首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 633 毫秒
1.

Purpose

A wealth of preclinical information, as well as a modest amount of clinical information, indicates that dendritic cell vaccines have therapeutic potential. The aim of this work was to assess the immune response, disease progression, and post-treatment survival of ER/PR double-negative stage II/IIIA breast cancer patients vaccinated with autologous dendritic cells pulsed with autologous tumor lysates.

Methods

Dendritic cell (DC) vaccines were generated from CD14+ precursors pulsed with autologous tumor lysates. DCs were matured with defined factors that induced surface marker and cytokine production. Individuals were immunized intradermally four times. Specific delayed type IV hypersensitivity (DTH) reaction, ex vivo cytokine production, and lymphocyte subsets were determined for the evaluation of the therapeutic efficiency. Overall survival and disease progression rates were analyzed using Kaplan–Meier curves and compared with those of contemporaneous patients who were not administered DC vaccines.

Results

There were no unanticipated or serious adverse effects. DC vaccines elicited Th1 cytokine secretion and increased NK cells, CD8+ IFN-γ+ cells but decreased the percentage of CD3+ T cells and CD3+ HLA-DR+ T cells in the peripheral blood. Approximately 58% (18/31) of patients had a DTH-positive reaction. There was no difference in overall survival between the patients with and without DC vaccine. The 3-year progression-free survival was significantly prolonged: 76.9% versus 31.0% (with vs. without DC vaccine, p?Conclusion Our findings strongly suggest that tumor lysate-pulsed DCs provide a standardized and widely applicable source of breast cancer antigens that are very effective in evoking anti-breast cancer immune responses.  相似文献   

2.
BACKGROUND/AIMS: To evaluate the safety and feasibility of immunotherapy based on autologous dendritic cells (DC) for patients with unresectable primary liver cancer (PLC). METHODS: A total of ten patients were enrolled and immunized with DCs. Autologous DCs were generated ex vivo in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4). Cells were then pulsed with tumor lysate (TL), tumor necrosis factor-alpha (TNF-alpha) and keyhole limpet hemocyanin (KLH). Non-adherent cells were collected on day 9 and cells were administered into the inguinal lymph node. Each patient received 1-10 x 10(6) cells four times at weekly intervals. RESULTS: Immunization was well tolerated in all patients without significant toxicity. DC vaccination induced delayed-type hypersensitivity (DTH) against KLH in seven out of ten patients. In one patient, one of the two liver tumors (tumor in segment 7, 13 mm in diameter) decreased in size to 7 mm and showed necrotic change on computed tomography examination after eight immunizations. In two patients, serum levels of tumor markers decreased after vaccination. CONCLUSION: The present clinical trial suggested that immunization by TL-pulsed DCs is feasible in patients with unresectable PLC without any toxicity. Further improvement in the clinical results of immunotherapy might be expected by modifying the therapeutic protocol.  相似文献   

3.
Immunotherapy of malignant diseases mediated by dendritic cells (DC) pulsed with tumor antigens ex vivo is a promising new tool in the individual treatment of malignant diseases. The present study focuses on the problem of how to optimize in vitro culture conditions and induce the maturation of DC with the capacity to induce antitumor immunity toward leukemic cells. DC were generated from peripheral mononuclear cells by co-cultivation with granulocyte/macrophage-colony stimulating factor (GM-CSF) and interleukin-4 (IL-4). Tumor antigens were added for 2 h after 7 days in culture. Irradiated leukemic blasts, blast lysate, apoptotic cells from the Jurkat cell line (T ALL) and their lysate were used in various concentrations for antigen pulsing. Harvested DC were phenotyped by flow cytometry, and viability was assessed using trypan blue exclusion (Annexin test). After the cells had been pulsed with tumor antigens and co-cultured with autologous lymphocytes, the production of interferon-gamma (IFN-gamma) and IL-12 was analyzed, and lymphocyte proliferative response and cytotoxicity against the target tumor cell line were assessed. The cultivation of monocytes under the described conditions led to the expression of surface markers typical of DC (i.e. CD83, CD86, HLA-DR, CD11c and CD40). Pulsation by antigens from leukemic cells further increased the cell populations expressing these markers. Antigen pulsation decreased the viability of generated DC depending on the increase in concentration of tumor antigens. Pulsed DC-lymphocyte interaction increased the proliferative response of lymphocytes and IFN-gamma production depending on the type of tumor antigens used for pulsation. The highest proliferative response was detected with DC pulsed with Jurkat cell-line lysate. Similarly to the proliferation assay, cytotoxic testing showed the highest efficiency of DC pulsed with Jurkat cell-line lysate in killing the target malignant cells. Our results show that an appropriate antigen concentration used for DC pulsing is one of the crucial factors in an effective treatment strategy, as high concentrations of tumor antigens induce apoptosis of DC, thereby rendering them non-functional. Under optimal conditions, pulsation by lysate from leukemic blasts induced the maturation of DC and led to an increase in the proliferation of autologous lymphocytes, to the production of Th1-cytokines and to the induction of cytotoxicity toward the leukemic cell line. These results are encouraging for the possible application of pulsed DC in the therapy of acute lymphoblastic leukemia.  相似文献   

