共查询到20条相似文献,搜索用时 0 毫秒
1.
Effect of fuel deposition rate on departure fuel load of migratory songbirds during spring stopover along the northern coast of the Gulf of Mexico 下载免费PDF全文
Frank R. Moore Kristen M. Covino William B. Lewis Theodore J. Zenzal Jr Thomas J. Benson 《Journal of avian biology》2017,48(1):123-132
Migrants are generally assumed to minimize their overall migration time by adjusting their departure fuel loads (DFL) in relation to anticipated and experienced fuel deposition rates (FDRs). We utilized a 21‐yr long migration banding station dataset to examine the relationship between FDR and DFL during spring migration in six Nearctic‐Neotropical migratory songbird species during stopover along the northern coast of the Gulf of Mexico (GOM) following trans‐gulf flight. Estimates of fuel stores, stopover durations, and FDRs from our long term migration data set were combined to determine DFL. We expected and found that migrants across all six species adjust their DFL to the rate at which they deposit fuel reserves. This robust finding suggests that songbird migrants are sensitive to time constraints during spring passage presumably to fine‐tune their stopover schedule in relation to experienced and anticipated habitat quality. Two of the species studied showed an effect of age on the FDR–DFL relationship: one was consistent with the expectation that older birds would be less sensitive to changes in FDR, while the second was contrary to our expectations and likely suggesting an age‐dependent response to habitat quality. We found sex‐dependent differences consistent with male DFL being more sensitive to FDR in only two of six species studied, and argue that both males and females are time constrained during spring passage in relation to arrival at breeding destinations. The positive relationship between FDR and DFL among all species and for age and sex groups in some species reflects a migration strategy sensitive to time. 相似文献
2.
Migrating birds are under selective pressure to complete long-distance flights quickly and efficiently. Wing morphology and body mass influence energy expenditure of flight, such that certain characteristics may confer a greater relative advantage when making long crossings over ecological barriers by modifying the flight range or speed. We explored the possibility, among light (mass <50 g) migrating passerines, that species with relatively poorer flight performance related to wing shape and/or body mass have a lower margin for error in dealing with the exigencies of a long water crossing across the Gulf of Mexico and consequently minimize their travel time or distance. We found that species-mean fat-free body mass and wing tip pointedness independently explained variability among species distributions within ~50 km from the northern coast. In both spring and autumn, lighter (i.e., slower flying) species and species with more rounded wings were concentrated nearest the coastline. Our results support the idea that morphology helps to shape broad-scale bird distributions along an ecological barrier and that migration exerts some selective force on passerine morphology. Furthermore, smaller species with less-efficient flight appear constrained to stopping over in close proximity to ecological barriers, illustrating the importance of coastal habitats for small passerine migrants. 相似文献
3.
Bauchinger U McWilliams SR Pinshow B 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2011,158(4):374-381
For birds that migrate long distances, maximizing the rate of refueling at stopovers is advantageous, but ambient conditions may adversely influence this vital process. We simulated a 3-day migratory stopover for garden warblers (Sylvia borin) and compared body temperatures (T(b)) and rates of refueling under conditions of a heat wave (T(a)=40 °C by day, and 15 °C at night) with those under more moderate conditions (T(a)=27 °C by day, and 15 °C at night). We measured T(b) with implanted thermo-sensitive radio transmitters. Birds had significantly lower rates of body mass gain on the first day of stopover (repeated measures mixed model ANOVA, p=0.002) affecting body mass during the entire stopover (p=0.034) and higher maximum T(b) during the day when exposed to high T(a) than when exposed to moderate T(a) (p=0.002). In addition, the birds exposed to high T(a) by day had significantly lower minimum T(b) at night than those exposed to moderate daytime T(a) (p=0.048), even though T(a) at night was the same for both groups. We interpret this lower nighttime T(b) to be a means of saving energy to compensate for elevated daytime thermoregulatory requirements, while higher T(b) by day may reduce protein turnover. All effects on T(b) were significantly more pronounced during the first day of stopover than on days two and three, which may be linked to the rate of renewal of digestive function during stopover. Our results suggest that environmental factors, such as high T(a), constrain migratory body mass gain. Extreme high T(a) and heat waves are predicted to increase due to global climate change, and thus are likely to pose increasing constraints on regaining body mass during stopover and therefore migratory performance in migratory birds. 相似文献
4.
