首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human annexin V cDNA was cloned into plasmid pET19b and fused to a ten consecutive histidine tag at N-terminal. When expressed in E. coli BL21(DE3) LysS, the recombinant His10-annexin V accumulated in soluble form in the cytoplasm. By two-step chromatography, i.e., metal chelate affinity chromatography and anion exchange chromatography, recombinant His10-annexin V was purified to homogeneity on silver-stained SDS-PAGE gel. Recombinant annexin V, 7.4 mg, was obtained from a 1 litre flask culture.  相似文献   

2.
In order to define further the chemical features of the human placental lactogen (hPL) molecule responsible for its lactogenic activity, two derivatives of the hormone were prepared by treatment with BNPS-skatole (2-nitrophenylsulfenyl)-3-methyl-3'-bromoindolenine). At a molar ratio of reagent to hPL of 7:1, a derivative was produced in which the single tryptophan was completely oxidized. At higher ratios, a second derivative was formed in which the peptide chain was cleaved at the tryptophan residue and the two resulting fragments remained bound by the disulfide bond between Cys53 and Cys165. Oxidation of the single tryptophan resulted in reduced immunologic activity, reduced helical content as measured by circular dichroism below 240 nm, and changes in the near-UV circular dichroic spectrum, each indicating a change in the conformation of the hPL molecule. Nevertheless, this derivative retained 20% of its ability to bind to lactogenic receptors and 40 to 50% of its ability to stimulate N-acetyllactosamine synthetase in vitro. Cleavage at the tryptophan was not complete, but the loss of immunologic and biologic activity was equivalent to the degree of cleavage, indicating that the cleaved derivative was completely inactive. In addition, separation of the cleaved fragments from intact hormone followed by recombination did not generate any immunologic or biologic activity. We conclude that the single tryptophan of hPL is not essential for the biologic activity of hPL. It is likely that the reduced activity associated with modification or cleavage at the tryptophan residue is due to changes in the conformation of the molecule.  相似文献   

3.
Annexin V was radiolabelled with iodine-123 in order to develop a SPECT-ligand for imaging atherosclerosis and apoptosis. Iodination by means of electrophylic substitution resulted in radiochemical yields up to 70% and specific activities of 7.4-92.5 MBq/microg protein. Binding experiments with blood platelets indicated that 123I-labelled annexin V remained its biological activity.  相似文献   

4.
Two crystal forms (P6(3) and R3) of human annexin V have been crystallographically refined at 2.3 A and 2.0 A resolution to R-values of 0.184 and 0.174, respectively, applying very tight stereochemical restraints with deviations from ideal geometry of 0.01 A and 2 degrees. The three independent molecules (2 in P6(3), 1 in R3) are similar, with deviations in C alpha positions of 0.6 A. The polypeptide chain of 320 amino acid residues is folded into a planar cyclic arrangement of four repeats. The repeats have similar structures of five alpha-helical segments wound into a right-handed compact superhelix. Three calcium ion sites in repeats I, II and IV and two lanthanum ion sites in repeat I have been found in the R3 crystals. They are located at the convex face of the molecule opposite the N terminus. Repeat III has a different conformation at this site and no calcium bound. The calcium sites are similar to the phospholipase A2 calcium-binding site, suggesting analogy also in phospholipid interaction. The center of the molecule is formed by a channel of polar charged residues, which also harbors a chain of ordered water molecules conserved in the different crystal forms. Comparison with amino acid sequences of other annexins shows a high degree of similarity between them. Long insertions are found only at the N termini. Most conserved are the residues forming the metal-binding sites and the polar channel. Annexins V and VII form voltage-gated calcium ion channels when bound to membranes in vitro. We suggest that annexins bind with their convex face to membranes, causing local disorder and permeability of the phospholipid bilayers. Annexins are Janus-faced proteins that face phospholipid and water and mediate calcium transport.  相似文献   

5.
6.
Structure of soluble and membrane-bound human annexin V.   总被引:5,自引:0,他引:5  
Annexins are a family of water-soluble proteins that bind to membranes in a calcium-dependent manner. Some members have been shown to exhibit voltage-dependent calcium channel activity, a property characteristic of integral membrane proteins. The structures of human annexin V in crystals obtained from aqueous solution and in two-dimensional crystals when bound to phospholipid layers have been determined by X-ray and electron crystallography, respectively. They are compared here. Both structures show close correspondence, suggesting that annexins attach to phospholipid membranes without substantial structural change. These observations, together with biochemical data, lead to the conclusion that annexin V interacts with phospholipid membranes with its convex face. We propose that binding is mediated by direct interaction between the phosphoryl headgroups and the calcium bound to polypeptide loops protruding from the convex face. The membrane area covered by annexin may thus become disordered and permeable allowing calcium flux through the membrane and the central channel-like structure found in annexin molecules.  相似文献   