4.
Dendritic cell (DC)-based therapy has proven to be effective in patients with malignant lymphoma, melanoma, and renal and prostate carcinoma. In this phase I clinical trial, we have shown that patients with advanced gynaecological malignancies can be effectively vaccinated with DC pulsed with keyhole limpet haemocyanin (KLH) and autologous tumour antigens. Two patients with uterine sarcoma and six subjects with ovarian carcinoma received three to 23 intracutaneous injections of antigen-pulsed DC at 10-day or 4-week intervals. Three patients showed stable disease lasting 25 to 45 weeks, and five experienced tumour progression within the first 14 weeks. KLH- and tumour lysate-specific delayed-type hypersensitivity (DTH) reactions were observed in six and one patient, respectively. Lymphoproliferative responses to KLH and to tumour lysate stimulation were recorded in six patients and in two patients respectively. Tumour antigen-stimulated interferon-gamma (IFN-gamma) secretion by peripheral blood mononuclear cells (PBMC) in one patient was consistent with a T(H) type 1 cytokine bias. The treatment was safe, well tolerated, immunologically active and except for local cutaneous hypersensitivity devoid of significant adverse effects.  相似文献   

5.
 Dendritic cells (DCs) can be the principal initiators of antigen-specific immune responses. We analyzed the in vitro-responses against brain tumor cells using DCs from the peripheral blood of patients with brain tumors. Peripheral blood mononuclear cells (PBMC) were obtained from 19 patients with malignant brain tumors: 12 metastatic brain tumors of lung adenocarcinoma, 7 high-grade astrocytomas. PBMC were cultured with 100 ng/ml of GM-CSF and 10 ng/ml of IL-4 for 5–7 days in order to produce mature DCs. The autologous tumor lysate (5 mg/ml, containing 1 × 106 cells) was then added to the cultured DCs. Using the DCs generated by these treatments, we assessed the changes that occurred in their immune responses against brain tumor via 51Cr-release and lymphocyte proliferation assays. We found that the matured DCs displayed the typical surface phenotype of CD3+, CD45+, CD80+ and CD86+. After the pulsation treatment with tumor lysate, DCs were found to have strong cytotoxic T lymphocyte activity, showing 42.5 ± 12.7% killing of autologous tumor cells. We also found an enhancement of allogeneic T cell proliferation after pulsing the DC with tumor lysate. These data support the efficacy of DC-based immunotherapy for patients with malignant brain tumors. Received: 2 October 2000 / Accepted: 26 April 2001  相似文献   

6.
Activation of dendritic cells (DC) is crucial for priming of cytotoxic T lymphocytes (CTL), which have a critical role in tumor immunity, and it is considered that adjuvants are necessary for activation of DC and for enhancement of cellular immunity. In this study, we examined an adjuvant capacity of recombinant cholera toxin B subunit (rCTB), which is non-toxic subunit of cholera toxin, on maturation of murine splenic DC. After the in vitro incubation of DC with rCTB, the expression of MHC class II and B7-2 on DC was upregulated and the secretion of IL-12 from DC was enhanced. In addition, larger DC with longer dendrites were observed. These data suggest that rCTB induced DC maturation. Subsequently, we examined the induction of tumor immunity by rCTB-treated DC by employing Meth A tumor cells in mice. Pretreatment with subcutaneous injection of rCTB-treated DC pulsed with Meth A tumor lysate inhibited the growth of the tumor cells depending on the number of DC. Moreover, intratumoral injection of rCTB-treated DC pulsed with tumor lysate had therapeutic effect against established Meth A tumor. Immunization with DC activated by rCTB and the tumor lysate increased number of CTL precursor recognizing Meth A tumor. The antitumor immune response was significantly inhibited in CD8+ T cell-depleted mice, although substantial antitumor effect was observed in CD4+ T cell-depleted mice. These results indicated that rCTB acts as an adjuvant to enhance antitumor immunity through DC maturation and that CD8+ T cells play a dominant role in the tumor immunity. Being considered to be safe, rCTB may be useful as an effective adjuvant to raise immunity for a tumor in clinical application.  相似文献   