Frank R. Moore 《Journal of Field Ornithology》2012,83(1):26-31
ABSTRACT Hummingbird migration has long fascinated researchers due to the limitations of small body size and high metabolic rate on migratory performance. Yet, few data are available concerning hummingbird migration strategies, especially for species that must negotiate major geographic barriers. To address this problem, we investigated the migration ecology of Ruby‐throated Hummingbirds (Archilochus colubris) passing through a coastal banding station in southwest Louisiana following flights across the Gulf of Mexico. Our aims were to describe the phenology of spring migration and explore potential differences in the migration ecology of males and females. During our 10‐yr study (1998–2007), we found that peak hummingbird passage generally occurred in the second half of April and that males preceded females by about three days. However, females arrived in significantly better energetic condition as measured by fat and muscle stores as well as size‐corrected body mass. Most birds did not stay at our study site to refuel, only 2% of individually marked birds were recaptured more than a day after initial capture (range = 1–5 d). Our results suggest that Ruby‐throated Hummingbirds exhibit protandrous migration (i.e., males migrate earlier) and that en route body condition may be a consequence of sexual dimorphism in wing morphology (i.e., lower wing loading in females) that allows females to expend less energy during migration across the Gulf of Mexico. 相似文献
5.
William H. Conner John W. Day Jr. Robert H. Baumann John M. Randall 《Wetlands Ecology and Management》1989,1(1):45-56
Available literature indicates that hurricanes do not generally produce long-term detrimental impacts to unmodified coastal systems and that they often provide net benefits along the U.S. Gulf Coast. While there is normally initial erosion from hurricanes, they also often result in a large influx of inorganic sediments, creating new wetlands and contributing to the maintenance of existing wetlands. The formation of washover deposits is disastrous where cultural development has occurred, but in natural areas these deposits are part of the natural cycle of shoreline development and contribute to habitat diversity and productivity. Abundant rainfall typically associated with hurricanes often results in large increases of sediment and nutrient inputs into coastal estuaries, leading to both short-term and long-term increases in productivity. Rainfall during tropical disturbances accounts for a significant part of total precipitation along the northern gulf. The immediate impact of hurricanes may be to reduce populations of some species but these populations generally recover rapidly. Overall, productivity in natural systems seems to be increased by periodic hurricanes. Hurricane impacts are often severe and long lasting in wetlands that have been modified by human impacts such as semi- or complete impoundments. 相似文献
6.
7.
Lipid depletion is currently believed to be the primary factor limiting flight duration of migrating birds in North America, while the influence of water loss is thought to be small. Three migrating species of passerines, wood thrush (Hylocichla mustelina), Swainson's thrush (Catharus ustulatus), and summer tanager (Piranga rubra) were captured during the 1993 spring migration just after crossing the Gulf of Mexico and examined for lipid and water depletion. The redwinged blackbird (Agelaius phoeniceus), a winter resident, was examined for comparison. Although some migrants had low levels of fat, most were not seriously fat-depleted and had much higher lipid levels than red-winged blackbirds. Migrants appeared dehydrated, usually having less than 60% body water and significantly less water than the blackbirds. Recaptured wood thrushes had significantly higher mass than when initially captured. Many of these birds were replenishing significant amounts of water, while the acquisition of lipid mass was dependent on the amount of time the birds spent on the study site. Migrants were significantly fatter but had significantly less water mass when captured during unfavorable weather than under favorable conditions. It appears that both dehydration and lipid depletion are major physiological constraints on migrating passerines. 相似文献
8.
