首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe 12 microsatellite loci from the Golden‐winged Warbler (Vermivora chrysoptera), a bird species of conservation concern owing to competition and hybridization with the Blue‐winged Warbler (V. pinus). Directional mitochondral DNA introgression from V. pinus into V. chrysoptera has been reported within the hybrid zone. Frequent hybrid phenotypes suggest that nuclear introgression is also prevalent, although this has not been demonstrated conclusively with molecular markers. These microsatellites will foster explorations of the genetic interactions between these avian congeners, and amplification tests suggest that they have high cross‐species utility for closely allied bird genera and families.  相似文献   

2.
There has been considerable discussion on the origin of the red wolf and eastern wolf and their evolution independent of the gray wolf. We analyzed mitochondrial DNA (mtDNA) and a Y‐chromosome intron sequence in combination with Y‐chromosome microsatellites from wolves and coyotes within the range of extensive wolf–coyote hybridization, that is, eastern North America. The detection of divergent Y‐chromosome haplotypes in the historic range of the eastern wolf is concordant with earlier mtDNA findings, and the absence of these haplotypes in western coyotes supports the existence of the North American evolved eastern wolf (Canis lycaon). Having haplotypes observed exclusively in eastern North America as a result of insufficient sampling in the historic range of the coyote or that these lineages subsequently went extinct in western geographies is unlikely given that eastern‐specific mtDNA and Y‐chromosome haplotypes represent lineages divergent from those observed in extant western coyotes. By combining Y‐chromosome and mtDNA distributional patterns, we identified hybrid genomes of eastern wolf, coyote, gray wolf, and potentially dog origin in Canis populations of central and eastern North America. The natural contemporary eastern Canis populations represent an important example of widespread introgression resulting in hybrid genomes across the original C. lycaon range that appears to be facilitated by the eastern wolf acting as a conduit for hybridization. Applying conventional taxonomic nomenclature and species‐based conservation initiatives, particularly in human‐modified landscapes, may be counterproductive to the effective management of these hybrids and fails to consider their evolutionary potential.  相似文献   

3.

Aim

Savanna biomes cover around 20% of land surfaces, yet the origins and processes that have shaped their biodiversity remain understudied. Here, we assess the timing of diversification and how patterns of genetic diversity vary along an aridity gradient in specialized saxicoline gecko clades (Oedura spp.) from the tropical savannas of northern Australia.

Location

Australian Monsoonal Tropics (AMT), Kimberley region (Western Australia).

Methods

We compiled mitochondrial and nuclear data for two Kimberley endemic lizard clades (Oedura filicipoda/murrumanu and O. gracilis), and allied non‐Kimberley taxa (O. marmorata complex). Species delimitation methods were used to identify evolutionary lineages, Maximum‐likelihood and Bayesian phylogenetic methods were employed to assess relationships and diversification timeframes, and rainfall data and range sizes were tested for correlations.

Results

Phylogenetic analyses of cryptic or recently discovered lineage diversity revealed late‐Miocene to early‐Pliocene crown ages. Microendemism and diversity were highest in high‐rainfall regions, while the most widespread lineages occurred in the central and south‐east Kimberley, and showed evidence of introgression with parapatric lineages.

Main conclusions

The initial diversification in both clades was broadly concordant with global climatic events linked to the expansion of savanna biomes in the lateMiocene. Higher endemism in mesic and refugial areas suggests long histories of localized persistence, while wider distributions and evidence of introgression suggest a dynamic history at the arid‐monsoonal interface.  相似文献   

4.
Hybridization has played an important role in the evolutionary history of Canis species in eastern North America. Genetic evidence of coyote–dog hybridization based on mitochondrial DNA (mtDNA) is lacking compared to that based on autosomal markers. This discordance suggests dog introgression into coyotes has potentially been male biased, but this hypothesis has not been formally tested. Therefore, we investigated biparentally, maternally, and paternally inherited genetic markers in a sample of coyotes and dogs from southeastern Ontario to assess potential asymmetric dog introgression into coyotes. Analysis of autosomal microsatellite genotypes revealed minimal historical and contemporary admixture between coyotes and dogs. We observed only mutually exclusive mtDNA haplotypes in coyotes and dogs, but we observed Y‐chromosome haplotypes (Y‐haplotypes) in both historical and contemporary coyotes that were also common in dogs. Species‐specific Zfy intron sequences of Y‐haplotypes shared between coyotes and dogs confirmed their homology and indicated a putative origin from dogs. We compared Y‐haplotypes observed in coyotes, wolves, and dogs profiled in multiple studies, and observed that the Y‐haplotypes shared between coyotes and dogs were either absent or rare in North American wolves, present in eastern coyotes, but absent in western coyotes. We suggest the eastern coyote has experienced asymmetric genetic introgression from dogs, resulting from predominantly historical hybridization with male dogs and subsequent backcrossing of hybrid offspring with coyotes. We discuss the temporal and spatial dynamics of coyote–dog hybridization and the conditions that may have facilitated the introgression of dog Y‐chromosomes into coyotes. Our findings clarify the evolutionary history of the eastern coyote.  相似文献   