7.
The choice of the tumor antigen preparation used for dendritic cell (DC) loading is important for optimizing DC vaccines. In the present study, we compared DCs pulsed with hepatocellular carcinoma (HCC) total RNA or cell lysates for their capacity to activate T cells. We showed here that HCC total RNA pulsed-DCs induced effector T lymphocyte responses which showed higher killing ability to HCC cell lines, as well as higher frequency of IFN-γ producing of CD4+ and CD8+ T cells when compared with lysate pulsed-DCs. Both of RNA and lysate loading did not influence the changes of mature DC phenotype and the capacity of inducing T cell proliferation. However, HCC lysate loading significantly inhibited the production of inflammatory cytokines IL-12p70, IFN-γ and enhanced the secretion of anti-inflammatory cytokines IL-10 of mature DCs. Our results indicated that DCs loaded with HCC RNA are superior to that loaded with lysate in priming anti-HCC CTL response, suggesting that total RNA may be a better choice for DCs-based HCC immunotherapy.  相似文献   

8.
In this phase I/II study, we evaluated the feasibility, safety and efficacy of allogeneic dendritic cells (DCs) with or without cyclophosphamide in the treatment of patients with metastatic renal cell carcinoma (RCC). Immunomagnetic beads were used to isolate CD14+ monocytes from healthy donor leukapheresis products, and CD83+ antigen-pulsed monocyte-derived DCs (moDCs) loaded with tumor lysate and keyhole limpet hemocyanin (KLH) were generated. Twelve patients were treated with allogeneic moDCs alone, while ten patients also received cyclophosphamide on days 4 and 3 prior to vaccination. Of the 22 patients enrolled, 20 received full treatment consisting of at least three vaccinations at monthly intervals. Two mixed responses with substantial tumor regression were observed. In 3 patients, disease stabilization occurred, in 13 patients disease progressed and 4 patients were lost to follow-up. Overall, immune responses against KLH and tumor lysate were weak or absent; however, the strongest increases in antigen-independent and KLH-specific responses were observed in the 2 patients with mixed responses. In addition, 1 of them showed a substantial increase in oncofetal antigen (OFA)-specific IFN- production. Importantly, the 2 mixed responders and 1 patient with stable disease belonged to the cyclophosphamide group. Median overall survival in the cyclophosphamide group was 23.2 and 20.3 months in the group that received allogeneic moDCs alone. Allogeneic immunotherapy with moDCs is feasible and well tolerated. However, the immunogenicity of allogeneic moDCs is clearly less pronounced than that of autologous moDC immunotherapy. Cyclophosphamide may have the capacity to augment DC-induced antitumor immunity.  相似文献   

9.
Eleven AJCC stage IV melanoma patients with progressive disease after treatment with biochemotherapy were treated with autologous dendritic cells pulsed with heterologous tumor cell lysates. The vaccine used mature DCs (CD1a+++, CD40++, CD80++, CD83+, and CD86+++) generated from peripheral blood monocytes in the presence of GM-CSF and IL-4. After 7 days, DCs were matured with a defined cocktail of cytokines (IL-1+IL-6+TNF-+PGE2) and simultaneously pulsed with lysates of heterologous melanoma cell lines, for 2 days. A total of 4×106 DCs was injected monthly under ultrasound control in an inguinal lymph node of normal appearance. The study was closed when all patients died as a consequence of tumor progression. No sign of toxicity was observed during the study. One patient experienced a partial response lasting 5 months, and two patients showed a mixed response which lasted 3 months. The median survival of the whole group was 7.3 months (range 3–14 months). This vaccination program had specific antitumoral activity in highly pretreated and large tumor burden stage IV melanoma patients and was well tolerated. The clinical responses and the median survival of the group of patients, together with the low toxicity of our DC vaccine, suggest that this approach could be applied to earlier AJCC stage IV melanoma patients.  相似文献   