7.
cDNA coding for N-terminally truncated human annexin I, a member of the family of Ca(2+)-dependent phospholipid binding proteins, has been cloned and expressed in Escherichia coli. The expressed protein is biologically active, and has been purified and crystallized in space group P2(1)2(1)2(1) with cell dimensions a = 139.36 A, b = 67.50 A, and c = 42.11 A. The crystal structure has been determined by molecular replacement at 3.0 A resolution using the annexin V core structure as the search model. The average backbone deviation between these two structures is 2.34 A. The structure has been refined to an R-factor of 17.7% at 2.5 A resolution. Six calcium sites have been identified in the annexin I structure. Each is located in the loop region of the helix-loop-helix motif. Two of the six calcium sites in annexin I are not occupied in the annexin V structure. The superpositions of the corresponding loop regions in the four domains show that the calcium binding loops in annexin I can be divided into two classes: type II and type III. Both classes are different from the well-known EF-hand motif (type I).  相似文献   

8.
Human soluble epoxide hydrolase (hsEH) has been shown to play a role in regulating blood pressure and inflammation. HsEH consists of an N-terminal phosphatase and a C-terminal epoxide hydrolase domain. In the present study, we examined the effects of polymorphisms in the hsEH gene on phosphatase activity, enzyme stability, and protein quaternary structure. The results showed that mutants Lys55Arg, Arg103Cys, Cys154Tyr, Arg287Gln, and the Arg103Cys/Arg287Gln (double mutant) have significantly lower phosphatase activity compared to the most frequent allele (MFA) of hsEH. In addition, the Lys55Arg, Arg103Cys, Cys154Tyr, Arg287Gln, and the double mutant have significantly lower kcat/Km values. The stabilities at 37 degrees C of purified Arg287Gln and Arg103Cys/Arg287Gln mutants were also significantly reduced compared to the MFA. HPLC size-exclusion studies showed that the MFA exists predominantly as a dimer. However, the Arg287Gln and Arg103Cys/Arg287Gln mutants show increased concentration of the monomer. We conclude that the Arg287Gln polymorphism disrupts putative intra- and inter-monomeric salt-bridges responsible for dimerization.  相似文献   

9.
The previously reported method for the preparation of Kyn 59-RNase T1 and NFK 59-RNase T1 has been improved, and these two proteins have been obtained in high purity. Kyn 59-RNase T1, fully active for the hydrolysis of GpA and GpC, emitted a 35-fold-enhanced fluorescence of kynurenine relative to acetylnurenine amide with an emission maximum at 455 nm upon excitation at 380 nm. The polarity of the environment of Kyn 59 estimated from the emission maximum corresponded to a dielectric constant of 6. Upon excitation at 325 nm, NFK 59-RNase T1, less active than Kyn 59-RNase T1, exhibited a quenched N'-formylkynurenine fluorescence with an emission maximum at 423 nm, from which the value of 12 was obtained as the dielectric constant of the surroundings of residue 59. In both modified proteins, distinct tyrosine fluorescence appeared on excitation at 280 nm. The detection of an energy transfer from tyrosine to residue 59 suggests that the tertiary structure is very similar in Kyn 59-RNase T1 and native RNase T1. With guanidine hydrochloride, Kyn 59-RNase T1 was less stable than the native protein. Carboxymethylation at Glu 58 was shown to stabilize the active site of the modified enzyme. Based on the information collected for Kyn 59-RNase T1, the local environment and possible roles of the sole tryptophan residue in RNase T1 are discussed.  相似文献   

10.
Pigeon cytosolic malic enzyme has a double dimer quaternary structure with three tryptophanyl residues in each monomer distributed in different structural domains. The enzyme showed a three-state unfolding phenomenon upon increasing the urea concentration (Chang, H. C., Chou, W. Y., and Chang, G. G. (2002) J. Biol. Chem. 277, 4663-4671). At urea concentration of 4-4.5 m, where the intermediate form was detected, the enzyme existed as partially unfolded dimers, which were easily polymerized. Mn2+ provided full protection against the polymerization. To further characterize this phenomenon, three mutants of the enzyme (W129, W321, and W548), each with only one tryptophanyl residue left, were constructed. All these mutants were successfully overexpressed in Escherichia coli cells and purified to homogeneity. Changes in the circular dichroism spectra of all mutants revealed a three-state urea-unfolding process in the absence of Mn2+. In the presence of 4 mm Mn2+, W548 and wild type (WT) enzymes shifted to monophasic, while W129 and W321 were still biphasic. Similar results were obtained from the fluorescence spectral changes, except for W321, which showed monophasic denaturation curve with or without Mn2+. Analytical ultracentrifugation analysis indicated that the mutant enzymes were polymerized at 4.5 m urea, and Mn2+ provided protective effect on W548 and WT enzymes only. Other mutants with mutated Trp-548 polymerized at 4.5 m urea in the absence or presence of 4 mm Mn2+. The above results indicate that a single residue, Trp-548, in the subunit interface region, is responsible for the integrity of the quaternary structure of the pigeon cytosolic malic enzyme.  相似文献   