5.
Glacial–interglacial cycles of the Pleistocene are hypothesized as one of the foremost contributors to biological diversification. This is especially true for cold‐adapted montane species, where range shifts have had a pronounced effect on population‐level divergence. Gartersnakes of the Thamnophis rufipunctatus species complex are restricted to cold headwater streams in the highlands of the Sierra Madre Occidental and southwestern USA. We used coalescent and multilocus phylogenetic approaches to test whether genetic diversification of this montane‐restricted species complex is consistent with two prevailing models of range fluctuation for species affected by Pleistocene climate changes. Our concatenated nuDNA and multilocus species analyses recovered evidence for the persistence of multiple lineages that are restricted geographically, despite a mtDNA signature consistent with either more recent connectivity (and introgression) or recent expansion (and incomplete lineage sorting). Divergence times estimated using a relaxed molecular clock and fossil calibrations fall within the Late Pleistocene, and zero gene flow scenarios among current geographically isolated lineages could not be rejected. These results suggest that increased climate shifts in the Late Pleistocene have driven diversification and current range retraction patterns and that the differences between markers reflect the stochasticity of gene lineages (i.e. ancestral polymorphism) rather than gene flow and introgression. These results have important implications for the conservation of T. rufipunctatus (sensu novo), which is restricted to two drainage systems in the southwestern US and has undergone a recent and dramatic decline.  相似文献   

6.
I compared the mtDNA compositions of two adjacent populations of Vermivora chrysoptera (golden-winged warbler) at different stages of transient hybridization with its sister species V. pinus (blue-winged warbler). Pinus mtDNA introgresses asymmetrically and perhaps rapidly into chrysoptera phenotypes without comparable reverse introgression of chrysoptera mtDNA into replacing pinus populations. Pinus mtDNA was virtually fixed (98%) in an actively hybridizing lowland population with varied phenotypes. Pinus mtDNA increased from 27% (n = 11) in 1988 to 70% (n = 10) in 1992 in successive samples of a highland population in the initial stages of hybridization. This population comprised mostly pure and slightly introgressed chrysoptera phenotypes. The rapid pace of asymmetrical introgression may be the result of initial invasion of chrysoptera populations by pioneering female pinus and/or an unknown competitive advantage of pinus females and their daughters over chrysoptera females.  相似文献   

7.
8.
We conducted a large‐scale phylogenetic and biogeographical inference of the Poliptila gnatcatchers and investigated the evolutionary history of two closely related neotropical bird species linked to open habitats, Polioptila dumicola and Polioptila plumbea. A Bayesian inference was employed based on the NADH subunit 2 gene to reconstruct the phylogenetic relationship of the gnatcatchers, and ancestral area reconstructions were estimated using BioGeoBEARS. For the phylogeographic analysis, we analyzed two mitochondrial genes, cytochrome b and ND2, of 102 individuals from P. dumicola and P. plumbea distributed throughout the complete range of both species. To reconstruct the dates related to the splitting events, we included a subset of sequences from the nuclear gene beta‐fibrinogen intron‐7. A striking result was the recovery of the sister relationship between the lineages of P. dumicola /plumbea and the paraphyly among the subspecies of P. plumbea: the first group was formed by P. dumicola, P. p. plumbea, P. p. parvirostris, P. p. atricapilla and P. lactea, occurring mainly on the Brazilian shield; while the second group consisted of lineages from north of the Amazon, west of the Andes, and Central America, and included P. maior, P. p. cinericia, P. p. bilineata and P. p. innotata. Significant phylogeographic structure was evident within lineages attributed to P. plumbea, with high levels of differentiation in the well‐defined clades according to all phylogenetic analyses. Our biogeographic analyses support distinct evolutionary histories related to founder events and vicariance, occurring during the late Pliocene and early Pleistocene. Several dispersal episodes between North/Central America and South America led to the establishment of populations which became differentiated due to landscape changes, such as the establishment of riverine barriers, the uplift of the Andes and the formation of the Panama Isthmus.  相似文献   