10.
The aim of the present phase I/II study was to evaluate the safety, immune responses and clinical activity of a vaccine based on autologous dendritic cells (DC) loaded with an allogeneic tumor cell lysate in advanced melanoma patients. DC derived from monocytes were generated in serum-free medium containing GM-CSF and IL-13 according to Good Manufacturing Practices. Fifteen patients with metastatic melanoma (stage III or IV) received four subcutaneous, intradermal, and intranodal vaccinations of both DC loaded with tumor cell lysate and DC loaded with hepatitis B surface protein (HBs) and/or tetanus toxoid (TT). No grade 3 or 4 adverse events related to the vaccination were observed. Enhanced immunity to the allogeneic tumor cell lysate and to TAA-derived peptides were documented, as well as immune responses to HBs/TT antigens. Four out of nine patients who received the full treatment survived for more than 20 months. Two patients showed signs of clinical response and received 3 additional doses of vaccine: one patient showed regression of in-transit metastases leading to complete remission. Eighteen months later, the patient was still free of disease. The second patient experienced stabilization of lung metastases for approximately 10 months. Overall, our results show that vaccination with DC loaded with an allogeneic melanoma cell lysate was feasible in large-scale and well-tolerated in this group of advanced melanoma patients. Immune responses to tumor-related antigens documented in some treated patients support further investigations to optimize the vaccine formulation. Margarita Salcedo and Nadège Bercovici both contributed equally to this work  相似文献   

11.
The introduction of autologous stem cell transplantation (SCT) and novel drugs has improved overall survival in multiple myeloma (MM) patients. However, minimal residual disease (MRD) remains and most patients eventually relapse. Myeloma plasma cells express tumor-associated antigens (TAA), which are interesting targets for immunotherapy. In this phase 1 study, we investigated the safety and immunological effects of TAA-mRNA-loaded dendritic cell (DC) vaccination for treatment for MRD in MM after SCT. Mature monocyte-derived DCs were pulsed with keyhole limpet hemocyanin (KLH) and electroporated with MAGE3, Survivin or B-cell maturation antigen (BCMA) mRNA. Twelve patients were vaccinated three times with intravenous (5–22 × 106 DCs) and intradermal vaccines (4–11 × 106 DCs), at biweekly intervals. Immunological responses were monitored in blood and delayed-type hypersensitivity (DTH) biopsies. All patients developed strong anti-KLH T-cell responses, but not KLH antibodies. In 2 patients, vaccine-specific T cells were detected in DTH biopsies. In one patient, we found MAGE3-specific CD4+ and CD8+ T cells, and CD3+ T cells reactive against BCMA and Survivin. In the other patient, we detected low numbers of MAGE3 and BCMA-reactive CD8+ T cells. Vaccination was well tolerated with limited toxicity. These findings illustrate that TAA-mRNA-electroporated mature DCs are capable of inducing TAA-T-cell responses in MM patients after SCT.  相似文献   

12.
Immune-based treatments represent a promising new class of therapy designed to boost the immune system to specifically eradicate malignant cells. Immunotherapy may generate specific anti-tumor immune responses, and dendritic cells (DC), professional antigen-presenting cells, are widely used in experimental cancer immunotherapy. Several reports describe methods for the generation of mature, antigen-pulsed DC for clinical use. Improved quality and standardization are desirable to obtain GMP-compliant protocols. In this study we describe the generation of DC from 31 Glioblastoma (GB) patients starting from their monocytes isolated by immunomagnetic CD14 selection using the CliniMACS® device. Upon differentiation of CD14+ with IL-4 and GM-CSF, DC were induced to maturation with TNF-α, PGE2, IL-1β, and IL-6. Whole tumor lysate was obtained, for the first time, in a closed system using the semi-automated dissociator GentleMACS®. The yield of proteins improved by 130% compared to the manual dissociation method. Interestingly the Mean Fluorescence Intensity for CD83 increased significantly in DC pulsed with “new method” lysate compared to DC pulsed with “classical method” lysate. Our results indicate that immunomagnetic isolation of CD14+ monocytes using the CliniMACS® device and their pulsing with whole tumor lysate proteins is a suitable method for clinical-scale generation of high quality, functional DC under GMP-grade conditions.  相似文献   