11.
Mutant analogues of recombinant human immune interferon (IFN-gamma) with higher stability and biological activity were prepared. Depending on the analogue, protein structure modification might involve introduction of an intramonomer disulfide bond (through replacements of Glu7Cys and Ser69Cys), C-terminal shortening by 10 amino acid residues, as well as Gln133Leu substitution in truncated variant. Isolation, purification, and renaturation of the IFN-gamma analogues expressed in Escherichia coli as inclusion bodies were performed according to the scheme developed earlier for wild-type protein. The main idea of this scheme is to remove cellular impurities before recombinant protein renaturation. Folding kinetics of IFN-gamma was studied by reversed-phase HPLC. IFN-gamma and mutant proteins were characterized by their thermal stability and biological activity. Introduction of the intramolecular disulfide bond together with C-terminal shortening and replacement of C-terminal residue was shown to result in increasing the thermal stability by 19 degrees C and four times enhancement of biological activity compared with intact IFN-gamma molecule.  相似文献   

12.
The amylosucrase from Neisseria polysaccharea is a transglucosidase from the GH13 family of glycoside-hydrolases that naturally catalyzes the synthesis of α-glucans from the widely available donor sucrose. Interestingly, natural molecular evolution has modeled a dense hydrogen bond network at subsite −1 responsible for the specific recognition of sucrose and conversely, it has loosened interactions at the subsite +1 creating a highly promiscuous subsite +1. The residues forming these subsites are considered to be likely involved in the activity as well as the overall stability of the enzyme. To assess their role, a structure-based approach was followed to reshape the subsite −1. A strategy based on stability change predictions, using the FoldX algorithm, was considered to identify the best candidates for site-directed mutagenesis and guide the construction of a small targeted library. A miniaturized purification protocol was developed and both mutant stability and substrate promiscuity were explored. A range of 8°C between extreme melting temperature values was observed and some variants were able to synthesize series of oligosaccharides with distributions differing from that of the parental enzyme. The crucial role of subsite −1 was thus highlighted and the biocatalysts generated can now be considered as starting points for further engineering purposes.  相似文献   

13.
The annexins comprise a family of soluble Ca2+- and phospholipid-binding proteins. Although highly similar in three-dimensional structure, different annexins are likely to exhibit different biochemical and functional properties and to play different roles in various membrane related events. Since it must be expected that these functional differences arise from differences in the characteristic thermodynamic parameters of these proteins, we performed high-sensitivity differential scanning microcalorimetry (DSC) and isothermal guanidinium hydrochloride (GdnHCl)-induced unfolding studies on annexin I and compared its thermodynamic parameters with those of annexin V published previously. The DSC data were analyzed using a model that permits quantitative treatment of the irreversible reaction. It turned out, however, that provided a heating rate of 2 K min-1 is used, unfolding of annexin I can be described satisfactorily in terms of a simple two-state reaction. At pH 6.0 annexin I is characterized by the following thermodynamic parameters: t1/2=61.8 degrees C, DeltaHcal=824 kJ mol-1 and DeltaCp=19 kJ mol-1 K-1. These parameters result in a stability value of DeltaG0D (20 degrees C)=51 kJ mol-1. The GdnHCl induced isothermal unfolding of annexin I in Mes buffer (pH 6.0), yielded DeltaG0D (buffer) values of 48, 60 and 36 kJ mol-1 at 20, 12 and 5 degrees C, respectively. These DeltaG0D values are in reasonable agreement with the values obtained from the DSC studies. The comparison of annexin I and annexin V under identical conditions (pH 8.0 or pH 6.0) shows that despite the pronounced structural homology of these two members of the annexin familiy, the stability parameters are remarkably different. This difference in stability is consistent with and provides a thermodynamic basis for the potential different in vivo functions proposed for these two annexins.  相似文献   