9.
Interspecific gene flow is pervasive throughout the tree of life. Although detecting gene flow between populations has been facilitated by new analytical approaches, determining the timing and geography of hybridization has remained difficult, particularly for historical gene flow. A geographically explicit phylogenetic approach is needed to determine the overlap of ancestral populations. In this study, we performed population genetic analyses, species delimitation, simulations and a recently developed approach of species tree diffusion to infer the phylogeographic history, timing and geographic extent of gene flow in lizards of the Sceloporus spinosus group. The two species in this group, S. spinosus and S. horridus, are distributed in eastern and western portions of Mexico, respectively, but populations of these species are sympatric in the southern Mexican highlands. We generated data consisting of three mitochondrial genes and eight nuclear loci for 148 and 68 individuals, respectively. We delimited six lineages in this group, but found strong evidence of mito‐nuclear discordance in sympatric populations of S. spinosus and S. horridus owing to mitochondrial introgression. We used coalescent simulations to differentiate ancestral gene flow from secondary contact, but found mixed support for these two models. Bayesian phylogeography indicated more than 60% range overlap between ancestral S. spinosus and S. horridus populations since the time of their divergence. Isolation–migration analyses, however, revealed near‐zero levels of gene flow between these ancestral populations. Interpreting results from both simulations and empirical data indicate that despite a long history of sympatry among these two species, gene flow in this group has only recently occurred.  相似文献   

10.
Investigating secondary contact of historically isolated lineages can provide insight into how selection and drift influence genomic divergence and admixture. Here, we studied the genomic landscape of divergence and introgression following secondary contact between lineages of the Western Diamondback Rattlesnake (Crotalus atrox) to determine whether genomic regions under selection in allopatry also contribute to reproductive isolation during introgression. We used thousands of nuclear loci to study genomic differentiation between two lineages that have experienced recent secondary contact following isolation, and incorporated sampling from a zone of secondary contact to identify loci that are resistant to gene flow in hybrids. Comparisons of patterns of divergence and introgression revealed a positive relationship between allelic differentiation and resistance to introgression across the genome, and greater‐than‐expected overlap between genes linked to lineage‐specific divergence and loci that resist introgression. Genes linked to putatively selected markers were related to prominent aspects of rattlesnake biology that differ between populations of Western Diamondback rattlesnakes (i.e., venom and reproductive phenotypes). We also found evidence for selection against introgression of genes that may contribute to cytonuclear incompatibility, consistent with previously observed biased patterns of nuclear and mitochondrial alleles suggestive of partial reproductive isolation due to cytonuclear incompatibilities. Our results provide a genome‐scale perspective on the relationships between divergence and introgression in secondary contact that is relevant for understanding the roles of selection in maintaining partial isolation of lineages, causing admixing lineages to not completely homogenize.  相似文献   

11.
The rapidly declining Golden-winged Warbler (Vermivora chrysoptera) is of conservation concern owing in part to hybridization with the closely related Blue-winged Warbler (V. pinus). These species hybridize extensively in eastern North America and over the past century the Blue-winged Warbler has displaced the Golden-winged Warbler from substantial regions of its historic breeding range. A previous study suggested that these genetic interactions result in rapid and asymmetric introgression of Blue-winged Warbler mitochondrial DNA (mtDNA) into Golden-winged phenotype populations within the zones of contact, but more recent and extensive surveys have documented a more complex pattern of genetic interchange between these taxa. We surveyed mtDNA/phenotype associations in 104 individuals of known phenotype drawn from two locations with different histories of contact and found substantial variation between sites in the extent of introgression. Where both species have co-existed for more than a century, we found evidence of bi-directional introgression and the long-term persistence of Golden-winged mtDNA haplotypes. At the leading edge of the northward expansion of Blue-winged Warblers, we found predominantly Golden-winged Warbler mtDNA haplotypes in both Golden-winged and hybrid-phenotype individuals. Across both sites, genetic swamping does not appear to be occurring via the early immigration of Blue-winged Warbler females into populations dominated by Golden-winged Warbler phenotypes. Instead, the differing patterns of mitochondrial introgression may be driven by the relative local population sizes of the parental species coupled with subtle between-species differences in mate choice and habitat preferences.  相似文献   

