following withdrawal of progesterone. Pituitary portal and jugular blood for measurement of GnRH and LH, respectively, were sampled every 10 min for 6 h during the breeding season or for 12 h in anestrus. During the breeding season, mean frequency of episodic GnRH release was 1.4 pulses/6 h in luteal-phase ewes; frequency increased to 7.8 pulses/6 h during the follicular phase (following progesterone withdrawal). In marked contrast, GnRH pulse frequency was low (mean less than 1 pulse/6 h) in both groups of anestrous ewes (untreated and following progesterone withdrawal), but GnRH pulse amplitude exceeded that in both luteal and follicular phases of the estrous cycle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Insulin-like growth factors (IGF-I and IGF-II) are essential for normal uterine development and have been particularly implicated in fetal and placental growth. A family of six IGF binding proteins enhance or attenuate IGF-stimulated cell proliferation. In this study we have used in situ hybridization to map the distribution of IGFBP-6, one of the lesser known of the IGFBPs, in sections of the uterus collected from cyclic, anestrous, and ovariectomized nonpregnant ewes and from the uterus and placenta of early pregnant (13-55 days) and unilaterally pregnant ewes. In nonpregnant ewes IGFBP-6 mRNA (measured as arbitrary optical density units from autoradiographs) was abundant in the periepithelium and caruncles, with lower levels in the endometrial stroma and myometrium. In most regions IGFBP-6 mRNA showed cyclic variations with concentrations maximal around ovulation and the early luteal phase. In addition, 16 out of 25 ewes expressed IGFBP-6 mRNA in their endometrial glands between estrus and Day 2. Measurements of IGFBP-6 mRNA were high in anestrous ewes (equivalent values to ovulation) but low in ovariectomized ewes (equivalent values to mid to late luteal phase). In pregnant ewes IGFBP-6 mRNA was found in similar regions to those recorded during the cycle. In the periepithelium and caruncular stroma IGFBP-6 mRNA levels were higher during early pregnancy than in the midluteal phase. In the unilateral pregnant ewes there was no difference in IGFBP-6 mRNA measured between pregnant and nonpregnant horns. In conclusion, IGFBP-6 mRNA is differentially regulated during the estrous cycle and pregnancy and may be functionally important in modulating IGF activity in the uterus and placenta by virtue of its strong affinity and ability to regulate IGF-II mediated actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号