14.
15.
We studied the binding of fluorescein-labeled annexin V (placental anticoagulant protein I) to small unilamellar phospholipid vesicles at 0.15 M ionic strength as a function of calcium concentration and membrane phosphatidylserine (PS) content. As the mole percentage of PS in the membrane increased from 10 to 50%, the stoichiometry of binding decreased hyperbolically from 1100 mol phospholipid/mol annexin V to a limiting value of 84 mol/mol for measurements made at 1.2 mM CaCl2. Over the same range of PS content, Kd remained approximately constant at 0.036 +/- 0.011 nM. A similar hyperbolic decrease in stoichiometry was observed with vesicles containing 10 or 20% PS when the calcium concentration was increased from 0.4 to 10 mM. Thus, the density of membrane binding sites is strongly dependent on the membrane PS content and calcium concentration. The effect of calcium on annexin V-membrane binding is proposed to be due to the formation of phospholipid-calcium complexes, to which the protein binds, rather than to an allosteric effect of calcium on protein-phospholipid affinity.  相似文献   

16.
Multiple MD simulations were performed for the full‐length wild‐type A1, the full length A1 mutations S27E and S27A, as well as the N‐terminal peptide (AMVSEFLKQAWFIDNEEQEYIKTVKG S 27 KGGPGSAVSPYPTFN) of wild‐type A1 and mutations S27E and S27A. The MD simulation trajectories of about 350 ns were generated and analyzed to examine the changes of core domain calcium binding affinity, core domain and N‐terminal domain structures, and N‐terminal domain orientation. Our results indicated that S27A and S27E mutations caused little changes on the calcium‐binding affinity of the core domain of A1. However, the S27A mutation made the N‐terminal domain of A1 less helical, and made the N‐terminal domain migrate faster toward the core domain; these impacts on A1 are beneficial to the membrane aggregation process. On the contrary, the S27E mutation made the N‐terminal domain of A1 more stable, and hindered the migration to the core domain; these changes on A1 are antagonistic for the membrane aggregation process. Our results using MD simulations provide an atomistic explanation for experimental observations that the S27E mutant showed a higher calcium concentration requirement and lower maximal extent of aggregation, while the wild‐type and two mutants S27E and S27A required identical calcium concentrations for liposome binding. Proteins 2014; 82:3327–3334. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
The effects of pressure on structure and activity of recombinant human acetylcholinesterase (rHuAChE) were investigated up to a pressure of 300 MPa using gel electrophoresis under elevated hydrostatic pressure, fluorescence of bound 8-anilinonaphthalene-1-sulfonate (ANS) and activity measurements following exposure to high pressure. Study of wild-type enzyme and three single mutants (D74N, E202Q, E450A) and one sextuple mutant (E84Q/E292A/D349N/E358Q/E389Q/D390N) showed that pressure exerts a differential action on wild-type rHuAChE and its mutants, allowing estimation of the contribution of carboxylic amino acid side-chains to enzyme stability. Mutation of negatively charged residues D74 and E202 by polar side-chains strengthened heat or pressure stability. The mutation E450A and the sextuple mutation caused destabilization of the enzyme to pressure. Thermal inactivation data on mutants showed that all of them were stabilized against temperature. In conclusion, pressure and thermal stability of mutants provided evidence that the residue E202 is a determinant of structural and functional stability of HuAChE.  相似文献   

18.
Controversy exists regarding the functional role of N-linked oligosaccharides in the hormone erythropoietin. We have now examined the role of carbohydrates in the hormone's action using quantitative enzymatic deglycosylation. N-deglycosylated hormone exhibited full biological activity and potency in vitro. Denaturing with 6M urea and renaturing revealed that both the native and N-deglycosylated forms recovered full activity as long as the intrachain disulfide bonds remained intact. Therefore, receptor recognition, subsequent biological activity and maintenance of tertiary structure are intrinsic properties of the polypeptide chain of erythropoietin.  相似文献   

19.
The etiology of fragile X syndrome, myotonic dystrophy and Kennedy's disease has been attributed to the massive expansion of triplet repeat DNA sequences. This review details the relationships between the structural diversity of DNA, its secondary structure or DNA-directed mutagenesis, and the expansion of triplet repeats.  相似文献   

20.
Apoptosis is a mode of cell death that is accompanied by specific alterations to the plasma membrane that promote the recognition and engulfment of these cells by phagocytes. Although several such membrane alterations have been defined, redistribution of phosphatidylserine from the inner to the outer plasma membrane leaflet has become one of the most widely used markers for apoptotic cells in mammals. This is largely due to the availability of a sensitive and specific probe for this event in the form of the phosphatidylserine-binding protein, annexin V. Here, we describe methods for the expression and purification of recombinant polyhistidine-tagged annexin V from Escherichia coli. Recombinant annexin V is highly soluble and is thus readily expressed and purified to high yields; typically in the region of 4microg of protein per ml of bacterial culture. We also describe methods for conjugation of this protein to the FITC fluorophore and for its use for the detection of apoptotic cells by flow cytometry or fluorescence microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号