13.
Twenty-four patients with metastatic cancer received two cycles of four daily immunizations with monocyte-derived dendritic cells (DC). DC were incubated with preheated autologous tumor lysate and subsequently with IFN-α, TNF-α, and polyinosinic:polycytidylic acid to attain type 1 maturation. One DC dose was delivered intranodally, under ultrasound control, and the rest intradermally in the opposite thigh. Cyclophosphamide (day -7), GM-CSF (days 1-4), and pegIFN alpha-2a (days 1 and 8) completed each treatment cycle. Pretreatment with cyclophosphamide decreased regulatory T cells to levels observed in healthy subjects both in terms of percentage and in absolute counts in peripheral blood. Treatment induced sustained elevations of IL-12 in serum that correlated with the output of IL-12p70 from cultured DC from each individual. NK activity in peripheral blood was increased and also correlated with the serum concentration of IL-12p70 in each patient. Circulating endothelial cells decreased in 17 of 18 patients, and circulating tumor cells markedly dropped in 6 of 19 cases. IFN-γ-ELISPOT responses to DC plus tumor lysate were observed in 4 of 11 evaluated cases. Tracing DC migration with [(111)In] scintigraphy showed that intranodal injections reached deeper lymphatic chains in 61% of patients, whereas with intradermal injections a small fraction of injected DC was almost constantly shown to reach draining inguinal lymph nodes. Five patients experienced disease stabilization, but no objective responses were documented. This combinatorial immunotherapy strategy is safe and feasible, and its immunobiological effects suggest potential activity in patients with minimal residual disease. A randomized trial exploring this hypothesis is currently ongoing.  相似文献   

14.
Background aimsDendritic cells are regarded as the most effective antigen presenting cells and coordinators of the immune response and therefore suitable as vaccine basis. Here we present results from a clinical study in which patients with malignant melanoma (MM) with verified progressive disease received vaccination with autologous monocyte-derived mature dendritic cells (DC) pulsed with p53, survivin and telomerase-derived peptides (HLA-A2+ patients) or with autologous/allogeneic tumor lysate (HLA-A2? patients) in combination with low-dose interleukin (IL)-2 and interferon (IFN)-α2b.ResultsOf 46 patients who initiated treatment, 10 stopped treatment within 1–4 weeks because of rapid disease progression and deterioration. After 8 weeks, 36 patients were evaluable: no patient had an objective response, 11 patients had stable disease (SD); six had continued SD after 4 months, and three patients had prolonged SD for more than 6 months. The mean overall survival time was 9 months, with a significantly longer survival (18.4 months) of patients who attained SD compared with patients with progressive disease (PD) (5 months). Induction of antigen-specific T-cell responses was analyzed by multidimensional encoding of T cells using HLA-A2 major histocompatibility complex (MHC) multimers. Immune responses against five high-affinity vaccine peptides were detectable in the peripheral blood of six out of 10 analyzed HLA-A2+ patients. There was no observed correlation between the induction of immune responses and disease stabilization. A significant lower blood level of regulatory T cells (CD25high CD4 T cells) was demonstrable after six vaccinations in patients with SD compared with PD.ConclusionsVaccination was feasible and safe. Treatment-associated SD was observed in 24% of the patients. SD correlated with prolonged survival suggesting a clinical benefit. Differences in the level of regulatory T cells among SD and PD patients could indicate a significant role of these immune suppressive cells.  相似文献   

15.
A phase I/II study was conducted to test the feasibility and safety of the adoptive transfer of tumor-reactive T cells and daily injections of interferon-alpha (IFNα) in metastatic melanoma patients with progressive disease. Autologous melanoma cell lines were established to generate tumor-specific T cells by autologous mixed lymphocyte tumor cell cultures using peripheral blood lymphocytes. Ten patients were treated with on average 259 (range 38–474) million T cells per infusion to a maximum of six infusions, and clinical response was evaluated according to the response evaluation criteria in solid tumors (RECIST). Five patients showed clinical benefit from this treatment, including one complete regression, one partial response, and three patients with stable disease. No treatment-related serious adverse events were observed, except for the appearance of necrotic-like fingertips in one patient. An IFNα-related transient leucopenia was detected in 6 patients, including all responders. One responding patient displayed vitiligo. The infused T-cell batches consisted of tumor-reactive polyclonal CD8+ and/or CD4+ T cells. Clinical reactivity correlated with the functional properties of the infused tumor-specific T cells, including their in vitro expansion rate and the secretion of mainly Th1 cytokines as opposed to Th2 cytokines. Our study shows that relatively low doses of T cells and low-dose IFNα can lead to successful treatment of metastatic melanoma and reveals a number of parameters potentially associated with this success.  相似文献   