12.
Indochina and Sundaland are biologically diverse, interconnected regions of Southeast Asia with complex geographic histories. Few studies have examined phylogeography of bird species that span the two regions because of inadequate population sampling. To determine how geographic barriers/events and disparate dispersal potential have influenced the population structure, gene flow, and demographics of species that occupy the entire area, we studied five largely codistributed rainforest bird species: Arachnothera longirostra, Irena puella, Brachypodius atriceps, Niltava grandis, and Stachyris nigriceps. We accomplished relatively thorough sampling and data collection by sequencing ultraconserved elements (UCEs) using DNA extracted from modern and older (historical) specimens. We obtained a genome‐wide set of 753–4,501 variable loci and 3,919–18,472 single nucleotide polymorphisms. The formation of major within‐species lineages occurred within a similar span of time (0.5–1.5 mya). Major patterns in population genetic structure are largely consistent with the dispersal potential and habitat requirements of the study species. A population break across the Isthmus of Kra was shared only by the two hill/submontane insectivores (N. grandis and S. nigriceps). Across Sundaland, there is little structure in B. atriceps, which is a eurytopic and partially frugivorous species that often utilizes forest edges. Two other eurytopic species, A. longirostra and I. puella, possess highly divergent populations in peripheral Sunda Islands (Java and/or Palawan) and India. These species probably possess intermediate dispersal abilities that allowed them to colonize new areas, and then remained largely isolated subsequently. We also observed an east–west break in Indochina that was shared by B. atriceps and S. nigriceps, species with very different habitat requirements and dispersal potential. By analyzing high‐throughput DNA data, our study provides an unprecedented comparative perspective on the process of avian population divergence across Southeast Asia, a process that is determined by geography, species characteristics, and the stochastic nature of dispersal and vicariance events.  相似文献   

13.
Aim We study the population differentiation and phylogeography of the Temminck’s Stint (Calidris temminckii). Specifically, we seek signs of past and present population size changes and dispersal events and evaluate management and conservation unit status of the populations. We also study the possibility of introgression as the origin of two mitochondrial DNA (mtDNA) lineages found and estimate the divergence time of the lineages. Location Northern Eurasia. Methods We analysed 583 bp of mtDNA control region domains I and II and 11 microsatellite loci from 13 localities throughout the breeding range. In addition, we used mitochondrial cytochrome c oxidase subunit I (COI), a barcoding gene, to search for signs of introgression. Results More population differentiation was found from microsatellites than from mtDNA, although differentiation was weak in both markers. Signs of past population growth were observed, in addition to more recent decline in some areas. Both control region and COI sequences revealed two maternal lineages coexisting in Fennoscandia and in north‐west Siberia. No signs of introgression were detected. Lineage divergence time was estimated to have occurred during the glacial periods of Pleistocene. Main conclusions Slight differences in mtDNA and microsatellite differentiation and diversity may reflect different features – such as the mutation rate and effective population size – of the markers used, or female‐biased dispersal pattern and high male site‐fidelity of the species. The coexistence of the two mitochondrial lineages is most likely a consequence of post‐glacial mixing of two refugial Pleistocene populations. Based on genetic information alone, global conservation concerns are not imminent. However, fast decline of a marginal Bothnian Bay population and the smallness and remoteness of a Central Yakutian population warrant conservation actions.  相似文献   

14.
Jadin, R.C., Townsend, J.H., Castoe, T.A. & Campbell, J.A. (2012). Cryptic diversity in disjunct populations of Middle American Montane Pitvipers: a systematic reassessment of Cerrophidion godmani. —Zoologica Scripta, 41, 455–470. The discovery and taxonomic recognition of cryptic species has become increasingly frequent with the application of molecular phylogenetic analyses, particularly for species with broad geographic distributions. In this study we focus on the venomous pitviper species Cerrophidion godmani that is widely distributed throughout the highlands of Central America. We provide evidence based on both molecular phylogenetic analyses and morphological data that C. godmani represents three deeply divergent lineages and is possibly non‐monophyletic. These three lineages are relatively conserved in their morphology and tend to be highly variable among individuals, but we do find sufficient morphological characters to diagnose them as evolutionarily distinct. We apply these data, together with known geographic distributions of populations, to infer boundaries of these three divergent evolutionary lineages. Based on the body of evidence, we formally name and describe two new species of Cerrophidion and redescribe C. godmani sensu stricto.  相似文献   