Hurricane risk characteristics are examined across the U. S. Gulf of Mexico coastline using a hexagonal tessellation. Using an extreme value model, parameters are collected representing the rate or λ (frequency), the scale or σ (range), and the shape or ξ (intensity) of the extreme wind distribution. These latent parameters and the 30-year return level are visualized across the grid. The greatest 30-year return levels are located toward the center of the Gulf of Mexico, and for inland locations, along the borders of Louisiana, Mississippi, and Alabama. Using a geographically weighted regression model, the relationship of these parameters to sea surface temperature (SST) is found to assess sensitivity to change. It is shown that as SSTs increase near the coast, the frequency of hurricanes in these grids decrease significantly. This reinforces the importance of SST in areas of likely tropical cyclogenesis in determining the number of hurricanes near the coast, along with SSTs along the lifespan of the storm, rather than simply local SST. The range of hurricane wind speeds experienced near Florida is shown to increase with increasing SSTs (insignificant), suggesting that increased temperatures may allow hurricanes to maintain their strength as they pass over the Florida peninsula. The modifiable areal unit problem is assessed using multiple grid sizes. Moran’s I and the local statistic G are calculated to examine spatial autocorrelation in the parameters. This research opens up future questions regarding rapid intensification and decay close to the coast and the relationship to changing SSTs. 相似文献
9.
Results of semi-quantitative observations and quantitative sampling of seagrasses at coastal and offshore sites along the
western Arabian Gulf are presented. Overall seagrass cover (all species together) shows significant positive correlation with
latitude, but not with salinity, temperature or depth. The same pattern is shown by Halodule uninervis (Forsk.) Aschers., the dominant species. Mean seagrass biomass ranged from 53–235 g m-2 (dry weight). These values are comparable with biomass estimates from regions in which environmental conditions are generally
less extreme than in the Gulf. Seagrass biomass is significantly negatively correlated with depth and sediment grain size.
No significant correlation is apparent between seagrass biomass and factors such as season, salinity, or concentrations of
nutrients and heavy metals measured. It is pointed out that any correlations observed are not necessarily taken to imply causality. 相似文献
10.
Mizrahy O Bauchinger U Aamidor SE McWilliams SR Pinshow B 《Integrative and comparative biology》2011,51(3):374-384
Migrating blackcaps (Sylvia atricapilla) were used to test the predictions that (1) the rebuilding of the digestive tract, as reflected by mass-specific consumption of food on the first 2-3 days of a stopover, is faster in birds with access to drinking water than in birds without, and (2) that adipose tissue and pectoral muscles grow faster and to a greater extent in birds with unlimited access to water. We simulated migratory stopover in two experiments. In Experiment I, each of 31 birds was randomly assigned to one of three experimental groups for 6 days. Along with mealworms (~64% water) ad libitum, Group 1 received drinking water ad libitum; Group 2 had 0.5 h/day access to water; and Group 3 had no access to water. In Experiment II, 30 birds were offered a mixed diet for insectivorous birds (~33% water) ad libitum for 6 days, while randomly assigned to two groups: (1) Water ad libitum-control; and (2) 30 min access to water twice a day. We measured lean mass and fat mass using dual energy X-ray absorptiometry, as well as body mass (m(b)), pectoral muscle index (PMI), and daily intake of food and water. Mean daily water intake was significantly different among the groups in both experiments. However, the availability of drinking water positively affected the rates of gain of lean and fat mass only in birds fed with the mixed, relatively dry diet. Furthermore, mass-specific daily food intake was affected by the availability of drinking water only in the mixed diet experiment, in which birds with unlimited access to drinking water reached an asymptote, 1 day earlier than birds in the water-restricted group. We suggest that in birds consuming diets with low water content, the lack of sufficient drinking water may result in slower rebuilding of the digestive tract, or may influence biochemical processes in the gut that result in slower growth of tissue. Although blackcaps obtained sufficient water from preformed and metabolic water to renew lost tissues when eating mealworms, given access to water, the birds drank prodigiously. Our results also suggest that if drinking water is unavailable to migrating blackcaps, their choices are restricted to water-rich foods, which may constrain their rate of feeding and thus the rate at which they deposit fat. Consequently, drinking water may have an important influence on birds' migratory strategies with respect to habitat selection, use of energy, and the saving of time. 相似文献
11.