16.
The safety and immunogenicity of the human papillomavirus type 16 (HPV16) or HPV18 (HPV16/18) E7 antigen-pulsed mature dendritic cell (DC) vaccination were evaluated for patients with stage IB or IIA cervical cancer. Escalating doses of autologous DC (5, 10, and 15 × 106 cells for injection) were pulsed with recombinant HPV16/18 E7 antigens and keyhole limpet hemocyanin (KLH; an immunological tracer molecule) and delivered in five subcutaneous injections at 21-day intervals to 10 cervical cancer patients with no evidence of disease after they underwent radical surgery. Safety, toxicity, delayed-type hypersensitivity (DTH) reaction, and induction of serological and cellular immunity against HPV16/18 E7 and KLH were monitored. DC vaccination was well tolerated, and no significant toxicities were recorded. All patients developed CD4+ T-cell and antibody responses to DC vaccination, as detected by enzyme-linked immunosorbent spot (ELISpot) and enzyme-linked immunosorbent assays (ELISA), respectively, and 8 out of 10 patients demonstrated levels of E7-specific CD8+ T-cell counts, detected by ELISpot during or immediately after immunization, that were increased compared to prevaccination baseline levels. The vaccine dose did not predict the magnitude of the antibody or T-cell response or the time to detection of HPV16/18 E7-specific immunity. DTH responses to intradermal injections of HPV E7 antigen and KLH were detected for all patients after vaccination. We conclude that HPV E7-loaded DC vaccination is safe and immunogenic for stage IB or IIA cervical cancer patients. Phase II E7-pulsed DC-based vaccination trials with cervical cancer patients harboring a limited tumor burden, or who are at significant risk of tumor recurrence, are warranted.  相似文献   

17.
To investigate the ability of human dendritic cells (DC) to process and present multiple epitopes from the gp100 melanoma tumor-associated Ags (TAA), DC from melanoma patients expressing HLA-A2 and HLA-A3 were pulsed with gp100-derived peptides G9154, G9209, or G9280 or were infected with a vaccinia vector (Vac-Pmel/gp100) containing the gene for gp100 and used to elicit CTL from autologous PBL. CTL were also generated after stimulation of PBL with autologous tumor. CTL induced with autologous tumor stimulation demonstrated HLA-A2-restricted, gp100-specific lysis of autologous and allogeneic tumors and no lysis of HLA-A3-expressing, gp100+ target cells. CTL generated by G9154, G9209, or G9280 peptide-pulsed, DC-lysed, HLA-A2-matched EBV transformed B cells pulsed with the corresponding peptide. CTL generated by Vac-Pmel/gp100-infected DC (DC/Pmel) lysed HLA-A2- or HLA-A3-matched B cell lines pulsed with the HLA-A2-restricted G9154, G9209, or G9280 or with the HLA-A3-restricted G917 peptide derived from gp100. Furthermore, these DC/Pmel-induced CTL demonstrated potent cytotoxicity against allogeneic HLA-A2- or HLA-A3-matched gp100+ melanoma cells and autologous tumor. We conclude that DC-expressing TAA present multiple gp100 epitopes in the context of multiple HLA class I-restricting alleles and elicit CTL that recognize multiple gp100-derived peptides in the context of multiple HLA class I alleles. The data suggest that for tumor immunotherapy, genetically modified DC that express an entire TAA may present the full array of possible CTL epitopes in the context of all possible HLA alleles and may be superior to DC pulsed with limited numbers of defined peptides.  相似文献   