15.
Speciation is the result of an accumulation of reproductive barriers between populations, but pinpointing the factors involved is often difficult. However, hybrid zones can form when these barriers are not complete, especially when lineages come into contact in intermediate or modified habitats. We examine a hybrid zone between two closely related riverine turtle species, Sternotherus depressus and S. peltifer, and use dual‐digest RAD sequencing to understand how this hybrid zone formed and elucidate genomic patterns of reproductive isolation. First, the geographical extent and timing of formation of the hybrid zone is established to provide context for understanding the role of extrinsic and intrinsic reproductive isolating mechanisms in this system. The strength of selection on taxon‐specific contributions to maintenance of the hybrid zone is then inferred using a Bayesian genomic cline model. These analyses identify a role for selection inhibiting introgression in some genomic regions at one end of the hybrid zone and promoting introgression in many loci at the other. When selective pressures necessary to generate outliers to the genomic cline are considered with the geographical and temporal context of this hybrid zone, we conclude that habitat‐specific selection probably limits introgression from S. depressus to S. peltifer in the direction of river flow. However, selection is mediating rapid, unidirectional introgression from S. peltifer to S. depressus, which is probably facilitated by anthropogenic habitat alteration. These findings indicate a potentially imminent threat of population‐level genomic extinction for an already imperiled species due to ongoing human‐caused habitat alteration.  相似文献   

16.
Genealogical discordance, or when different genes tell distinct stories although they evolved under a shared history, often emerges from either coalescent stochasticity or introgression. In this study, we present a strong case of mito‐nuclear genealogical discordance in the Australian rainforest lizard species complex of Saproscincus basiliscus and S. lewisi. One of the lineages that comprises this complex, the Southern S. basiliscus lineage, is deeply divergent at the mitochondrial genome but shows markedly less divergence at the nuclear genome. By placing our results in a comparative context and reconstructing the lineages' demography via multilocus and coalescent‐based approximate Bayesian computation methods, we test hypotheses for how coalescent variance and introgression contribute to this pattern. These analyses suggest that the observed genealogical discordance likely results from introgression. Further, to generate such strong discordance, introgression probably acted in concert with other factors promoting asymmetric gene flow between the mitochondrial and nuclear genomes, such as selection or sex‐biased dispersal. This study offers a framework for testing sources of genealogical discordance and suggests that historical introgression can be an important force shaping the genetic diversity of species and their populations.  相似文献   

17.
Range shifts during the Pleistocene shaped the unique phylogeographical structures of numerous species. Accompanying species migration, sister taxa may have experienced multiple introgression events. Here, we report the signature of introgression events in multiple areas in Schizocodon, herbs endemic to Japan, using amplified fragment length polymorphism (AFLP) fingerprinting and plastid DNA haplotyping in 48 populations. Although the present distributions of S. soldanelloides and S. ilicifolius are mainly allopatric, the species share plastid DNA haplotypes in each region (north‐eastern, north‐central, south‐central and south‐western Japan); in contrast, the specific groups were highly supported by AFLP analyses. These results support the occurrence of multiple introgression events in Schizocodon. Notably, the disjunct plastid haplotypes found only in S. ilicifolius var. intercedens suggest complete plastid DNA replacement at local areas from S. soldanelloides into S. ilicifolius var. ilicifolius. Furthermore, we found that S. soldanelloides experienced range contraction and expansion during glacial and interglacial cycles based on mismatch distribution analysis and ecological niche modelling. Based on several pieces of evidence, our study supports the idea that historical range shifts associated with Pleistocene climatic oscillations favoured multiple and regional introgression events in Schizocodon. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 46–63.  相似文献   

18.
19.
Geography influences the evolutionary trajectory of species by mediating opportunities for hybridization, gene flow, demographic shifts and adaptation. We sought to understand how geography and introgression can generate species‐specific patterns of genetic diversity by examining phylogeographical relationships in the North American skink species Plestiodon multivirgatus and P. tetragrammus (Squamata: Scincidae). Using a multilocus dataset (three mitochondrial genes, four nuclear genes; a total of 3455 bp) we discovered mito‐nuclear discordance, consistent with mtDNA introgression. We further tested for evidence of species‐wide mtDNA introgression by using comparisons of genetic diversity, selection tests and extended Bayesian skyline analyses. Our findings suggest that P. multivirgatus acquired its mitochondrial genome from P. tetragrammus after their initial divergence. This putative species‐wide mitochondrial capture was further evidenced by statistically indistinguishable substitution rates between mtDNA and nDNA in P. multivirgatus. This rate discrepancy was observed in P. multivirgatus but not P. tetragrammus, which has important implications for studies that combine mtDNA and nDNA sequences when inferring time since divergence between taxa. Our findings suggest that by facilitating opportunities for interspecific introgression, geography can alter the course of molecular evolution between recently diverged lineages.  相似文献   

20.
The north temperate region was characterized by a warm climate and a rich thermophilic flora before the Eocene, but early diversifications of the temperate biome under global climate change and biome shift remain uncertain. Moreover, it is becoming clear that hybridization/introgression is an important driving force of speciation in plant diversity. Here, we applied analyses from biogeography and phylogenetic networks to account for both introgression and incomplete lineage sorting based on geno...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号