12.
Patrick J. Bryan James B. McClintock Thomas S. Hopkins 《Journal of experimental marine biology and ecology》1997,210(2):127-186
The feeding deterrent effects of echinoderm body-wall tissues and ethanolic extracts containing mid-polarity compounds were evaluated utilizing generalist fish and crabs as model predators. The body-wall tissues of the echinoderms examined ranged 10-fold from 0.9–9.4 mm in thickness, and four and a half-fold in level of mineralization (17.8–82.7% ash content). Holothuroids had the thickest body-wall tissues and contained the lowest levels of mineralization in their body-walls. Crinoids and ophiuroids had high levels of mineralization in their arms. Asteroid body-wall tissues varied the most in thickness and ash content (0.9–3.9 mm in thickness and 29.2–55.5% in ash content). Body-wall tissues of 19 species of echinoderms were tested for their feeding deterrent properties against the marine fishes Lagodon rhomboides (Linnaeus) and Cyprinodon variegatus (Lacepede), as well as the decapod crustacean Libinia emarginata (Leach). Equivalent sized pieces of fresh body-wall tissue of 16 species of echinoderms caused observable feeding deterrence responses in at least two of the three model predators. There was no significant correlation between body-wall thickness or percent ash and its palatability to any of the three model predators. Agar pellets containing ethanolic body-wall extracts of 12 of 18 echinoderm species caused observable feeding deterrence responses in the fish L. rhomboides. In similar experiments with the arrow crab Stenorhyncus seticornis (Herbst), using carrageenan fish-meal blocks as food models, no differences in consumption of control fish-meal and experimental body-wall extract blocks were detected. Our findings indicate that invertebrate and vertebrate predators may respond quite differently to echinoderm body-wall extracts. 相似文献
13.
Gulf Menhaden (Brevoortia patronus) are a species of commercial and ecological importance in the northern Gulf of Mexico, provisioning the second largest fishery by weight, in the United States, and providing critical ecosystem services in the coastal region. The recruitment and productivity dynamics of the stock are influenced by a suite of environmental factors but an understanding of the factors that determine individual variation in oil content (an indicator of an individual’s commercial value to the fishery and its dietary value to predators) has not been well described. In this work I describe the temporal dynamics of oil content and determine the demographic characteristics that provide predictive power to describe annual contrasts. I relate the predicted patterns in oil yield to a suite of seasonal environmental data series including: the magnitude of spring Mississippi River discharge, spring wind vectors, and the preceding winter El Nino conditions. Two uncorrelated (r = 0.06, p = 0.81) population-level predictor variables were identified that have explanatory power to describe temporal patterns in oil content (L kg−1); a weight-at-length power function parameter (a) and the von Bertalanffy asymptotic fork length (L∞, mm FL): L kg−1 = − 0.158 − 0.026*a − 0.00163*L∞ (p < 0.05, R2 = 0.42). Analysis of the impacts of environmental variables on the oil content of Gulf Menhaden was evaluated comprehensively in a Bayesian framework by transforming the observed oil content information from two sources to a common scale. Parameters relating oil content to spring Mississippi River discharge and the preceding winter (December–February) El Nino Southern Oscillation index resulted in sample distributions from the posterior where zero was outside the 95% credible interval. This work contributes to the understanding of Gulf Menhaden as a prey species in the Gulf of Mexico and indicates that the value of the species to both the fishery and predators exhibits relatively large inter-annual variability controlled, in part, by seasonal environmental conditions. 相似文献
14.