18.
Dendritic cells (DC) are the most potent antigen presenting cells and have proven effective in stimulation of specific immune responses in vivo. Competing immune inhibition could limit the clinical efficacy of DC vaccination. In this phase II trial, metronomic Cyclophosphamide and a Cox-2 inhibitor have been added to a DC vaccine with the intend to dampen immunosuppressive mechanisms. Twenty-eight patients with progressive metastatic melanoma were treated with autologous DCs pulsed with survivin, hTERT, and p53-derived peptides (HLA-A2(+)) or tumor lysate (HLA-A2(-)). Concomitantly the patients were treated with IL-2, Cyclophosphamide, and Celecoxib. The treatment was safe and tolerable. Sixteen patients (57?%) achieved stable disease (SD) at 1st evaluation and 8 patients had prolonged SD (7-13.7?months). The median OS was 9.4?months. Patients with SD had an OS of 10.5?months while patients with progressive disease (PD) had an OS of 6.0?months (p?=?0.048) even though there were no differences in prognostic factors between the two groups. Despite the use of metronomic Cyclophosphamide, regulatory T cells did not decrease during treatment. Indirect IFN-γ ELISPOT assays showed a general increase in immune responses from baseline to the time of 4th vaccination. Induction of antigen-specific immune responses was seen in 9 out of 15 screened HLA-A2(+) patients. In conclusion, the number of patients obtaining SD more than doubled and 6-month survival significantly increased compared to a previous trial without Cyclophosphamide and Celecoxib. A general increase in immune responses against the tested peptides was observed.  相似文献   

19.
BACKGROUND: Recent preclinical and clinical evidence suggests the use of allogeneic tumor as a source of antigen for DC-based immunotherapy against cancer. We hypothesized that addition of allogeneic tumor lysate to monocyte-derived DC culture could serve a dual purpose: (1) antigen source and (2) protein supplementation of DC culture media. Protein supplementation whether of known origin (human serum/plasma, fetal bovine serum, human serum albumin) or undeclared origin ("serum-free" media) is a source of variability and bias. We addressed the question whether protein supplementation can be omitted in the presence of allogeneic tumor lysate. MATERIALS AND METHODS: Human DC cultured in the presence of lysate from medullary thyroid carcinoma (MTC) cell line SHER-I (TuLy-DC) and DC pulsed with the same lysate but cultured in the presence of FBS (FBS-DC) were assessed for morphology, phenotype, maturation and functional properties. RESULTS: In comparison of FBS-DC/TuLy-DC no significant differences in morphology, phenotype and maturation could be detected. Both culture conditions produced CD1a(high), CD14(low) DC with high expression of costimulatory molecules and CD83 upon stimulation. TuLy-DC gave significantly better yields and produced more IL12p70. DC showed high (allo)stimulatory capacity toward T-cells. TuLy-DC induced more intracellular IFNgamma in CD8+T-cells of vaccinated MTC patients. Both types of DC induced killing of SHER-I after short in vitro restimulation. Tumor lysate from SHER-I can substitute for further protein supplementation in DC culture. Allogeneic tumor lysates should be taken into consideration as both source of antigen and protein supplementation in monocyte-derived DC culture.  相似文献   

20.
Current immunization protocols in cancer patients involve CTL-defined tumor peptides. Mature dendritic cells (DC) are the most potent APCs for the priming of naive CD8(+) T cells, eventually leading to tumor eradication. Because DC can secrete MHC class I-bearing exosomes, we addressed whether exosomes pulsed with synthetic peptides could subserve the DC function consisting in MHC class I-restricted, peptide-specific CTL priming in vitro and in vivo. The priming of CTL restricted by HLA-A2 molecules and specific for melanoma peptides was performed: 1) using in vitro stimulations of total blood lymphocytes with autologous DC pulsed with GMP-manufactured autologous exosomes in a series of normal volunteers; 2) in HLA-A2 transgenic mice (HHD2) using exosomes harboring functional HLA-A2/Mart1 peptide complexes. In this study, we show that: 1). DC release abundant MHC class I/peptide complexes transferred within exosomes to other naive DC for efficient CD8(+) T cell priming in vitro; 2). exosomes require nature's adjuvants (mature DC) to efficiently promote the differentiation of melanoma-specific effector T lymphocytes producing IFN-gamma (Tc1) effector lymphocytes in HLA-A2 transgenic mice (HHD2). These data imply that exosomes might be a transfer mechanism of functional MHC class I/peptide complexes to DC for efficient CTL activation in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号