15.
K.M. Aarif Aymen Nefla T.R. Athira P.K. Prasadan Sabir Bin Muzaffar 《Saudi Journal of Biological Sciences》2021,28(11):6030-6039
The long distant, transcontinental migration of shorebirds entails many well identified costs in terms of time, energy, and direct mortality risk. Injuries from debris or from human structures and activities were observed as the major reasons for the direct mortality of shorebirds during migration worldwide. We recorded injured birds in major coastal wetlands of Kerala, for a period of 15 years from 2005 to 2019. The injured birds were observed in 9 different sites in various districts of Kerala. The highest instances of injuries were observed in Kadalundi-Vallikunnu Community Reserve, the major wintering and stop over site of migrant shorebirds in the west coast of India. During the study period, fifty-eight individuals of shorebirds belonging to four families were found to be injured. The highest proportion of injuries was recorded among the families Scolopacidae and Charadriidae comprising long distance migrant shorebird species and the lowest among Laridae and Ardeidae. We recommend that environmental authorities pay special attention to minimize anthropogenic debris along the flyways used by migratory birds thereby reducing the risk of injuries to some of these species. Proactive measures such as removal of discarded fishing gear or plastic debris from wintering areas as well as stopover areas could greatly reduce injuries in migratory birds arising from anthropogenic sources. 相似文献
16.
Xinping Hu Wei-Jun Cai Yongchen Wang Xianghui Guo Shangde Luo 《Palaeogeography, Palaeoclimatology, Palaeoecology》2011,312(3-4):265-277
Geochemical environments were characterized for 14 sites along the northern Gulf of Mexico continental shelf and upper slope, in an effort to examine the relationship between sediment geochemistry and carbonate shell taphonomy in a long-term study—Shelf and Slope Experimental Taphonomy Initiative (SSETI). Three groups of environments of preservation (seep, near-seep, and shelf-and-slope) were identified based on their geochemical characteristics (i.e., oxygen uptake rate and penetration depth, pore-water saturation states, and carbonate dissolution fluxes). Diffusive oxygen uptake rate increased in the order of shelf-and-slope, near-seep, and seep, although carbonate dissolution flux did not show significant correlation with O2 flux, presumably due to non-diffusive behavior at some sites. Using pore-water saturation indices with respect to aragonite and calcite and sedimentation rates, we defined a semi-quantitative parameter, carbonate dissolution index (CDI), to predict carbonate preservation potential during the taphonomic processes. Our limited database suggests that both the seep and the shelf-and-slope sediments may have higher carbonate preservation potential than the near-seep sediments. 相似文献
17.
J. T. Nieto‐Navarro M. Zetina‐Rejón F. Arreguín‐Sánchez D. S. Palacios‐Salgado F. Jordán 《Zeitschrift fur angewandte Ichthyologie》2013,29(3):610-616
One of the main concerns of shrimp fisheries is the associated impact on ecosystem biodiversity, particularly on fish assemblages that are poorly characterized yet likely very relevant to the health of the ecosystem. The continental shelf along the eastern coast of the mouth of the Gulf of California is a region of high biodiversity that harbors highly productive fisheries. This study aimed to analyze the changes in the soft bottom fish assemblages caught as bycatch in the shrimp fishery located in this region. Sampling was conducted with commercial trawls at 16 fixed stations during the 2006–2007 shrimp‐fishing season. A total of 103 fish species from 80 genera and 47 families were collected. The ecological and taxonomic diversity as well as the composition and abundance of the fish community caught as bycatch in the shrimp trawl fishery were found to be significantly different in the autumn and winter. Ordination and similarity analyses also revealed differing patterns. Species abundance was strongly associated with sea bottom temperature, depth and latitude. The effects of these abiotic variables on the observed diversity patterns and the possible influences of the fishery are discussed. 相似文献
18.
Along the west coast of South America mangroves are found only outside the area influenced by the cold Peruvian Current. At 6° S (near ‘Cerro Illescas’) the current turns west to the open sea in the direction of the Galapagos Islands. Dense mangrove vegetation with a tree height up to 15 m occurs only north of 3° 35′ S from the delta of the river Tumbes (Peru). At 3° 44′ S some small individuals of Rhizophora and at 5° 30′ S a small stand of Avicennia can be found. In the transition zone between 3° 35′ and 6° S no mangrove forest occurs. The reasons for the lack of mangal in the transition zone are:
- Evapotranspiration and atmospheric humidity show significant differences between the mangrove region and the transition zone. In this zone soil conditions like salinity, water and organic matter content and the geological structure can also be considered as inhibiting mangrove growth.
- Topographic conditions in this zone are not suitable for mangal and the lack of a regular annual flow from rivers provides a sharp limit for the existence of mangal in the delta of the river Tumbes. Nevertheless, cultivation of mangrove species south of the mangrove region is possible and seems promising.
19.
Coastal wetlands play an important but complex role in the global carbon cycle, contributing to the ecosystem service of greenhouse gas regulation through carbon sequestration. Although coastal wetlands occupy a small percent of the total US land area, their potential for carbon storage, especially in soils, often exceeds that of other terrestrial ecosystems. More than half of the coastal wetlands in the US are located in the northern Gulf of Mexico, yet these wetlands continue to be degraded at an alarming rate, resulting in a significant loss of stored carbon and reduction in capacity for carbon sequestration. We provide estimates of surface soil carbon densities for wetlands in the northern Gulf of Mexico coastal region, calculated from field measurements of bulk density and soil carbon content in the upper 10–15 cm of soil. We combined these estimates with soil accretion rates derived from the literature and wetland area estimates to calculate surface soil carbon pools and accumulation rates. Wetlands in the northern Gulf of Mexico coastal region potentially store 34–47 Mg C ha?1 and could potentially accumulate 11,517 Gg C year?1. These estimates provide important information that can be used to incorporate the value of wetlands in the northern Gulf of Mexico coastal region in future wetland management decisions related to global climate change. Estimates of carbon sequestration potential should be considered along with estimates of other ecosystem services provided by wetlands in the northern Gulf of Mexico coastal region to strengthen and enhance the conservation, sustainable management, and restoration of these important natural resources. 相似文献
20.
Landscape‐scale habitat availability,and not local geography,predicts migratory landbird stopover across the Gulf of Maine 下载免费PDF全文
While it is clear that many migratory behaviors are shared across taxa, generalizable models that predict the distribution and abundance of migrating taxa at the landscape scale are rare. In migratory landbirds, ephemeral concentrations of refueling birds indicate that individual behaviors sometimes produce large epiphenomena in particular geographic locations. Identifying landscape factors that predict the distribution and abundance of birds during migratory stopover will both improve our understanding of the migratory process and assist in broad, regionally relevant conservation. In this study we used autumnal passerine stopover data from a five‐year period and eleven stopover sites across coastal Maine, USA, to test four broad hypotheses of migrant distribution and abundance that have been supported in other regions: a) the community characteristics of the pool of potential migrants, b) a site's local geography, c) landscape composition and configuration measured at different spatial scales, and d) interactions between these factors. Our final model revealed that birds concentrate at ‘habitat islands’, sites that possess a disproportionate percentage of the vegetated habitat in the 4‐km surrounding landscape. The strength of this pattern, however, was inversely proportional to a species' remaining migratory distance. Our results corroborate several studies that emphasize the importance of land cover composition at finer spatial scales (< 80 km2) for predicting the stopover distribution and abundances of migratory birds. This suggests that different migrants likely assess stopover sites with similar mechanisms along their migratory route, and these commonalities may be broadly applied to identify stopover locations of conservation importance across the continent. 相似文献